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Abstract 
When using building energy models (BEM) for building 
design, it is often valuable to conduct a sensitivity 
analysis (SA) to help designers to focus their efforts on 
design variables that drive the majority of the building 
performance indicators such as energy use.  
In this study, three different SA methods (Local, Morris 
and Sobol’) were applied to two different BEMs (hourly 
dynamic and monthly quasi-steady-state) for SA analysis 
in two different stages of the building design process. The 
finding is that the choice of appropriate SA method 
depends on the purpose of the SA; whether it is a 
screening of equally probable design options, or a more 
thorough quantification and ranking of parameter 
uncertainty. 

Introduction 
Sensitivity analysis (SA) can be used to explore the 
behaviour of building energy models (BEM) and thereby 
identify which input parameters that drive the majority of 
the model output variation. Such an analysis is valuable 
as it enables building designers and contractors to focus 
their efforts on designing and obtaining the functional 
requirements of parameters most critical to the energy 
performance. 
There are many examples in the literature on how to apply 
SA for BEM-based design, e.g. Heiselberg et al. (2009), 
Mechri et al. (2010) , Spitz et al. (2012), and Østergaard 
et al. (2015) to mention a few. However, a sound 
argumentation that vouches for the reliability, validity and 
necessary complexity of the chosen SA is rare. Kristensen 
and Petersen (2016) used a model of an existing 
residential building stock in a temperate climate (i.e. 
energy need was predominantly space heating) as case to 
demonstrate that the choice of SA method affects the 
identification and ranking of the input parameters most 
sensitive to the model output. The overall conclusion was 
that it is essential not to interpret the outcome of SA in a 
way that lies beyond the capabilities of the used SA 
method, as this may lead to suboptimal design decisions 
and wrong focus areas in the construction phase. 
Furthermore, the study also showed that the SA outcome 
– to some extend – is affected by the chosen BEM 
method; in this case, the simple hourly and monthly 
methods in ISO 13790:2008. Practitioners must therefore 
be careful to choose an appropriate combination of SA 
method and BEM that fits the purpose of the SA.  

In practice, SA can be used for various purposes. In the 
early design stage, SA can help designer to identify which 
critical design variables to focus on. Prior to initiating the 
construction phase, SA can be used to identify which 
functional requirement to have special focus on obtaining 
during construction. The objective of this paper is to 
investigate the performance of three different SA methods 
combined with two different BEMs for the two above-
mentioned SA purposes using an office building in a 
temperate climate as case. The intention is to provide an 
example to guide building designers in selecting the 
appropriate SA method depending on the purpose of the 
analysis and the type of BEM applied. 

Method 
An office case building was modelled using two different 
BEMs to calculate the annual energy need for space 
heating and cooling. Using three different SA methods of 
increasing capability and complexity, the sensitivity of 
the two BEMs was investigated and analysed for two 
different phases in the design of the case building;  
1. the early design phase  (Case 1) with uncertainty 

embedded in the free choice of model parameter 
values, and  

2. the detailed design phase (Case 2) where uncertainty 
is embedded in the fixed parameter values chosen in 
the early design stage due to e.g. imperfections in 
building materials, construction errors, and 
stochastic occupant behaviour. 

Description of case 
The case consisted of a 24 m2 (6x4 m) south-facing two-
person office room in a single-story building (Figure 1); 
the window façade and roof faced the outdoor while the 
floor faced the ground. The remaining surfaces were 
assumed adiabatic.  
 

 
Figure 1: Case office room.  
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The room was assumed occupied weekdays between 8 am 
and 5 pm in which period a constant-air-volume system 
ventilated the room. Heating and cooling was supplied by 
separate systems. During the weekend, ventilation was 
turned off and no internal heat loads were assumed. The 
installed capacity of the heating and cooling systems was 
assumed able to always meet their respective set points. 
Internal heat loads, airflow rates and set points are given 
in Table 1.  
In Case 1 (early design phase), seven model parameters 
were open for design decisions: room height, U-values of 
external wall, roof and floor, %-window area of the 
external wall area, and the SHGC of the window. These 
seven unselected model parameters were all assigned a 
uniformly distributed probability range (Table 1) to 
reflect the uncertainty faced by building designers in the 
early design stage. The purpose of this analysis was to 
help building designers focus on the model parameters of 
most influence to the model output (energy need). 
In Case 2 (uncertainty related to the realisation of values 
chosen in the early design stage), all parameter values 
were assumed fixed at satisfying levels by the building 
designers. However, due to e.g. imperfections in building 
materials, construction errors, and stochastic occupant 
behaviour, these selected values are subject to 
uncertainty. In Case 2, the sensitivity of the model output 
to this kind of uncertainty was investigated. This 
information can be regarded as advice on which 
parameters that demands special attention in the detailed 
design and construction phase to reduce the risk of not 
realising the design intentions. 

Building energy modelling 
The two BEMs used to calculate the annual energy need 
for space heating and cooling were 1) the quasi-steady-
state calculation method with monthly time steps, and 2) 
the simple dynamic calculation method based on hourly 
time steps. Both model are described in ISO 13790:2008. 

Only energy need for space heating and cooling were 
considered; thus, COP coefficients of chillers etc. were 
not considered. Weather conditions were modelled using 
the Danish design reference year (DRY) dataset, 
containing hourly values of the necessary weather 
parameters (air temperature, normal solar radiation and 
diffuse solar radiation) (Jensen and Lund, 1995). Total 
solar radiation perpendicular to the building facades was 
calculated in both BEMs using the solar algorithm 
described by Bourges (1992). 

Sensitivity analysis methods 
Three SA methods were applied: a local partial 
derivative-based method (Lam and Hui, 1996), the global 
screening-based method of Morris (Morris, 1991), and the 
global variance-based method of Sobol’ (Sobol’, 1993). 
All three methods and how they were implemented for the 
analysis in this paper are described in detail in Kristensen 
and Petersen (2016). Information about the setup of the 
SA methods is given in Table 2. 

Overall, the capabilities of the three SA methods can be 
contrasted in terms of their ability to take into account  
1. the range and shape of input parameter distributions,  
2. multi-dimensional parameter influence on the 

outcome when all input parameters are varied 
simultaneously, and  

3. non-linear and non-additive effects when input 
parameter interactions are taken into account (model 
independency). 

The only SA method featured in this paper that 
encompasses all three of the above-mentioned abilities is 
the global variance-based method of Sobol’. The Sobol’ 
method makes a complete decomposition of the output 
variance by searching across the entire input space, 
simultaneously taking into account range and shape of 
parameter distributions and correlated effects.

 

Table 1: Probability density functions assigned to model input parameters for Case 1 and Case 2. 

Input parameters Unit Case 1 Case 2  

Room width  [m] 6.0 6.0 
Room depth [m] 4.0 4.0 
Room height  [m] Uniform (3.0;4.0) 3.5 
U-value (ext. wall)  [W/m2K] Uniform (0.10;0.30) Lognormal (-1.966;0.0202) 
U-value (roof)  [W/m2K] Uniform (0.08;0.20) Lognormal (-2.303;0.0392) 
U-value (floor) [W/m2K] Uniform (0.10;0.20) Lognormal (-2.121;0.0272) 
Adjustment factor (ground) [-] 0.7 Beta (15;3.75) 
Window-% [-] Uniform (30%; 60%) 40% 
Window frame fraction  [-] 20% 20% 
U-value (window)  [W/m2K] 0.8 0.8 
SHGC [-] Uniform (0.3;0.6) 0.3 
Ventilation rate (CAV) [l/s/m2] 0.83 Uniform (0.75;0.92) 
Infiltration rate @ 50Pa [l/s/m2] 0.50 Lognormal (-0.240; 0.6932) 
Heat recovery efficiency [-] 0.85 Beta (100;21.95) 
Internal heat loads (people, light, appliances) [W/m2] 17 Lognormal (6.073; 0.2692) 
Internal heat capacity [KJ/m2K] Uniform (110;260) Lognormal (5.102; 0.0882) 
Heating set point [˚C] 20 Normal (21.5;12) 
Cooling set point [˚C] 26 Normal (26;0.42) 
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Table 2: Input assumptions for the SA methods. 

 Local Morris Sobol’ 

Points used 
from PDF 

1% and 99% 
quantiles 

1% and 
99% 

quantiles, 
p = 4 

(levels) 

Entire PDF 

Sample size 1 r = 300 
(trajectories) 

N = 10,000 
(LHS) 

No. model 
evaluations 2k+1 r(k+1) N(k+2) 

Convergence 
measure N/A Σ(µ) ≈ 

constant 
Σ (ST) ≈ 
constant 

 

The resulting total-order sensitivity indices are bounded 
to sum to one which makes it physically meaningful to 
use them for identifying and ranking input parameters that 
drive the majority of the model output variation. 
The method of Morris applies the absolute mean of a 
population of local elementary effects to quantify the 
global influence of a given input parameter. The method 
is to some extend able to take into account non-linear and 
non-additive effects (ability 3), but is not able to account 
for non-uniform distributions of model input parameters 
(ability 1) using the traditional Morris sampling technique 
(factorial sampling) applied in this study. Furthermore, 
the Morris method is potentially neglecting correlated 
effects (ability 2) because each parameter is varied locally 
one-at-a-time (OAT). Another disadvantage of the Morris 
method is the dubious interpretation of the mean 
elementary effect as a measure of global sensitivity. One 
should be careful with interpreting a large absolute value 
of the mean elementary effect from the Morris method as 
a sign of great parameter influence as such values vary 
from one model to another. Only the internal ranking of 
the means can be used to quantify the influence of the 
parameters and sort them in clusters of importance. 
The Local method uses inputs and outputs from OAT 
parameter variations (one sample) to calculate a 
dimensionless sensitivity index expressing the elasticity 
of variation around the mean value as percentage change 
in output per percentage change in input. This SI-index is 
then used for identifying and ranking the input parameters 
most sensitive to the output. The Local method implies a 
strictly linear model (not fulfilling ability 3), it does not 
allow any quantification of correlated parameter effects 
(not fulfilling ability 2), and does not allow any utilisation 
of knowledge about the shape of the parameter 
distributions (not fulfilling ability 1). One should 
therefore be careful interpreting the identification and 
ranking if the model is not 100% linear, have interacting 
input parameters, and anything but uniformly distributed 
input parameters. 

Model input parameters 
In order to carry out the sensitivity analyses, input spaces 
had to be specified for the uncertain input parameters in 

both cases to reflect the a-priori uncertainty of their value. 
To do so, different continuous probability density 
functions (PDFs) were applied to set the probability of a 
given parameter value over a range of variation (Figure 
2).  

 
Figure 2: Probability density functions suitable for 

sensitivity analysis of building energy models. 
 

The uncertainty of a parameter can be uniformly 
distributed across its defined range of variation 
Uniform(A;B); doing so, the probability of all values 
within the parameter range are equal. This was 
appropriate for Case 1, as the purpose was to explore the 
effects of equally possible design options in the early 
design stage prior to any design decisions. The uniform 
PDF is often refered to as a non-informative PDF as no 
information can be extracted from it besides the range of 
variation.  
A parameter can also be non-uniformly distributed if a-
priori information allows it, e.g. expert judgements, 
historical data, or measurement error specifications. Such 
distributions were appropriate for Case 2, as the purpose 
was to explore the effects of uncertainty of the true value 
of an already decided parameter, i.e. error related to the 
practical implementation of the design. For this end, the 
normal distribution Normal(µ;σ2) was applied to input 
parameters with an equally probable chance of variation 
around a most probable mean value (e.g. set point 
temperatures). The lognormal distribution 
Lognormal(µ;σ2) was applied to positively defined 
parameters where higher values were more probable than 
lower values (e.g. U-values and infiltration rate). The beta 
distribution Beta(a;b) was applied to specify factors 
defined between 0 and 1 (e.g. heat recovery efficiency). 
The lognormal distribution is always skewed to the right 
(positive skew; right-tailed), but the shape will imitate the 
normal distribution for distributions with large variance. 
The beta distribution may assume almost any shape and 
skewness; thus, it is likewise possible to make it imitate 
the normal distribution if wanted (Figure 2). 
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Results 
Partitioning heating and cooling need 
A monthly partitioning of the energy need for space 
heating and cooling, calculated using the two BEMs 
respectively, is shown in Figure 3, applying the mean 
values of the inputs for Case 1 (Table 1). 
 

 
Figure 3: Monthly partitioning of energy need for space 
heating and cooling. Mean input values for Case 1 was 

applied. 
 

The annually agregated energy need for space heating and 
cooling of the office room is dominated by the need for 
cooling (heating share of 20%; cooling share of 80%). 
The deviation between the annually agregated energy 
need for space heating and cooling of the hourly dynamic 
and the monthly quasi-steady-state BEMs is 4% (8% for 
heating; 2% for cooling). A larger internal deviation is 
present on the monthly scale.  

Case 1: Early design decisions 
Given the uniformly defined uncertainty specification for 
Case 1 (Table 1), the probable outcome of the annual 
energy need for space heating and cooling of the office 
room is shown in Figure 4A. Even though the BEMs were 
not calibrated prior to simulation, and thus were not 
expected to be consistent, their output distributions 
exhibit the same variation and shape. Their mean values 
are 1,890 kWh/year (hourly dynamic) and 1,810 
kWh/year (monthly quasi-steady-state), respectively.  
The amount of variation caused by each of the seven 
uncertain parameters is quantified by the three SA 
methods and depicted in Figure 5, and ranked in order of 
influence in Table 3. 
 

Table 3: Ranking of input parameters for Case 1 (1 is 
most influential; 7 is least influential). L = local method; 

M = Morris method; S = Sobol’ method. 

Input 
Hourly  

dynamic 
Monthly quasi-

steady-state 
L M S L M S 

Window-%  3 1 1 2 1 1 
SHGC 2 2 2 3 2 2 
Room height  1 3 3 1 3 3 
Internal heat capacity 4 4 4 4 4 4 
U-value (roof)  5 5 5 5 5 5 
U-value (ext. wall)  7 6 6 6 6 6 
U-value (floor) 6 7 7 7 7 7 

 

The parameter ranking based on the Morris and Sobol’ 
analysis is identical for both BEMs, whereas the result of 
the Local method deviates a bit. The Morris and Sobol’ 
methods identified the window-% as the single most 
influential parameter (approx. 45%-51% of the output 
variability in the two BEMs, respectively, can be ascribed 
the window-% cf. the Sobol’ analysis), then SHGC as 2nd 
and room height as 3rd most influential.  The Local 
method, on the other hand, identified room height to be 
most influential in both BEMs with the SHGC coming in 
as 2nd and the window-% as 3rd most influential.  
In both BEMs, all three SA methods find the U-values 
(ext. wall, floor and roof) to be the least influential 
parameters given the input distributions of Case 1. 

Case 2: Uncertainty of practical implementation 
Given the mixed uncertainty specification for Case 2 
(Table 1), the probable outcome of the annual energy need 
for space heating of the office room is shown in Figure 
4B. The mean values are 1,410 kWh/year (hourly 
dynamic) and 1,300 kWh/year (monthly quasi-steady-
state), respectively. In contrast to the output distribution 
of Case 1, the distribution of Case 2 has a lower variance 
(uncertainty).   
The amount of variation caused by each of the 11 
uncertain parameters is quantified by the three SA 
methods and shown in Figure 5, and ranked in order of 
influence in Table 4. 
 

Table 4: Ranking of input parameters for Case 2 (1 is 
most influential; 11 is least influential). L = local 
method; M = Morris method; S = Sobol’ method. 

Input 
Hourly  

dynamic 
Monthly quasi-

steady-state 
L M S L M S 

Internal heat loads 3 2 1 4 2 1 
Heating set point 2 1 2 2 1 3 
Infiltration rate 5 4 3 6 3 2 
Cooling set point 1 3 4 1 4 4 
Internal heat capacity 4 5 5 3 5 5 
Heat recovery efficiency 10 6 6 5 7 7 
Adj. factor (ground) 8 7 7 9 6 6 
U-value (roof)  6 8 8 7 8 8 
Ventilation rate  11 9 9 11 10 9 
U-value (floor) 7 10 10 8 9 10 
U-value (ext. wall)  9 11 11 10 11 11 
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Figure 4: Probability distributions of annual energy need for space heating and cooling for Case 1 and Case 2. Latin 

Hypercube sampling was used to generate 10,000 simulation runs. 

In general, the rankings are different for all three methods; 
however, the Morris and Sobol’ methods tends to agree 
more with each other than with the Local method. 
Moreover, as opposed to the parameter ranking of Case 1, 
larger differences in the ranking are seen between the two 
BEMs for the same SA method.  
According to the variance decomposition of the Sobol’ 
method, the highest ranked parameter is the internal heat 
loads (people, lighting and appliances) in both BEMs, 
which accounts for 44%-47% of the output variability in 
the two BEMs, respectively. In total, the top-3 ranked 
parameters (internal heat loads, heating set point and 
infiltration rate) make up approx. 90%-92% of the output 
variability in both BEMs.  
The Morris method identified the same top-3 for the 
quasi-steady-state BEM as the Sobol’ method, but in 
different order. For the hourly dynamic BEM, the Morris 
method only identified top-2 from the Sobol’ method, also 
in a different order. The 3rd most influential parameter was 
found to be the cooling set point instead of infiltration 
rate.  
The Local method deviates from the Sobol’ method by 
identifying the cooling set point as the most influential 
parameter in both BEMs. The heating set point is 2nd 
highest ranked in both BEMs while internal heat loads is 
only in top-3 for the hourly dynamic BEM; the quasi-
steady-state BEM has instead the internal heat capacity in 
top-3. The infiltration rate (which was in top-3 for the 
Sobol’ method in both BEMs) was on 5th and 6th place in 
the hourly and quasi-steady-state BEM, respectively. 

Discussion 
For Case 1, i.e. an early design phase with uniformly 
distributed probabilities, the differences in parameter 
ranking based on the different SA methods are very 
limited. The Morris and Sobol’ methods tend to agree to 

a large extend. Assuming that the Sobol’ method is 
correct, the Local method is in principle leading to a 
wrong identification of the most important input 
parameter; however, Figure 5 shows that this is only due 
to a marginal difference between the top-3 parameters. 
This is a good example of how the visual presentation of 
SA results might be more informative to building 
designers in an early design phase than discrete rankings, 
as the focus seems to be on parameter screening rather 
than precise uncertainty quantification. 
For Case 2, i.e. the detailed design stage with the option 
of non-uniform PDFs to represent the modellers 
information about the parameter uncertainty, the Sobol’ 
and Morris method by definition outperforms the Local 
method in terms of parameter ranking. The Local method 
does not respect the range and shape of the input 
distributions (ability 1); it assumes the same effect for all 
possible values of the parameters, which is why it 
identifies the cooling set point as very important. In 
reality, the plausible range of the cooling set point is very 
limited, and thus not that influential in the overall picture. 
The Morris method does respect the range of the 
distributions, but not the shape as in the Sobol’ method, 
which makes the result of the Morris method approach the 
result from the Sobol’ method somewhat better than the 
Local method. From a theoretical point of view, the 
Sobol’ method would thus a-priori be regarded the most 
appropriate method for Case 2, as it has the ability to take 
into account the varying and somewhat skewed input 
distributions that were applied. Nonetheless, the Morris 
method showed to be appropriate for identifying the 
unranked cluster of the top-3 most important parameters, 
which together account for approx. 90% of the uncertainty 
in the energy need. Thus, if the purpose of the sensitivity 
analysis is to identify a group of most 
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Figure 5: Result of sensitivity analysis of Case 1 and Case 2, using the Local, Morris and Sobol’ method, respectively.  

important parameters, one might apply the 
computationally efficient Morris method in favour of the 
by far more complex and computationally heavy Sobol’ 
method. However, if the purpose is a detailed 
quantification of the uncertainty contribution of each 
parameter, and how these interact and affect each other, 
there is no way around a variance-based method like the 
one by Sobol’. For practical reasons though, the 
application of the Sobol’ method seems infeasible in 
ordinary building design.  The Local method fell short by 
only identifying one and two out of top-3 most important 
parameters, for the monthly quasi-steady-state and hourly 
dynamic BEMs, respectively; hence, it is most suitable for 
the simple screening-based analyses in the earliest stages 
of a building design process.  
In general, uncertainty in the inputs was propagated 
similarly through the two BEMs resulting in approx. equal 
output distributions. However, some differences in the 
influence of the inputs were found due differences in 
model behaviour and dynamics. Thus, one should be 
careful interpreting the outcome of a sensitivity analysis 
of one BEM as generally applicable for all BEMs; besides 
the applied SA method itself, the outcome of a sensitivity 
analysis is influenced by model behaviour, the exact 

selection of input parameters, and their investigated 
distributions (range and shape).  

Conclusion 
From the results of this study, it is evident that the 
applicability of the different SA methods used depends on 
the purpose of the SA. If the purpose is to identify which 
parameters – all with uniformly distributed probability – 
affects the model output, then a simple Local method 
seems to suffice from a practical point of view. This is 
especially true if an exact ranking of parameters is of 
minor importance, and if the building physics is 
represented using linear equations. However, the Local 
method can only be used to identify an unranked cluster 
of maybe the upper half most important parameters if the 
probability distributions of the input parameters for some 
reason are non-uniformly distributed. In such cases, the 
Morris method is preferred as long as the probability 
distributions are well defined without any long tails; if the 
majority of the parameters are normal or lognormal 
distributed with large variance and/or beta distributed, 
then the Sobol’ method is preferred.  
In addition to the choice of SA method itself, the results 
indicate that the ranking of important input parameters – 
and thus the proper selection of SA method – is influenced 
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by the applied BEM. This aspect of SA performance is 
relatively unexplored and ought to be further investigated 
in future work.   
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