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Preface to the First Edition

APPROACH

Design is an essential element in engineering education and practice. In recent years, there has been 
a growing emphasis on the design and optimization of systems because of growing worldwide com-
petition and the development of new processes and techniques. Design has long been very important 
in undergraduate mechanical engineering curricula around the country. However, the effort had 
been largely directed at mechanical systems, dealing with areas such as transmission, vibrations, 
robotics, and controls, and at components such as gears, cams, springs, and linkages.

With the growth of thermal systems, such as those related to materials processing, energy con-
version, pollution, aerospace, and automobiles, the need to design and optimize thermal systems has 
also grown. In mechanical engineering programs around the country, courses have been developed 
on the design of thermal systems. These are often elective courses, or, in many schools, such courses 
form the final capstone design course, often alternated with a design course on mechanical systems. 
Invariably, optimization is an important element in such courses because of the crucial need to 
optimize systems in practical applications.

This book is written as a textbook at the senior undergraduate or the first-year graduate level. 
It can also be used as a reference book for other thermal sciences courses, such as those on heat 
transfer, fluid mechanics, and thermodynamics, and for courses in applied areas, such as power 
plants, environmental control of buildings, and solar energy systems. It can be used for reference by 
practicing engineers as well. Although the book is written for engineering education curricula in the 
United States, the material and treatment can easily be used in various countries around the world. 
The book is largely written for mechanical engineers. However, the material is suitable for courses 
in other engineering disciplines, such as chemical, aerospace, industrial, and materials engineering.

The book is directed at the design of thermal systems, employing examples from diverse areas 
such as manufacturing, energy systems, cooling of electronic equipment, refrigeration, environ-
mental problems, engines, and heat transfer equipment. Many such examples and an introduction 
to design are given in Chapter 1. Then the conceptual design and formulation of the design problem 
are presented in Chapter 2, along with the main constituents of design, including material selection. 
The design process, as predominantly based on the mathematical modeling of the system and on 
the results obtained from numerical simulation, is presented in the next three chapters. Analytical 
results, if available, are valuable for validating the numerical model as well as for providing a fun-
damental basis for design. The use of experimental data, mainly as correlations derived from curve 
fitting, is presented as an essential element in the design and optimization process.

The basic approach to the development of a suitable model is discussed in Chapter 3 in detail 
because this forms the most crucial step in the design of a system. Various approximations and 
idealizations that can be used for modeling are presented, along with examples of mathematical 
modeling of practical systems. This is followed in Chapter 4 by detailed discussions of numerical 
modeling and simulation, again linking these to the mathematical model and experimental data. 
These results then form the basis for creative design of thermal systems and for the evaluation of 
the designs obtained.

The development of a workable, or acceptable, design, one which satisfies the requirements and 
constraints of the problem, is discussed as a synthesis of the different design steps. Several examples 
are given in Chapter 5 to illustrate the overall procedure. This is followed in Chapter 6 by a discus-
sion of economic factors in design because these often guide system design and optimization. The 
formulation of the optimization problem is explained in Chapter 7. The presentation on optimization 
includes several applicable methods such as calculus methods, search methods, and linear, dynamic, 
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and geometric programming. These topics are covered in Chapter 8 through Chapter 10. Again, 
thermal systems found in several important and relevant areas are used as examples to illustrate the 
ideas presented. Solved examples and problems strengthen the presentation and allow the important 
concepts to be assimilated by the readers. Recent trends, such as knowledge-based design method-
ology, are included in Chapter 11. Additional practical considerations, such as economic, safety, and 
materials, are also discussed at various stages of the presentation.

Therefore, the book starts with the basic design concept and develops the material through mod-
eling and simulation stages of the thermal process and system on to the creation of a workable 
design. The iterative process that is often used to obtain an acceptable design is presented. This 
logically leads to optimization procedures and the improvement of the design to obtain the best 
possible solution under the given constraints. The book offers a systematic approach, exploring 
the various considerations that lead to a workable and, finally, to an optimal design; uses up-to-
date examples and problems, and presents the most current information and design tools available 
in this important field. Examples range from simple systems to large, complex practical systems. 
Synthesis of the various aspects that constitute design is discussed in detail. A few relevant com-
puter programs are included to help with the numerical modeling and simulation. These include pro-
grams on curve fitting, solution of algebraic systems, and solution of simple differential equations. 
Quantitative information on materials, economics, and heat transfer correlations is also included. 
The mathematical modeling of systems is a particularly important aspect of design, though it is 
often neglected. Modeling is presented with a wide range of physical examples and a discussion of 
the types of approximations that can be used to simplify the problem. The inputs obtained from the 
model for an innovative and optimal design are outlined.

The main thrust of this book is to develop and discuss the basic considerations that arise in 
the design and optimization of thermal systems, as well as the appropriate methodology. Readers 
are encouraged to use their own backgrounds, imaginations, and available literature for designing 
different types of systems. Because simple closed-form, analytical solutions are rarely obtained 
in practical thermal systems, clear and concise answers are not readily available in many cases. 
A consideration of several practical systems makes this aspect of thermal system design clear.

The material included in this book has been used in courses for undergraduate seniors at Rutgers 
University and at the Indian Institute of Technology, Kanpur, India. The topics, examples, and 
problems have, therefore, been largely tested in a classroom environment. Various design projects 
and examples emerged from these courses, and some of them are included in the text. In keeping 
with the basic design process, many of the problems are open-ended and a unique solution is not 
obtained.

SUPPLEMENT

A solutions manual, prepared by me in order to ensure the problem-solving methodology is the 
same as that in the book, is available to text adopters. This manual contains possible solutions to 
most of the problems in this book (because many problems are open-ended and thus do not have a 
unique solution).
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Preface to the Third Edition

The third edition of this book follows the basic approach and treatment of the previous editions. 
The book mainly considers thermal systems, which are largely governed by the principles of 
thermodynamics, fluid mechanics, and heat transfer. However, the fundamental aspects pre-
sented in the book can be extended to a much wider range of systems. The book presents a sys-
tematic approach to design and optimization. Starting with the formulation of the problem, the 
process involves conceptual design, modeling, simulation, acceptable design, and, finally, opti-
mization. The inputs needed for the design and optimization process may be obtained by model-
ing, analysis and simulation, or by experimentation, though in many cases all three approaches 
are used to obtain the necessary data. Additional considerations, such as control, communica-
tion, financial aspects, safety, material selection, ethics and uncertainties, that arise in practical 
systems are also briefly outlined.

Examples are taken from many different areas, such as energy, environment, heating, cooling, 
manufacturing, aerospace, and transportation, to illustrate the basic approach and convergence to a 
feasible or optimal design. Solved examples and exercises are included to supplement the discussion 
and methods presented in the text. The material presented in the second edition has been updated 
to include recent books and advances on various topics. Much of the material has been expanded to 
include recent trends and emerging areas of interest. Additional references have been included and 
previous references have been updated.

Among the additional topics that were included after the first edition are artificial-intelligence-
based techniques like genetic algorithms, fuzzy logic, and artificial neural networks. Response 
surfaces and other optimization techniques are included in the discussion, along with effective 
use of concurrent experimental and numerical inputs for design and optimization. Multi-objective 
optimization is particularly important for thermal systems, since more than one objective function 
is typically important in realistic systems, and a detailed treatment is included. Other strategies to 
optimize the system are presented. The application of these ideas to the optimization of thermal 
systems is reiterated with examples of actual, practical systems.

The book has been used as a textbook for engineering senior undergraduate or first-year graduate 
level courses in design, for capstone design courses, and for courses in thermal engineering. It can 
also be used as a reference in courses in relevant basic and applied areas in engineering. It is also a 
useful reference for practicing engineers.

This edition continues the emphasis on the use of Matlab for numerical modeling and simu-
lation, because Matlab is often the dominant computational environment for the numerical 
solution of mathematical equations. Several examples and exercises are given to illustrate the 
use of Matlab in numerical modeling. The computer programs in Matlab have been expanded 
from the second edition to include several other methods of solution and also for solving addi-
tional problems such as partial differential equations. Additional exercises and examples are 
also included. Clarifications and simplifications are added at various places to make learning 
easier.

As mentioned in the earlier editions, the material presented in this textbook is the outcome 
of many years of teaching modeling, design, and optimization of thermal systems, in a variety 
of elective courses and in capstone design courses. Several colleagues and former students have 
been indispensable in the choice of topics and the depth and breadth of coverage. The support, 
assistance, and patience of the editorial staff of CRC Press, particularly Jonathan Plant, have 
been valuable in the development of the third edition. This book, like all my other efforts, is 
dedicated to my late parents, who had been a constant source of encouragement and inspiration. 
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1 Introduction

Design is generally regarded as a creative process by which new methods, devices, and techniques 
are developed to solve new or existing problems. Though many professions are concerned with cre-
ativity leading to new arrangements, structures, or artifacts, design is an essential element in engi-
neering education and practice. Due to increasing worldwide competition and the need to develop 
new, improved, and more efficient processes and techniques, growing emphasis is being placed on 
design. Interest lies in producing new and higher quality products at minimal cost, while satisfy-
ing increasing concerns regarding environmental impact and safety. It is no longer adequate just to 
develop a system that performs the desired task to satisfy a recognized societal need. It is crucial 
to optimize the process so that a chosen quantity, known as the objective function, is maximized or 
minimized. Thus, for a given system, the output, profit, productivity, product quality, etc., may be 
maximized, or the cost per item, investment, energy input, etc., may be minimized.

The survival and growth of most industries today strongly depend on the design and optimi-
zation of the relevant systems. With the advent of many new materials, such as composites and 
ceramics, and new manufacturing processes, such as three-dimensional printing, several traditional 
industries, such as the steel industry, have diminished in importance in recent years, while many 
new fields have emerged. It is important to keep abreast of changing trends in these areas and to 
use new techniques for product improvement and cost reduction. Even in an expanding engineer-
ing area, such as consumer electronics, the prosperity of a given company is closely linked with 
the design and optimization of new processes and systems and the optimization of existing ones. 
Consequently, the subject of design, which had always been important, has become increasingly 
critical in today’s world and has also become closely coupled with optimization.

In recent years, we have also seen tremendous growth in the development and use of thermal sys-
tems in which fluid flow and transport of energy play a dominant role. These systems arise in many 
diverse engineering fields such as those related to manufacturing, power generation, pollution, air 
conditioning, heating, and aerospace and automobile engineering. Therefore, it has become impor-
tant to apply design and optimization methods that traditionally have been applied to mechanical 
systems, such as those involved with transmission, vibrations, controls, and robotics, to thermal 
systems and processes. In this book, we shall focus on thermal systems, considering examples from 
many important areas, ranging from classical and traditional fields like engines and heating/cooling 
to new and emerging fields like materials processing, data centers, nanomaterials, and alternative 
energy sources. However, many of the basic concepts presented here are also applicable to other 
types of systems that arise in different fields of engineering, for example, civil, chemical, electrical, 
and industrial engineering.

In this chapter, we shall first consider the main features of engineering design, its importance 
in the overall context of an engineering enterprise, and the need to optimize. We will also examine 
design in relation to analysis, synthesis, selection of equipment, and other important activities that 
support design. This discussion will be followed by a consideration of systems, components, and 
subsystems. The basic nature of thermal systems will be outlined, and examples of different types 
of systems will be presented from many diverse and important areas.

1.1 ENGINEERING DESIGN

One of the most important tasks confronted by engineers is that of design. It may be the design of an 
individual component, such as a thermostat, flow valve, gear, or spring, or it may be the design of a 
system, such as a furnace, air conditioner, or an internal combustion engine that consists of several 
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components or constituents interacting with one another. It is, therefore, fair to ask what design is 
and what distinguishes it from other activities, such as analysis and synthesis, with which engineers 
are frequently concerned. However, design has come to mean different things to different people. 
The perception of design ranges from the creation of a new device or process to the routine calcula-
tion and presentation of specifications of the different items that make up a system. However, design 
must incorporate some element of creativity and innovation, in terms of a new, different, and better 
approach to the solution of an existing engineering problem that has been solved by other methods 
or the solution to a problem that has not been solved before. The process by which such new, differ-
ent, or improved solutions are derived and applied to engineering problems is termed design.

1.1.1 Design versus AnAlysis

We are all quite familiar with the analysis of engineering problems using information derived from 
basic areas such as statics, dynamics, thermodynamics, fluid mechanics, and heat transfer. The 
problems considered are often relevant to these disciplines and little interaction between different 
disciplines is brought into play. In addition, all the appropriate inputs needed for the problem are 
usually given and the results are generally unique and well-defined, so that the solution to a given 
problem may be carried out to completion, yielding the final result that satisfies the various inputs 
and conditions provided. Such problems are usually termed as closed-ended.

The calculation of the velocity profile for developed, laminar fluid flow in a circular pipe to yield 
the well-known parabolic distribution shown in Figure 1.1(a) is an example of analysis. Similarly, 
the analysis of steady, one-dimensional heat conduction in a flat plate results in the linear tempera-
ture distribution shown in Figure 1.1(b). Textbooks on fluid mechanics and heat transfer, such as 
Pritchard and Mitchell (2015) and Incropera and Dewitt (2001), respectively, present many such 
analyses for a variety of physical circumstances. Many courses are directed at engineering analy-
sis and engineering students are taught various techniques to solve simple as well as complicated 
problems in fundamental and applied areas. Most students thus acquire the skills and expertise to 
analyze well-defined and well-posed problems in different engineering disciplines.

The design process, on the other hand, is open-ended; that is, the results are not well-known 
or well-defined at the onset. The inputs may also be vague or incomplete, making it necessary to 

FIGURE 1.1 Analytical results for (a) developed fluid flow in a circular pipe and (b) steady-state one-
dimensional heat conduction in a flat plate.
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seek additional information or to employ approximations and assumptions. There is also usually 
considerable interaction between various disciplines, particularly between technical areas and those 
concerned with cost, safety, and the environment. A unique solution is generally not obtained and 
one may have to choose from a range of acceptable solutions. In addition, a solution that satisfies 
all the requirements may not be obtained and it may be necessary to relax some of the require-
ments to obtain an acceptable solution. Therefore, trade-offs generally form a necessary part of 
design because certain features of the system may have to be given up in order to achieve some 
other goals such as greater cost effectiveness or smaller environmental impact. Individual or group 
judgment based on available information is needed to decide on the final design. Inverse problems, 
in which the desired outcome is known but the conditions that would lead to this outcome are to 
be determined, are also commonly encountered. Again, the solution obtained is not unique and 
optimization methods are needed to narrow the region of uncertainty and thus achieve a physically 
acceptable result.

1.1.2 A Few exAmples

Consider the example of an electronic component located on a board and being cooled by the flow of 
air driven by a fan, as shown in Figure 1.2. The energy dissipated by the component is given. If the 
temperature distributions in the component, the board, and other parts of the system are to be deter-
mined, analysis or numerical calculations may be used for this purpose. Even though the numerical 
procedure for obtaining this information may be quite involved, the solution is unique for the given 
geometry, material properties, and dimensions. Different methods of solution may be employed but 
the problem itself is well-defined, with all the input quantities specified and with no variables left to 
be chosen arbitrarily. No trade-offs or additional considerations need to be included.

Let us now consider the corresponding design problem of finding the appropriate materials, 
geometry, and dimensions so that the temperature Tc in the component remains below a certain 
value, Tmax, in order to ensure satisfactory performance of the electronic circuit. This is clearly a 
much more involved problem. There is no unique answer because many combinations of materials, 
dimensions, geometry, fan capacity, etc., may be chosen to satisfy the given requirement Tc < Tmax. 
There is obviously considerable freedom and flexibility in choosing the different variables that char-
acterize the system. Such a problem is, thus, open-ended and many solutions may be obtained to 
satisfy the given need and constraints, if any, on cost, size, dimensions, etc. It is also possible that a 
satisfactory solution cannot be found for the given conditions and an additional cooling method such 
as a heat pipe, which conveys the heat dissipated at a much higher rate by means of a phase change 
process, may have to be included, as shown by the dotted lines in Figure 1.2. Then the design process 
must consider the two cooling arrangements and determine the relevant characteristic parameters 

FIGURE 1.2 An electronic component being cooled by forced convection and by a heat pipe.
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for these cases. Thus, different approaches, often known as conceptual designs, may be considered 
for satisfying the given requirements.

Another example that illustrates the difference between analysis and design is that of a casting 
process, as sketched in Figure 1.3. Molten material is poured into a mold and allowed to solidify. 
If the properties of the material undergoing solidification and of the various parts of the system, 
such as the mold wall and the insulation, are given along with the relevant dimensions, the initial 
temperature, and the convective heat transfer coefficient h at the outer surface of the mold, the 
problem may be solved by analysis or numerical computation to determine the temperature distri-
butions in the solid material, liquid, and various parts of the system, as well as the rate and total 
time of solidification for the casting (Flemings, 1974). The problem can often be simplified by using 
approximations such as constant material properties, negligible convective flow in the melt, uniform 
heat transfer coefficient h over the entire surface, etc. But once the problem is posed in terms of the 
governing equations and appropriate boundary conditions, the results are generally well-defined 
and unique.

We may now pose a corresponding design problem by allowing a choice of materials and dimen-
sions for the mold wall and insulation and of the cooling conditions at the outer surface, in order to 
reduce the solidification time below a desired value τcast. Then, many combinations of wall mate-
rial and thickness, cooling parameters, insulation parameters, etc., are possible. Again, there is no 
unique solution, and, indeed, there is no guarantee that a solution will be found. All that is given is 
the requirement regarding the solidification time and quantities that may be varied to achieve a sat-
isfactory design. In other cases, the requirements may be specified as limitations on the temperature 
gradients in the casting in order to improve the quality of the product. Clearly, this is an open-ended 
problem without a unique solution.

It is largely because of the open-ended nature of design problems that design is often much more 
involved than analysis. Consequently, while extensive information is available in the literature on 
the analysis of various thermal processes and on the resulting effects of the governing variables, 
the corresponding design problems have received much less attention. However, even though design 
and analysis are very different in their objectives and goals, analysis usually forms the basis for the 
design process. It is used to study the behavior of a given system, choose the appropriate variables 
to achieve the desired effects, and evaluate various designs, leading to satisfactory and optimized 
systems.

1.1.3 synthesis For Design

Synthesis is another key element in the design process, because several components and their 
corresponding analyses are brought together to yield the behavior of the overall system. Results 
from different areas must be linked and synthesized in order to include all of the important con-
cerns that arise in a practical system (Suh, 1990; Ertas and Jones, 1996; Dieter, 2000; Dieter and 
Schmidt, 2012). We cannot consider only the heat transfer aspects in the casting problem while 

FIGURE 1.3 The casting process in an enclosed region.



5Introduction

ignoring the strength of materials and manufacturing aspects. Information from different types of 
models, including experimental and numerical results, and from existing systems is incorporated 
into the design process. The cost, properties, and characteristics of various materials that may be 
employed must also form part of the design effort, because material selection is a very impor-
tant factor in obtaining an acceptable or optimal system. Additional aspects, such as safety, legal, 
regulatory, and environmental considerations, are also synthesized in order to obtain a satisfactory 
design. Figure 1.4 shows a sketch of a typical design process for a system, involving both analysis 
and synthesis as part of the overall effort.

1.1.4 selection versus Design

We are frequently faced with the task of selecting parts in order to assemble a system or a device 
that will perform a desired duty. In several cases, the entire equipment may be selected from what 
is available on the market, for instance, a heat exchanger, a pump, or a compressor. Even though 
selection is an important ingredient in engineering practice, it is quite different from designing a 
component or device and it is important to distinguish between the two. Selection largely involves 
determining the specifications of the item from the requirements for the given task. Based on these 
specifications, a choice is made from the various types of items available with different ratings or 
features. Design, on the other hand, involves starting with a basic concept, modeling and evaluating 
different designs, and obtaining a final design that meets the given requirements and constraints. 
The system may then be fabricated and tests carried out on a prototype before going into production. 
Therefore, design is directed at creating a new process or system, whereas selection is concerned 
with choosing the right item from those that are readily available for a given job.

Selection and design are frequently employed together in the development of a system, using 
selection for components that are easily available over the ranges of interest. Standard items such as 
valves, control sensors, heaters, flow meters, and storage tanks are usually selected from catalogs of 
available equipment. Similarly, pumps, compressors, fans, and condensers may be selected, rather 
than designed, for a given application. Obviously, design is involved in the development of these 
components as well; however, for a given system, the design of these individual components may 
be avoided in the interest of time, cost, and convenience. For instance, a company that develops 
and manufactures heat exchangers would generally design different types of heat exchangers for 
different fluids and applications, achieving different ranges in heat transfer rate, area, effectiveness, 

FIGURE 1.4 Schematic of a typical design procedure.
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flow rate, etc. Different configurations such as counter-flow and parallel-flow heat exchangers, com-
pact heat exchangers, shell-and-tube heat exchangers, etc., as shown in Figure 1.5, may be considered 
for a variety of applications. These may then be designed to obtain the desired parametric ranges of 
heat transfer rate, output temperature, size, and so on (Kays and London, 1984). Design engineers 
working on another thermal system, such as air conditioning or indoor heating, may simply select the 
condenser, evaporator, or other types of heat exchangers needed, rather than design these.

Selection is clearly a much less involved process, as compared to design. The requirements and 
specifications of the desired component or equipment are matched with whatever is available. If 
an item possessing the desired characteristics is not available, design is needed to obtain one that 
is acceptable for the given purpose. Because selection is often used as part of the overall system 
design, the two terms are sometimes interchanged. We are mainly concerned with the design of 
thermal systems and, as such, selection of components needed for a system will be considered only 
as a step in the design process, particularly during the synthesis of the various parts.

FIGURE 1.5 Common types of heat exchangers. (a) Concentric pipe parallel-flow, (b) concentric pipe 
counter-flow, (c) cross-flow with unmixed fluids, (d) fin-tube compact heat exchanger cores, (e) shell-and-tube. 
(Adapted from Incropera, F.P. and Dewitt, D.P., 2001.)
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1.2 DESIGN AS PART OF ENGINEERING ENTERPRISE

Before proceeding to a discussion of the characteristics and types of thermal systems, it will be 
instructive to consider the position occupied by design and optimization in the overall scheme of an 
engineering undertaking. The planning and execution of such an enterprise involve many aspects 
that are engineering based and several that are not, for example, economic and market consider-
ations. Engineering design is one of the key elements in the development of a product or a system 
and is coupled with the other considerations to obtain a successful venture. Let us follow a typical 
engineering undertaking from the initial recognition of need for a particular item, device, or process 
to its final implementation.

1.2.1 neeD or opportunity

Defining a need or opportunity is always the first step in an engineering undertaking because it 
provides the impetus to develop a product or system. Need refers to a specific requirement and 
implies that a suitable item is not available and must be developed for the desired purpose. The 
need for a given item may be felt at various levels, ranging from the consumer and the retailer to 
the industry itself, and may involve developing a new system or modifying and improving existing 
ones. Opportunity is the recognition of a chance to develop a new product that may be superior to 
existing ones or less expensive. It may also be an item for which the market is expected to develop 
as it becomes available.

Consumers’ need for a new or improved product is often discovered through surveys conducted 
by the marketing and sales division and through consumer interactions with salespersons. In some 
cases, individual consumers and consumer groups may also provide information on their needs 
and requirements. The problems or limitations in existing products may become evident from such 
inputs, indicating the need for developing a new or improved product. The development of the 
hard disk in personal computers arose mainly because of consumers’ need for larger data storage 
capacity. Similarly, CD-ROMs and memory sticks were introduced because of the need to facilitate 
storage and transfer of data and information. In automobiles, antilock brakes, air bags, computer-
controlled fuel injection, and streamlining of the body have been introduced in response to safety 
and efficiency needs. The need for specific components or systems may also arise in auxiliary 
industrial units that are dependent on the main industry. For instance, the development of larger 
and improved television systems, such as the high-definition television, has generated demand for a 
range of electronic products and systems that will be met by other specialized industries.

The opportunity to move into a new area, develop a new product or system, substantially increase 
the quality of an existing item, or significantly reduce the cost of an item can also form the start-
ing point for an engineering undertaking. This is particularly true of new materials because the 
substitution of materials in existing systems by new or improved materials could lead to substantial 
improvement in the system performance and/or reduction in cost. The replacement of metal cas-
ings in electronic equipment by plastic or ceramic ones and of metal frames in sports equipment by 
composites represents such changes. The personal computer is an interesting example of such an 
opportunity-based development. An opportunity was perceived by the industry, mainly by Apple 
Computers, Inc., and adequate technical expertise was available to develop a personal computer. 
This led to an expanding market and the use of personal computers in a variety of applications, 
ranging from word processing, information storage, and accounting to instruction and data acquisi-
tion. The video cassette recorder, fiber-optic cable, compact disc player, microwave oven, and the 
Apple iPod, iPhone, and iPad represent new products that were developed in recent years with pos-
sible opportunities and expanding markets in mind.

The industry today is very dynamic and is always on the lookout for opportunities where the avail-
able technical know-how can be used effectively to develop new ideas, leading to new products and 
systems. The research and development division of a given industrial concern is often the source of 
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such opportunities because of its interest in new materials and techniques being developed in the 
academic, industrial, and research environments outside the firm. However, a new idea may also arise 
from other divisions in the company based on their involvement with various processes and products.

1.2.2 evAluAtion AnD mArket AnAlysis

An important consideration in the development of a new concept is its evaluation for economic 
viability, because profit is usually the main driving force in engineering undertakings. Even if need 
and opportunity have indicated that a particular product or system will be useful and will have a 
secure market, it is necessary to determine how big the market is, what price range it will bear, and 
what the possible expenses involved in taking the concept to completion are. The sales and market-
ing division of the company could target typical consumers, who may be individuals, organizations, 
or other industries. The information regarding price, consumption level, desired characteristics of 
the product, and nature of the intended application could be gathered through surveys, mail, tele-
phone or individual contact, interactions with product outlets and sales organizations, and inputs 
from consumer groups. Earlier studies on similar products may also be used to provide the relevant 
information for evaluating the proposed venture. For instance, many products have recently been 
reduced in size and weight because of consumer demand. These include video recorders, laptop 
computers, digital cameras, and cars. In each case, a market analysis must have been carried out to 
ensure that the price and the demand were satisfactory to justify the time, money, and effort spent 
in developing these items. Of course, in the case of cars, the need to reduce fuel consumption was 
one of the main motivations for size reduction.

Once information from various sources is obtained on the product being considered, the market-
ing division may carry out a detailed market analysis to determine the anticipated volume of sales 
and the effect of the price on the sales. As the price increases, the volume of sales is expected to 
decrease. Consider the development of a new gas water heater for residential use. The cost increases 
as the capacity of the tank is increased. Similarly, a faster response to an increased demand for hot 
water, though desirable, would require larger heaters, leading to higher costs. Better safety and 
durability features will also raise the price. Clearly, additional features and higher quality make 
it attractive to various consumers and may open additional markets. However, as the price contin-
ues to increase, the sales volume will generally decrease, partly because of less frequent replace-
ment, resulting from improved quality, and partly due to loss in sales to less expensive versions. 
Very selective models may have a small volume of sales but a large profit, or return, per unit. 
Figure 1.6 shows typical sales volume versus price curves. The curves are separated by differences 

FIGURE 1.6 Typical variation of volume of sales with price.
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in the expenditure involved in marketing, advertising, and sales. The profit per item is smaller at a 
given price if the expense in advertising is increased. However, it is expected that the total volume 
will increase due to better advertising, making the overall venture more profitable (Stoecker, 1989).

The evaluation of the enterprise must include all expenses that are expected to be incurred. 
Besides the cost of manufacture of the given item and the expense of advertising and sales, the 
cost of designing and developing the system, from the initial concept to the prototype, must also be 
considered. The cost must include both labor and the capital investment needed for equipment and 
supplies. Considering all the relevant costs and the anticipated sales volume (employing economic 
concepts as outlined in Chapter 6), the given undertaking may be evaluated to determine the profit 
or the percentage return on the investment. If the return is too low, the process may be terminated 
at this stage. Several new ideas and concepts are evaluated by typical industries, and many of these 
do not go much further because of an expected small volume of sales or a large investment needed 
for development and manufacture. In several cases, specialized companies exist in order to fabricate 
custom-made or one-of-a-kind products at the specific request of a client. The price may be exorbi-
tant in these cases, but only one or two systems are made, providing a satisfactory return because of 
the high price rather than the large sales volume.

1.2.3 FeAsibility AnD chAnces oF success

It is important to determine if a particular enterprise is feasible. It is also necessary to evaluate the 
chances of success. These considerations are usually brought up early in the project, though inputs 
from research, development, and design may be needed to make a reliable judgment. The future of 
the project is strongly influenced by the results obtained from this study.

1.2.3.1 Measure of Success
The basis for evaluating success must be defined first. This would depend on the nature of the enter-
prise and the product under consideration. The return on investment is the criterion used by most 
engineering companies to determine if an undertaking is successful. The dividends paid to investors 
or the value in the stock market are also important measures of success of an enterprise. Sometimes, 
other considerations are more important than profit for a given undertaking. Pollution and envi-
ronmental requirements due to government regulations may be crucial factors. For instance, the 
deterioration of the ozone layer has made it necessary to seek alternatives to traditional refrigerants, 
such as refrigerant 12 (Freon 12), which is a chlorofluorocarbon (CFC), and considerable effort has 
been directed at the development and testing of other fluids for this purpose. Satisfactory hazardous 
waste disposal similarly may be the dominant consideration in a chemical plant. Cooling towers 
may have to be used instead of an available lake for cooling the condensers of a power plant, again 
because of the undesirable environmental impact on the lake. The desire to reduce the dependence 
on imported oil due to national or political reasons has similarly led to work on synthetic fuels and 
nonconventional energy sources. Global climate change concerns have led to major investments in 
renewable energy sources. Safety aspects may also be used as criteria to evaluate success, particu-
larly in nuclear reactors. National defense may require the indigenous development of certain com-
ponents or systems, even though these may be procured cheaply abroad. Thus, even though profit is 
usually the main criterion of success, other considerations may also be used to evaluate the success 
of an engineering venture.

1.2.3.2 Chances of Success
Once the basis for evaluating success is chosen, the next step is to determine the chances of suc-
cess. Because success depends on many events in the future that cannot be predicted with certainty, 
evaluation of the chances of success is based on a probabilistic analysis of the various items that 
are involved in the enterprise, such as financing, design, research and development, manufacturing, 
testing, government approvals, sales, advertising, and marketing. The probability of success must be 
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considered over the entire duration of the project and may be expressed in terms of the probability 
of achieving the chosen measure of success. Suppose the rate of return r is taken as the criterion of 
success for a given undertaking. The probability P of achieving a return between r1 and r2 is given 
in terms of the probability function f (r), which gives the probability of the return lying between r 
and r + dr as
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indicating that the probability of the return lying somewhere between –∞ and +∞ is 1, or 100%. The 
probability distribution is often a normal distribution curve given by
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This distribution has a maximum, which occurs at the mean value μ, and a standard deviation σ,  
which gives the spread of the curve, as shown in Figure 1.7. Thus, a larger maximum indicates a 
higher probability of attaining values around μ and a larger deviation σ indicates a larger spread or 

FIGURE 1.7 Probability distribution curve for the rate of return r, along with anticipated change in the 
maximum value fmax and the deviation σ with time.
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uncertainty. Other distributions also arise in different cases and the corresponding characteristics 
may be determined. The probabilities of the occurrence of various events that make up the enter-
prise are considered and a statistical analysis is carried out to determine the probability function 
for the chosen criterion for success, such as the rate of return, margin of safety, or level of environ-
mental pollution.

At the very beginning of the enterprise, the probability curve is expected to be spread out, indi-
cating the large amount of uncertainty stemming from many aspects that have to be taken care 
of in the future. The maximum value is small, suggesting a small probability of the rate of return 
lying within a given range. Remember, the total area under the f(r) curve must be 1 because r must 
have a value in the entire range, as seen from Equation (1.2). As time elapses and various concerns 
are resolved, the uncertainty decreases and the spread of the distribution curve reduces while the 
maximum value increases (Stoecker, 1989). These basic trends are also shown in Figure 1.7, indicat-
ing the increasing maximum with time and the reducing deviation. If the predicted results on the 
chances of success are not satisfactory, the effort may be terminated before much expense has been 
incurred.

1.2.3.3 Feasibility
Another important consideration is whether the enterprise is possible at all. There is no point in 
proceeding any further unless there is a clear indication that it is achievable. It may be infeasible 
because of many reasons, some of which may not be technical. We have already considered the eco-
nomic viability of the project. If the rate of return on the investment is too small, or if the chances 
for success are not satisfactory, the enterprise may be terminated. However, even if the project is 
economically viable, it may not be possible technically because of constraints with respect to avail-
able materials, design, or fabrication of the system. The enterprise may also be infeasible because of 
lack of investment capital, industrial site and facilities, labor, transportation, waste disposal facili-
ties, etc. It may be judged to be impractical because of safety, environmental, and other regulations. 
For instance, even if everything is found to be satisfactory for the establishment of a factory at a 
particular location, it may not be possible to proceed due to denial of the required approvals because 
of safety and waste disposal concerns. In recent years, the nuclear industry has run into many 
obstacles from regulatory bodies as well as opposition from local groups due to concerns with safety 
and nuclear waste disposal. Similarly, transportation facilities needed for a steel plant may not be 
satisfactory and the expense needed to bring these up to the desired level may be prohibitive. In such 
cases, where the undertaking is found to be infeasible, the effort may be terminated or alternatives 
to the original concept may be sought. It is important to consider all possible scenarios and dif-
ficulties that may be encountered. In some cases, the difficulties or problems may be overcome by 
modifications in the overall planning of the undertaking. If, despite such modifications and alterna-
tives, the project is seen to be infeasible, the enterprise is terminated to avoid any further expense.

1.2.4 engineering Design

Following a detailed market analysis and evaluation of the chances of success and the feasibility 
of the undertaking, an engineering design of the system is initiated if all of these indicators are 
acceptable. Design will determine the specifications of the various components of the system, often 
termed system hardware, and also the range of operating conditions that would yield the desired 
outputs for satisfying the perceived need or opportunity. Thus, design involves a consideration of 
the technical details of the basic concept and creation of a new or improved process or system for 
the specified task. The design process starts with the basic concept; then models and analyzes vari-
ous constituents of the system; synthesizes information on materials, existing systems, and results 
from different models; evaluates the design with respect to performance; and finally communicates 
the design specifications for fabrication and prototype development. Numerical or computational 
methods are generally involved at various stages to model, study, and characterize components and 
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the overall system. As part of the design of the system, the effort may also involve the selection of 
components that are easily available rather than designing these, as discussed earlier. Safety and 
environmental considerations usually form part of the design process. Though the focus in engi-
neering system design is on the technical aspects of the system, the interaction with other groups 
and involvement with larger issues concerning the undertaking are generally unavoidable and often 
influence the final design.

The design phase of the enterprise is where much of the effort and time are spent and determines, 
to a large extent, the final outcome of the undertaking. The design process could and usually would 
seek technical inputs from many other groups within the company, particularly from the research 
and development section. Such inputs may concern information on available materials and their 
properties, on new techniques and processes, on the analysis and evaluation of different designs, 
and on possible solutions to various problems encountered during design. The design effort may be 
concerned with a single device such as a heater; a component or subsystem of the system, such as a 
pump; or the overall system itself, such as a solar energy water heating plant. Though the design of 
components is an important consideration in design, in this book we are mainly concerned with the 
design of systems consisting of several components interacting with each other. System design may 
be directed at different types of systems such as electronic, mechanical, thermal, or chemical. The 
design of thermal systems is obviously of particular interest to us.

1.2.5 reseArch AnD Development

Frequently, the information needed for design and optimization is not readily available and the 
research and development division of the company is employed to obtain this information from the 
literature on relevant processes and systems and from independent detailed investigations of the 
basic aspects involved. The research and development group normally interacts with most engi-
neering activities within the company and provides inputs at various stages of product or system 
development. The main distinguishing feature of the research and development effort is the gener-
ally long-range interest of the various activities undertaken. Problems that arise during the normal 
course of operation of an establishment are brought to the research and development division only 
if a long-term solution is being sought or if new concepts are to be investigated for solving long-
standing problems.

The research and development group also keeps track of the progress being made in research 
establishments around the world in academia, industry, and national and industrial laboratories. 
Efforts are made to store and have easy access to the literature emerging from such research efforts. 
Different computational software, equipment for diagnostics and measurements, and information 
on new materials and emerging techniques are generally housed in this division. Research activities 
in the group obviously focus on the processes and systems that are of particular relevance to the 
company. Thus, the group devotes its efforts to developing new techniques for improving existing 
processes and to new ideas that may be applied to develop new products. As mentioned earlier, 
the group may be the initiator of a given engineering enterprise by recognizing the opportunity 
presented by new materials or processes. In addition, a close interaction and collaboration between 
the engineering design team and the research and development group is generally essential to the 
success of the undertaking.

The lack of an established or available procedure often leads to research. For instance, safety 
considerations with respect to the disposal of nuclear waste have led to detailed investigations of 
the nature of the waste, its decay with time, effect on neighboring materials, and possible ways of 
neutralizing it. Similarly, a substantial amount of research has been devoted to the disposal of haz-
ardous waste from chemical plants and other industrial sources. The accurate control of a thermal 
system, such as an optical fiber drawing furnace, may demand innovation, leading to research into 
available strategies and the development of new techniques to obtain the desired characteristics. 
Because the research and development effort is not involved with the routine, day-to-day activities 
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of the company, the group is able to consider many diverse solutions to a given problem, investigate 
the basic characteristics of relevant processes in an attempt to improve these, consider the applica-
bility of new techniques and developments to the company enterprises, and provide the long-term 
support needed by engineering design. Consequently, most big companies have well-established 
research and development divisions and many important and original concepts originate here, fre-
quently leading to major changes in the company. The developments of semiconductor devices and 
fiber-optic cables are examples of concepts that were initiated by the research and development 
division of AT&T. In the absence of research and development groups within the company or if a 
particular expertise is lacking, external experts are often sought as consultants to supplement the 
effort within the company and to provide the information needed for solving short-range and long-
range problems that may arise.

1.2.6 neeD For optimizAtion

It is no longer sufficient to develop a workable or feasible system that performs the desired task 
while staying within the constraints imposed by safety, environmental, economic, material, and 
other considerations. Due to the growing worldwide competition and need to increase efficiency, it 
has become essential to optimize the process in order to maximize or minimize a chosen variable 
or criterion. This variable is generally known as the objective function and may be related to quanti-
ties such as profit, cost, product quality, and output. The days when a company could monopolize 
several products, particularly in the consumer market, are long gone. For each item, say a portable 
stereo system, a digital camera, or a clothes dryer, many price ranges and performance specifica-
tions are available from different manufacturers. The survival of a given product is largely a func-
tion of its performance per unit cost. Though the resulting sales are also affected by promotion and 
advertisement and by other factors such as durability, service, and repair, the optimization of the 
manufacturing process in order to obtain the best quality per unit cost is extremely important in the 
survival and success of the item.

Optimization of a system is often based on the profit or cost, though many other aspects such as 
weight, size, efficiency, reliability, and output may also be optimized, depending on the particular 
application. For instance, a refrigerator may be designed for a given rate of heat removal, with dif-
ferent temperatures being obtained in the freezer by means of a thermostat control. However, dif-
ferent types of refrigerator systems are possible, such as vapor compression and vapor absorption 
systems, sketched in Figure 1.8. If a vapor compression system is chosen, the various components, 
such as the compressor, condenser, evaporator, and valve, may be designed or selected for a wide 
range of specifications and characteristics. The control system and the operating conditions can 
also be varied. The inside geometry, dimensions, and materials, as well as the outside materials 
and appearance, are also important variables. Thus, clearly, a unique system is not obtained and 
the design may vary over wide ranges, given in terms of the hardware as well as the operating 
conditions. All these designs may be termed as acceptable or workable because they satisfy the 
given requirements and constraints. However, it is necessary to seek an optimal design that will, for 
instance, consume the least amount of energy per unit cooling effect. This measure is closely linked 
with the overall efficiency of the system. As we well know, the energy rating of the system, which 
is an indicator of the energy consumed for achieving a unit of the desired task such as cooling or 
heating, is an important selling point for such systems. Therefore, optimization of thermal systems 
is of particular interest to us, and several chapters are devoted to the basic formulation and different 
strategies for obtaining an optimal design.

1.2.7 FAbricAtion, testing, AnD proDuction

The final stages in an engineering enterprise, before proceeding to advertising, promotion, and 
sales, are the fabrication and testing of a prototype of the designed system and production of the 
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system in the desired quantities for sale. The outputs from the design process must be communi-
cated to the appropriate technical facilities in order to fabricate, operate, and test the system. This 
communication may include many items such as engineering drawings to indicate dimensions and 
tolerances, design specifications, particulars of selected components, ranges of operating condi-
tions, chosen materials, power and space requirements, details of waste and energy disposal, system 
control strategy, and safety measures. The information provided must be detailed enough to allow 
the machine shop and other relevant facilities to proceed with fabrication of the system. The overall 
fabrication and assembly of the system may continue to be under the control of the design group 
or a project manager, who coordinates the design and engineering activities, and may oversee the 
development of a prototype.

Once the prototype is obtained, it is subjected to extensive testing over the expected range of 
operating conditions. Accelerated tests may be carried out to study the reliability of the system over 
its expected life. Conditions much worse than expected in normal use are usually employed for 
such performance tests. For instance, an air conditioner or a refrigerator may be kept on for several 
days to test if it can survive such a punishing use. A car engine may be run at speeds higher than 
the recommended range to simulate variations in real life and to determine how much overload the 

FIGURE 1.8 Vapor cooling systems. (a) Vapor compression, (b) vapor absorption. (Adapted from Howell, 
J.R. and Buckius, R.O., 1992.)
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system can safely withstand. In some cases, the temperature, speed, pressure, etc., are raised until 
permanent damage occurs in order to determine the maximum safe levels for the system.

The tests on the prototype are used to establish the major specifications, to ensure that the desired 
task is being performed satisfactorily, to validate and improve the mathematical model of the sys-
tem, to establish safety levels, and to obtain the system characteristics. The prototype is also used 
for improvements in the design based on actual tests and measurements.

Following prototype development and testing, the system goes into production. Existing facilities 
are modified or new ones procured to mass produce the product or system. Economic considerations 
play a very important role in the development of the production facilities needed. The mass produc-
tion of the product is also closely coupled with its marketing, which involves advertising, promotion, 
and sales.

Figure 1.9 shows the various steps discussed here for a typical engineering enterprise. The 
important position occupied by engineering design is evident from this sketch. However, this figure 

FIGURE 1.9 Schematic of design as part of an engineering enterprise.
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represents just one possible sequence of events. In most cases, there is considerable interaction 
between various groups and there is a fair amount of overlap between the different steps. The 
sequence used and the importance of each step may vary depending on the product and the nature 
of the industry. Of course, not all design efforts end in fabrication. Several involve the selection and 
procurement of various components, which are then assembled. Construction of only a few select 
items is undertaken for custom, or one-of-a-kind, systems. However, the design steps in such cases 
are similar to those outlined here, though they may differ in intensity and sequence.

1.3 THERMAL SYSTEMS

Let us now turn our attention to thermal systems and consider the nature of these systems and the 
various types of systems that are commonly encountered in industry and in general use. As is evi-
dent from the variety of examples mentioned in the preceding sections, thermal systems are impor-
tant in many different applications and occupy a very prominent place in our lives.

1.3.1 bAsic chArActeristics

Before proceeding to a discussion of thermal systems, let us first clarify what we mean by a system, 
a subsystem, a component, and a process. These terms have been used in the preceding material 
without much discussion as to what distinguishes one from the other. However, a few examples were 
given to illustrate these different categories and the general meanings they convey.

A system consists of multiple units or items that interact with each other. Thus, the term system 
can be used to represent a piece of equipment, such as a heat exchanger, a blower, or a pump; a 
larger arrangement with many pieces of equipment, such as a blast furnace, automobile, or a cooling 
tower; or a complete establishment, such as a power plant, steel plant, or manufacturing assembly 
line. The two main distinguishing features of a system are constituents that interact with each other 
and the consideration of the whole entity for analysis and design. Depending on our interest, the 
system may vary from, say, the full telephone exchange to a single telephone unit, from an airplane 
to its air conditioning system, from a power plant to a turbine, from a city water distribution system 
to the flow arrangement in a residential unit. Therefore, a system does not necessarily have to be 
a massive collection of interacting parts and may be a relatively simple arrangement on which our 
attention is focused.

Subsystems are essentially complete parts into which a system may be subdivided for conve-
nience and which may be treated separately. These subdivisions, or subsystems, consist of individ-
ual parts that interact with each other and, generally, the treatment for a subsystem is quite similar to 
that for a system. Once different subsystems have been modeled and analyzed, they are assembled 
or coupled to obtain the full system. The discussion in this book is directed at the overall system and 
not at the individual subsystems, which may be the main focus of attention under different circum-
stances. For example, if an automobile is taken as the system, subdivisions concerned with cooling, 
transmission, fuel, ignition, and other such functions may be considered as subsystems. Then these 
subsystems may be treated as separate entities and finally brought together to represent the full sys-
tem. In a power plant, the boilers, condensers, and cooling towers may be considered as subsystems.

Components are independent units in which the interaction between the constituents is either 
absent or unimportant with respect to its application. Thus, heaters, thermostats, valves, and extru-
sion dies are considered components, and are often selected from available supplies or fabricated 
according to specifications. Design of components is also of interest, and engineering courses are 
devoted to the design of mechanical components such as gears, cams, springs, chains, and shafts. 
Similar considerations apply for the design of components of particular relevance to thermal sys-
tems. Larger items such as compressors, pumps, fans, blowers, etc., may also be considered as 
components because the overall performance and output can be employed without considering the 
interaction between the various parts. These components are available as standard items and are 
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usually selected rather than designed in the system design process. Except for some reference to 
component design, as needed, the discussion in this book will focus on the design of systems.

Finally, a process refers to the technique or methodology of achieving a desired goal. For 
instance, manufacturing processes such as casting, extrusion, hot rolling, and welding refer to the 
basic procedure and concept involved without specifying the relevant hardware. Generally, a pro-
cess is used to indicate the conditions, such as the temperature and pressure, to which a material 
undergoing thermal processing is subjected. A system, on the other hand, is defined in terms of the 
hardware as well as the operating conditions.

Different types of systems arise in engineering design depending on the main features that char-
acterize these systems. Therefore, electronic systems are concerned with electrical circuits and 
devices, mechanical systems with the mechanics of components such as springs and dampers, 
chemical systems with the chemical characteristics of mixtures and reactants, structural systems 
with the strength and deformation of structures, and so on. Systems that involve a consideration 
of thermal science and engineering to a significant extent in their analysis and characterization 
are termed as thermal systems. Thermal science and engineering, as used here, include areas such 
as heat transfer, thermodynamics, fluid mechanics, and mass transfer. Therefore, even though a 
computer is an electronic system, if one’s interest lies in its cooling system in order to restrict the 
component temperature levels, it becomes a thermal system for this particular consideration. The 
focus in thermal systems is on the transport of energy, particularly thermal energy, and fluid flow 
and mass transport are important additional ingredients in these systems.

It is important to recognize that thermal systems arise in many diverse fields of engineering, such 
as aerospace engineering, manufacturing, power generation, and air conditioning. Consequently, 
a study of thermal systems usually brings in many additional mechanisms and considerations, 
making the problems much more complicated than what might be expected from a study of thermal 
sciences alone.

1.3.2 AnAlysis

As mentioned earlier, thermal systems are largely governed by transport mechanisms that arise in 
flow and in heat and mass transfer. Thermodynamics also plays an important role in a wide range of 
thermal systems. Thus, the analysis of thermal systems is often complicated because of the complex 
nature of fluid flow and of heat and mass transfer processes that arise. As a result, typical thermal 
systems have to be approximated, simplified, and idealized in order to make it possible to analyze 
them and thus obtain the inputs needed for design. Computational methods are generally needed to 
obtain the desired results on components and processes. Specialized commercial software for the 
given industry or generalized software such as Matlab or Ansys are commonly used.

Following are some characteristics that are commonly encountered in thermal systems and 
processes:

1. Time-dependent
2. Multidimensional
3. Nonlinear mechanisms
4. Complex geometries
5. Complicated boundary conditions
6. Coupled transport phenomena
7. Turbulent flow
8. Change in phase and material structure
9. Energy losses and irreversibility

10. Variable material properties
11. Influence of ambient conditions
12. Variety of energy sources



18 Design and Optimization of Thermal Systems

Because of the time-dependent, multidimensional nature of typical systems, the governing equa-
tions are generally a set of partial differential equations, with nonlinearity arising due to convection 
of momentum in the flow, variable properties, and radiative transport. However, approximations and 
idealizations are used to simplify these equations, resulting in algebraic and ordinary differential 
equations for many practical situations and relatively simpler partial differential equations for oth-
ers. These considerations are discussed in Chapter 3 as part of modeling of the system. However, 
the equations for a few simple cases are given here to illustrate the nature of the governing equations 
and the effect of some of these complexities.

The simplest problems are those that assume steady-state conditions, with or without flow, while 
also assuming uniform conditions in each part of the system. These problems lead to algebraic 
equations, which are often nonlinear for thermal systems. This situation is commonly encountered 
in thermodynamic systems such as refrigeration, air conditioning, and energy conversion systems. 
Then, the governing set of algebraic equations may be written as
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where the xi are the unknowns and the functions fi, for i = 1, 2, 3, …, n, may be linear or non-
linear. Such problems are generally referred to as steady, lumped circumstances and have been 
most extensively treated in papers and books dealing with system design, such as Hodge (1989), 
Stoecker (1989), and Janna (2014). However, these approximations are applicable for only a few 
idealized thermal systems. Additional complexities, mentioned earlier, generally demand analysis 
that is more accurate and may involve the solution of ordinary and partial differential equations. 
Nevertheless, because of the ease in analysis, steady lumped systems are effective in illustrating 
the basic ideas of system simulation and design. Therefore, these are used as examples throughout 
the book while bearing in mind that, in actual practice, more detailed analysis would generally be 
needed. Here, simulation refers to the process of studying the behavior and response of the system 
through modeling, without building an actual system.

If the time-dependent behavior of the system is sought, for a study of the dynamic characteristics 
of the system, the resulting governing equations are ordinary differential equations in time τ, if the 
assumption of uniform conditions within each part is still employed. Then the governing equations 
may be written as
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where, again, the functions Fi may be linear or nonlinear. The systems for which these approxima-
tions can be made are known as dynamic, lumped systems. Such a treatment is valuable in many 
cases because of the resulting simplicity. In many thermodynamic systems, such as heat engines and 
cooling systems, the individual components are approximated as lumped and the dynamic analysis 
is of interest in the startup and shutdown of the systems, as well as in determining the effects of 
changes in operating conditions such as flow rate, pressure, and heat input.

An example of such a model is the cooling or heating of a metal piece, whose temperature T may 
be assumed to be uniform. Then the governing energy equation may be written as

 CV
dT
d

A q qin out( )ρ
τ

= −  (1.6)
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where ρ is the material density, C the specific heat, V the volume of the item, A its surface area, qin 
the heat flux input, and qout the heat flux lost. This equation can easily be solved if the initial tem-
perature Ti is given, along with the heat fluxes. For a heated piece cooling by convection in a fluid at 
temperature Ta and with a heat transfer coefficient h, the equation becomes

 CV
dT
d

hA T Ta( )ρ
τ

= − −  (1.7)

which yields an exponential decay in temperature with time, as discussed in Chapter 3.
If uniform temperature cannot be assumed in the material under consideration, for instance, in 

the circumstance of conduction in a stationary solid body such as the wall of a building or of a blast 
furnace, the energy equation for a two-dimensional constant-property circumstance becomes
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where α is the thermal diffusivity. This equation is linear because T appears in its first power 
throughout the equation. It is a partial differential equation and is written for the relatively simpler 
constant-property, two-dimensional circumstance for the Cartesian coordinate system. In practical 
systems, we often encounter many additional complexities that make the analysis a very difficult 
and challenging affair.

Inclusion of variable properties and/or radiative transport can give rise to nonlinear mechanisms, 
the former due to the dependence of the properties on the dependent variable such as temperature T 
and the latter due to the variation of radiation heat transfer as T 4. For example, if the thermal con-
ductivity k, density ρ, and specific heat at constant pressure Cp vary with temperature T, the energy 
equation becomes
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Thus, nonlinearity arises due to nonlinear powers of T resulting from property variation with T. 
If radiative heat loss occurs at a surface, the corresponding energy exchange rate q, per unit area, 
with a black environment at temperature Te may be written as

 q T Te
4 4( )= εσ −  (1.10)

where ε is the surface emissivity and σ is the Stefan–Boltzmann constant. This equation is nonlin-
ear in T due to the presence of temperature as T 4. Thus, nonlinear equations are frequently obtained, 
making the solution difficult. Iterative methods are often needed to obtain the solution. Nonlinearity 
also makes it difficult to scale up the results from a laboratory model to the full-size system. Many 
of these considerations are discussed in detail in Chapter 3.

An associated fluid flow arises in many thermal systems. Then the flow must be solved in addi-
tion to the energy equation. The flow is governed by the conservation of mass and the momentum-
force balance equation, which is generally nonlinear. In some cases, such as constant-property 
circumstances, the flow may be determined independent of the energy equation, which is solved 
after the flow has been obtained. However, if property changes are important or if buoyancy effects 
due to temperature are significant, the flow and energy equations have to be solved simultaneously, 
making the solution particularly challenging. Examples in the book consider a wide range of prob-
lems with different analysis and concerns.



20 Design and Optimization of Thermal Systems

The various other complexities mentioned earlier also complicate the analysis and design of 
thermal systems. Complex geometry and boundary conditions arise in most practical systems, mak-
ing it necessary to use simplifications and versatile numerical techniques such as finite element and 
boundary element methods. Turbulent flow is encountered in many important processes, particu-
larly in energy systems and environmental transport. Special numerical models and experimental 
procedures have been developed to take turbulent transport into account. Phase change, coupling 
with material characteristics, time-varying ambient conditions, irreversibility, and different energy 
sources, such as lasers, gas, oil, electricity, and viscous heating, further complicate the analysis 
of thermal systems and processes. Several of these aspects will arise in examples given in later 
chapters.

However, our focus is not on analysis but on design, even though analysis provides many 
of the inputs needed for design. Therefore, only a brief outline of the basic characteristics of 
thermal systems is given here. Specialized books, such as Ozisik (1985), Burmeister (1993) 
and Incropera and Dewitt (2001) in heat transfer, Pritchard and Mitchell (2015) and Shames 
(1992) in fluid mechanics, Howell and Buckius (1992), Cengel and Boles (2014), and Moran and 
Shapiro (2014) in thermodynamics, among others, may be consulted for details on different ana-
lytical and experimental techniques as well as for results obtained on a variety of fundamental 
and applied problems.

1.3.3 types AnD exAmples

As mentioned earlier, thermal systems are important in a wide range of engineering fields, practical 
applications, and disciplines. Let us consider some important examples, types, and applications of 
these systems. Several different ways of classifying thermal systems may be employed because of 
their diversity. A common method is in terms of the function or application of the system. Using this 
approach, several important types of thermal systems, along with commonly encountered applica-
tions and examples, follow.

1.3.3.1 Manufacturing and Materials Processing Systems
Examples include processes such as casting, crystal growing, heat treatment, metal forming, dry-
ing, soldering and welding, laser and gas cutting, plastic extrusion and injection molding, powder 
metallurgy, optical fiber drawing, ceramics, and glass processing. Also included are food process-
ing systems as well as common household appliances such as ovens and cooking ranges. This is 
an important area and many diverse thermal systems are employed for the different manufacturing 
processes used in practice (Jaluria, 2018). We have already discussed ingot casting, as sketched in 
Figure 1.3. Figure 1.10 shows the schematics for continuous casting, plastic extrusion, optical glass 
fiber drawing, and hot rolling processes. In all these processes, thermal aspects are critical in deter-
mining the rate of production and the characteristics of the product.

In continuous casting, molten material is allowed to solidify across an interface as the bulk 
material is withdrawn at a given speed through a mold, which is usually water cooled. In plastic 
screw extrusion, the solid plastic is fed through a hopper, melted by energy input, and conveyed 
downstream by the rotation of the screw, with an associated pressure and temperature rise, finally 
pushing the molten material through a die to obtain a desired shape. The material may also be 
injected into a mold and solidified in a process known as injection molding. Similarly, a specially 
fabricated silica glass rod, typically 5–10 cm in diameter and known as a preform, is heated in a 
furnace and pulled to sharply reduce the diameter to about 125 μm, yielding an optical fiber in 
glass fiber drawing. In hot rolling, the material is heated and reduced in thickness by pushing it 
through two rollers that are at a given distance apart. Several sets of rollers may be used to obtain 
the desired decrease in thickness or diameter. Similarly, new thermal processes have been devel-
oped for the fabrication of nanomaterials through chemical vapor deposition, thermal sprays, and 
other approaches.
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Heat transfer is very important in these processes because the temperature determines the 
forces needed, the withdrawal speed, and the quality of the final product. Further details on these 
and other processes may be found in specialized books on manufacturing, such as Ghosh and 
Mallik (1986), Doyle et al. (1985), and Kalpakjian and Schmid (2013). Some of these processes 
will be considered again later in the book as examples. With the development of new and improved 
materials, the design of thermal systems for materials processing has become crucial for manufac-
turing new products and for meeting international competition.

1.3.3.2 Energy Systems
Examples of energy systems include power plants, solar power towers, geothermal energy systems, 
energy storage, solar ponds, and conventional and nonconventional energy conversion systems.

FIGURE 1.10 A few manufacturing systems. (a) Continuous casting, (b) plastic screw extrusion, (c) opti-
cal fiber drawing, (d) hot rolling. (Figure 1.10(a) adapted from Ghosh and Mallik, 1986; Figure 1.10(b) from 
Tadmor and Gogos, 1979.)
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This is one of the most frequently mentioned areas for thermal energy considerations. 
Different types of thermal systems arise depending on the nature of the energy source, such as 
nuclear, oil, gas, solar, or wind energy. Most of these systems are covered in thermodynamics 
courses and are often treated as steady, lumped systems. Figure 1.11 shows sketches of typical 
solar and nuclear energy systems. In both cases, the energy collected or generated is used to 
run the turbines, which are then used to generate electricity. A considerable literature exists on 
thermal systems of interest in this field because of the tremendous importance of power genera-
tion in our society; see, for instance, Howell et al. (1982), Hsieh (1986), Van Wylen et al. (1994), 
and Duffie and Beckman (2013).

FIGURE 1.10 (Continued).
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1.3.3.3 Cooling Systems for Electronic Equipment
Systems that are of interest in this area include air cooling, liquid immersion, heat pipes, heat sinks, 
heat removal by boiling, and microchannel systems.

This is one of those areas where thermal considerations are extremely important for the satis-
factory performance of the system even though the main application is in a different area. Thus, 
electronic systems, such as computers, televisions, digital multimeters, and signal conditioners, are 
used for a variety of applications, most of which are not directly connected with fluid flow and 
heat transfer. But the cooling of the electronic system in order to ensure that the temperature Tc of 

FIGURE 1.11 Power systems based on (a) solar energy and (b) nuclear energy. (Adapted from Howell and 
Buckius, 1992.)
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the various components, particularly of the chips or semiconductor devices, does not exceed the 
allowable temperature level Tmax, that is, Tc ≤ Tmax, is often the most crucial factor in the design 
and operation of the system. Further size reduction of the system is frequently constrained by the 
heat transfer considerations. Figure 1.12 shows typical air cooling and liquid immersion systems 
for electronic equipment. The energy dissipated by the electronic components is removed by the 
fluid flow, thus allowing the temperatures to remain below the specified limit. Figure 1.2 showed 
a sketch of a heat pipe for enhanced cooling of an electronic chip. Many books, such as those by 
Steinberg (1980), Kraus and Bar-Cohen (1983), and Garimella et al. (2013), have been written in 
response to the growing importance of this area. Photographs of typical electronic equipment with 
air cooling by means of a fan or a blower are shown in Figure 1.13, indicating the complexity of such 
systems in actual practice.

1.3.3.4 Environmental and Safety Systems
Examples of these systems include arrangements for heat rejection to ambient air and water, control 
of thermal and air pollution, cooling towers, incinerators, waste disposal, water treatment plants, 
smoke and temperature control systems, and fire extinguishing systems.

The growing concern with the environmental impact of waste and energy disposal, including 
global climate change and depletion of the ozone layer, has made it essential to minimize the effect 
on our environment by developing new and improved methods for disposal. Many thermal systems 

FIGURE 1.12 Cooling systems for electronic equipment. (a) Forced air cooling, (b) liquid immersion cooling.
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have been developed in response to this need. These include systems based on fluids that would 
substitute refrigerants such as CFCs that adversely affect the ozone layer, improved incineration 
techniques for solid waste disposal, catalytic converters in automobiles to reduce harmful emis-
sions, and scrubbers in power plants to reduce pollutants. Figure 1.14 shows sketches of typical heat 
rejection systems from power plants, employing a lake as a cooling pond in the first case and a natu-
ral draft cooling tower in the second. The effect on the local environment, in terms of temperature 
rise, increased flow, and disturbance to natural yearly cycle, is of particular concern in these cases. 
Safety is also a very important consideration. Figure 1.15 shows a sketch of a room fire, indicating 
a hot upper layer containing the toxic and hot combustion products and a relatively cooler and less 
toxic lower layer that is often safe until flashover occurs when everything in the room catches fire 
and the room is engulfed in flames. Thus, the design of the system, which may be a building, ship, 

FIGURE 1.13 Typical electronic systems with air cooling by means of a fan. (From Steinberg, 1980.)

FIGURE 1.14 Systems for heat rejection from a power plant. (a) Natural lake as a cooling pond, (b) natural 
draft cooling tower.
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submarine, or airplane, for fire safety is clearly an important element in the overall construction and 
operation of the system.

1.3.3.5 Aerospace Systems
Many thermal systems in aerospace applications are of interest here. Some of the 
common ones are gas turbines, rockets, combustors, and cooling systems.

This has been a particularly important area over the last few decades because of the space pro-
gram. Considerable progress has been made on the various thermal systems and subsystems that are 
needed. Because of the large thrust needed at rocket launch and high cooling rates during reentry, 
much of the effort in designing efficient systems has been directed at these two stages. However, 
cooling, air conditioning, and electronic and energy systems during orbit, as well as for a space sta-
tion, have their own requirements and challenges. Thermal systems are also of interest in possible 
lunar and space settlements in the future.

1.3.3.6 Transportation Systems
Most of the relevant systems in this area are thermal in nature. These include internal combustion 
engines such as spark ignition and diesel engines; steam engines; fuel cells; and modern automobile, 
airplane, and railway train engines.

This is an extensive field, closely associated with different kinds of thermal systems. Though a 
traditional mechanical engineering field, this area has seen many significant changes in recent years, 
most of these being related to the optimization of existing systems. New systems have also evolved in 
response to the need for higher efficiency, size that is more compact, greater safety, and lower costs. 
Supersonic air transport has led to several interesting innovations in this field. Figure 1.16 shows a 
few typical systems that arise in transportation. Figure 1.16(a) shows two designs for a jet engine, 
with hot gases being ejected from the nozzle to provide the thrust. Figure 1.16(b) shows a spark igni-
tion engine where the combustion process in the cylinder drives the piston, which moves the crank-
shaft and thus the wheels. Figure 1.17 shows photographic views of gas turbine systems, indicating 
the intake, exhaust, and combustion chamber. Similarly, Figure 1.18 shows sketches of engines for 
transportation, indicating a lightweight engine and a diesel engine that is turbocharged for boosting 
power. Clearly, practical systems are extremely complicated and involve intricate flow paths, com-
bustion processes, and control mechanisms. For basic details on these and other systems, books on 
thermodynamics, such as those by Van Wylen et al. (1994) and by Howell and Buckius (1992), and 
more specialized books on various relevant topics, such as Ferguson and Kirkpatrick (2001) and 
Heywood (2018), may be consulted.

FIGURE 1.15 Flow and temperature due to fire in a room with an opening.
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1.3.3.7 Air Conditioning, Refrigeration, and Heating Systems
Several different thermal systems are associated with this application, which is of considerable inter-
est to us in our daily lives. These include vapor compression and vapor absorption cooling systems; 
heat pumps; ice and food freezing plants; gas, oil, and water heating systems; and refrigerators.

Even though this field has been around for a long time, the need for more efficient, dependable, 
and safe systems, at lower cost, has led to many improvements. In particular, better design of the 
main components such as the compressor and the condenser, better control of the system, and better 
design of the overall system to minimize losses have resulted in reduced energy consumption and 
lower costs. Figure 1.8 presented sketches of the vapor compression and vapor absorption systems 
for refrigeration. In both cases, energy is removed from a given space or material due to the evapo-
ration of the working fluid in the evaporator and heat is rejected to the ambient in the condenser. 

FIGURE 1.16 Thermal systems for transportation. (a) Thrusting systems for aircraft propulsion: Turbojet 
engine with and without afterburner, (b) reciprocating internal combustion engine. (Figure 1.16a adapted from 
Reynolds and Perkins, 1977, and Figure 1.16b from Moran and Shapiro, 2014.)
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The driving mechanism is the compressor in one case and the absorption process in the other. In a 
heat pump, which operates on the same thermodynamic cycle as a refrigeration system, energy is 
extracted from a colder environment and supplied to a warmer region, such as a house. Photographs 
of practical heat pumps are shown in Figure 1.19. Though these are often treated as components, 
they are actually thermal systems with many interacting parts. Specialized books such as those by 
Stoecker and Jones (1982), Cooper (1987), and Kreider et al. (2001) may be consulted for details on 
these systems.

1.3.3.8 Fluid Flow Systems and Equipment
These include components and fluid flow circuits such as pipe flows, hydraulics, hydrodynamics, 
fluidics, turbines, pumps, compressors, fans, and blowers.

Many of these are auxiliary subsystems to the main thermal systems and may be used for con-
trol; power transmission; cooling; and transport of mass, energy, and momentum. Fluid mechanics 
itself is closely linked with thermal energy transport in most practical processes and fluid flow sys-
tems refer to only a subset dealing with flow circuits. Figure 1.20 shows the sketches of a few typical 
flow distribution systems. Fluid flow equipment such as pumps, fans, and blowers are extensively 
used in thermal systems. Books on fluid mechanics, such as those by Pritchard and Mitchell (2015), 

FIGURE 1.17 Typical gas turbine engines for aircrafts. (From AlliedSignal, Inc.)
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White (2015), and John and Haberman (1988), contain information on the analysis of such fluid flow 
systems and equipment.

1.3.3.9 Heat Transfer Equipment
Such equipment includes heat exchangers, condensers, boilers, furnaces, ovens, hot water baths, 
and heaters.

Heat transfer equipment often forms part of the various other applications mentioned earlier. 
Thus, condensers and boilers may be part of a power system. Similarly, furnaces may be regarded 
as constituents in a heat treatment system. However, such equipment frequently can be designed 
without considering the application. As mentioned earlier, in the design of a thermal system some of 
these items may be procured through selection rather than through design. In this case, companies 

FIGURE 1.18 (a) A lightweight engine for an automobile. (From Ford Motor Co.) (b) A turbocharged diesel 
engine. (From Cummins Engine Co.)
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FIGURE 1.19 Photographs of practical heat pumps. (From KIST, Korea.)

FIGURE 1.20 Examples of fluid distribution systems.
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specializing in, say, heat exchangers, would design and manufacture these. Different types of heat 
exchangers, such as those seen in Figure 1.5, would then be produced for selected ranges of design 
specifications and made available for marketing (Kays and London, 1984). Similar considerations 
apply for drying ovens, furnaces, heated oil baths, etc., which may be designed for a specific appli-
cation or for general use.

1.3.3.10 Other Systems
There are several other thermal systems that may not be as easily classified as was done here for 
some of the more common and practical systems. Thus, chemical reactors and systems for experi-
mentation, space systems, construction systems, etc. also often involve thermal considerations in 
their design and may be treated by the techniques discussed in this book.

Other methods of classifying thermal systems can also be used. The following approach divides 
these systems into three types, representing the three main stages undergone by thermal energy:

1. Generation: Solar, geothermal, nuclear and oil-fired power systems, combustors, engines, 
energy conversion systems, turbines, boilers, and chemical reactors

2. Utilization: Manufacturing, car engines, airplanes, and rockets
3. Rejection: Heat removal, pollution, waste disposal, electronic systems, air conditioning, 

heat pumps, cooling towers, and radiators

Even though such a classification would cover most practical systems, several systems are left 
out and may, again, be categorized under other systems. In addition, systems such as automobiles 
involve all three aspects of generation, utilization, and rejection. Thermal systems may also be 
classified by their size, by the nature and number of the constituents, by their interaction with other 
systems, and so on. However, classification by the application of the system is probably the most 
useful and also the most frequently employed.

The preceding discussion has presented many different types of thermal systems that are of 
interest in a wide range of applications. Clearly, different systems have different concerns, and the 
design specifications and requirements are also different. However, they are all governed by basic 
considerations in heat and mass transfer, fluid flow, and thermodynamics. Consequently, the basic 
techniques for design and optimization are similar, making it possible to discuss the fundamental 
issues and procedures involved in their design.

1.4 OUTLINE AND SCOPE OF THE BOOK

This book focuses on the design and optimization of thermal systems, several examples of which 
have been given in the preceding section. The importance of thermal systems in a wide range of 
applications makes it essential to optimize existing and new systems and processes in order to 
achieve the best performance or output per unit input. In addition, the development of new tech-
niques and materials demands new and improved systems to take advantage of such innovations. 
However, the design of thermal systems is usually complicated by the complexity of the underlying 
mechanisms and the resulting lack of adequate information on the system for obtaining a satisfac-
tory design. Therefore, the design process often involves obtaining the relevant inputs from analysis 
or experiment and incorporating them into existing information on similar systems and processes 
to generate an acceptable design.

We shall first consider the basic features of the design process, highlighting the various steps that 
are involved in the design of a thermal system. These considerations are generally common to other 
types of systems as well. Starting with the problem statement in terms of the requirements, con-
straints, and other specifications, a conceptual design, which is based on creativity and existing sys-
tems, is obtained. The design variables that arise in the problem are determined and varied to obtain 
a variety of designs, which are evaluated through analysis to determine if an acceptable design can 
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be chosen. Because the solution is not unique, a range or domain of acceptable designs is generally 
obtained. The evaluation of the designs requires detailed information on the performance of the 
system. Because of the complexity of most practical thermal systems, it is necessary to develop a 
mathematical model of the system by simplifying and idealizing the processes involved. Several 
types of models are discussed in Chapter 3, particularly mathematical, numerical and experimental 
models. Modeling of the system is one of the most important and creative elements in the design 
process because it allows relevant inputs to be generated.

Numerical modeling and simulation are generally needed for most practical systems, as consid-
ered in detail in Chapter 4. Numerical simulation approximates the actual system and yields quantita-
tive information on the behavior of the system for a wide range of design and operating conditions. 
Therefore, the characteristics of the system can be investigated for different designs, making it pos-
sible to evaluate the design. The various methods and techniques available for modeling and simula-
tion are discussed. The presentation of these results in a form suitable for design is also discussed. 
Matlab is used as the computational environment to illustrate many basic modeling and simula-
tion ideas. Several examples of thermal systems are then taken from different application areas in 
Chapter 5 to discuss the synthesis of all these aspects to obtain a design that meets the given require-
ments and constraints. The modeling, simulation, and design of large, practical systems are also 
considered. Trade-offs have to be made to meet constraints due to regulations, economics, safety, and 
other such considerations. In most cases, a domain of acceptable designs is obtained, with the best or 
optimal design to be chosen from these. If an acceptable design is not obtained, the requirements may 
be relaxed, new concepts considered, or the effort terminated. The common challenges that arise in 
the design process and possible approaches to avoid these are also outlined.

This brings us to the problem of optimization. Because of growing competition in the world 
today, it is essential to optimize the system with respect to a chosen objective such as the output 
per unit cost or quality per unit energy consumption. The range of design variables over which 
acceptable designs are obtained may be quite large, making it necessary to narrow the domain to 
choose the best design that optimizes the cost or some other chosen quantity. Because economic 
considerations play an important role in the successful completion of the project and in the opti-
mization effort, basic considerations in engineering economics are presented in Chapter 6. This 
chapter brings out the economic evaluation of an enterprise in terms of the return on investment, 
costs, financing, present and future worth, and depreciation.

The formulation of the basic problem for optimization is discussed in Chapter 7, indicating the need 
for optimization and the different approaches available for thermal systems. Optimization with respect 
to the hardware of the system, as well as to the operating conditions, is discussed. The next three 
chapters present different methods used for the optimization of thermal systems, employing examples 
from a variety of practical areas to illustrate the basic approaches and their limitations and advantages. 
Among the methods considered are calculus methods, particularly the method of Lagrange multi-
pliers, search methods, geometric programming, and linear and dynamic programming. Different 
systems that are particularly suited to each of these methods are considered and the resulting optimal 
conditions determined. Several examples are employed to illustrate the strategies involved.

Many additional considerations are covered in Chapter 11. This chapter discusses knowledge-based 
design, which has become an important and valuable element in design methodology today. The use of 
existing knowledge, databases, heuristic arguments, and expert systems is outlined. Other techniques 
such as response surfaces and genetic algorithms are presented. The improvements over classical 
approaches for certain types of systems are presented. Other considerations such as professional eth-
ics, sources of information, and additional constraints on the design are also discussed.

It must be noted that the book presents all the major elements needed for the design and opti-
mization of thermal systems. However, some of these may have been covered in earlier courses 
at a particular college or university. The instructor could then decide to avoid covering these in a 
given design course. Examples of such topics are various aspects in economic considerations given 
in Chapter 6, physical modeling and dimensional analysis in Section 3.4, and solution procedures 
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in Section 4.2. Though obviously needed for design and optimization, coverage of such topics may 
be curtailed or eliminated depending on the background and preparation of the students. Similarly, 
examples of thermal systems range from simple pipe and channel flows through thermodynamic 
systems to more involved heat transfer processes. Again, the instructor may choose to emphasize 
simpler thermodynamic and flow systems, rather than the more complicated systems that involve 
multidimensional heat transfer mechanisms, depending on the background of the students. In many 
curricula, heat transfer is taught much later than thermodynamics and fluid mechanics, making it 
easier to consider lumped, steady or transient, thermodynamics and fluid flow systems for design, 
rather than distributed ones. However, wide ranges of examples, problems, and exercises are pre-
sented in this book, along with all the ingredients needed for design and optimization, to make such 
a choice possible on the basis of the needs and preparation of the class.

1.4.1 A note on problems AnD exAmples

Several examples and problems, or exercises, are given on each topic in order to strengthen the 
discussion and clarify the important issues involved. In many cases, the problems are reasonably 
straightforward and build on the material presented in the book. This is particularly true for exam-
ples and exercises in optimization and on other topics where a particular aspect of analysis or 
simulation is being demonstrated. However, design involves open-ended problems and synthesis 
of information from different sources. Many problems are given to bring out these features of the 
design process. A unique solution is typically not obtained in these cases and the reader may have to 
make certain decisions, providing appropriate information or personal choice, to solve the problem. 
The lack of particular information in a problem does not mean that it cannot be solved; instead, 
it implies that there are choices and inputs that must be provided by the reader to obtain different 
acceptable designs for the given requirements and constraints. Thus, many different answers may 
be acceptable for a given problem. Several exercises, particularly the design projects, are given with 
this flexibility and personal selection and input in mind.

Effort is also made to link the different topics and considerations that arise in the design process. 
Thus, an acceptable design of a given thermal system in an earlier chapter may be optimized in later 
chapters and different techniques may be employed for the same problem to demonstrate the differ-
ence. Relatively simple examples and problems are given in certain cases to illustrate the methodol-
ogy. However, the overall focus of the book is on the design of thermal systems, which may range 
from very simple systems consisting of a small number of parts to complex systems that have a 
large number of components and subsystems and involve many additional considerations. The basic 
approach is similar in these two extreme circumstances, and, therefore, the discussion, treatment, 
and problems can be varied easily to consider different types of systems.

Effort was made to choose examples and problems from both traditional thermal systems as well 
as from new and emerging areas such as fabrication of advanced materials, cooling of electronic 
equipment, and new approaches in energy and environmental systems. This allows the reader to see 
the field as vibrant and growing, with an excitement about new technologies and important practical 
applications. These examples also demonstrate the critical importance of optimizing many of these 
systems due to the growing need to reduce cost and energy consumption while enhancing product 
quality and reducing the environmental impact.

1.5 SUMMARY

This chapter presents the introductory material for a study of design and optimization of thermal 
systems. It introduces three main topics: engineering design, thermal systems and processes, and 
optimization. In addition to providing definitions for the relevant terms, the discussion considers 
the basic characteristics and relevance of thermal systems and design to engineering enterprises. 
Design, which is a creative process undertaken to solve new or existing problems, is an extremely 
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important engineering task because it leads to new and improved processes and systems. Design, 
which involves an open-ended solution with multiple possibilities, is contrasted against analysis, 
which gives rise to unique, well-defined, closed-ended results. Thus, design generally involves con-
sidering many different solutions and finding an acceptable result that satisfies the given prob-
lem. Synthesis brings together several different analyses and types of information, thus forming 
an important aspect in system design. In many applications, components or equipment are to be 
chosen from available items. This is the process of selection, rather than of design, which starts 
from the basic concept and develops a system for a given application. The focus in this book is on 
the design of systems and not on selection, although in several instances a particular component 
may be selected from those available in the market.

Design is also considered as part of an overall engineering enterprise. The project starts with 
the definition of a need or opportunity and is followed by market and feasibility analyses. Once 
these are established, engineering design is initiated with inputs from research and development. 
The design process is expected to result in a domain of acceptable designs from which the best or 
optimal design may be obtained. Finally, the results are communicated to other divisions of the 
company for fabrication, testing, and implementation. Thus, design occupies a prominent position 
in typical engineering enterprises. In most cases, optimization of the design is essential in order to 
obtain the best output/input ratio.

Processes, systems, components, and subsystems are discussed in terms of their basic features. 
A system consists of individual constituents that interact with each other and that must be consid-
ered as coupled for a study of the overall behavior. Thermal systems, which are governed by the 
principles of heat transfer, thermodynamics, fluid mechanics, and mass transfer, arise in a wide 
range of engineering applications. The basic characteristics of these systems are outlined, along 
with a few typical mathematical equations that describe them. Different types of thermal systems 
are considered and examples are presented from many diverse areas such as manufacturing, energy, 
environment, electronic, aerospace, air conditioning, and transportation systems. These examples 
serve to indicate the considerable importance of thermal systems in industry and in many practical 
applications. The diversity of thermal systems and the range of concerns in these systems are also 
examined. The need for design and optimization of these systems is clearly indicated.
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2 Basic Considerations in Design

The important terms and aspects that arise in the design and optimization of thermal systems have 
been defined and discussed in the preceding chapter. We are interested in thermal systems that are 
governed by considerations of fluid flow, thermodynamics, and heat and mass transfer. The interac-
tion between the various components and subsystems that constitute a given system is an important 
element in the design because the emphasis is on the overall system. Additional considerations, which 
may not have a thermal or even a technical basis, also have to be included in most cases for a realistic 
and successful design. Though selection of components or devices may be employed as part of system 
design, the focus is on design and not on selection. Similarly, analysis is used only as a means for 
obtaining the inputs needed for design and for evaluating different designs, not for providing detailed 
information and understanding of thermal processes and systems. The synthesis of information from a 
variety of sources plays an important part in the development of an acceptable design. With this back-
ground and understanding, we can now proceed to the main steps that comprise the design process.

2.1 FORMULATION OF THE DESIGN PROBLEM

A very important aspect in design, as in other engineering activities, is the formulation of the 
problem. We must determine what is required of the system, what is given or fixed, and what may 
be varied to obtain a satisfactory design. The final design obtained must meet all the requirements, 
while satisfying any constraints or limitations imposed due to safety, environmental, economic, 
material, and other considerations. The design process depends on the problem statement, as does 
the evaluation of the design. In addition, the formulation of the problem allows one to focus on 
the quantities and parameters that may be varied in the system. This gives the scope of the design 
problem, ranging from relatively simple cases where only a few quantities can be varied to more 
complicated cases where most of the parameters are variable.

2.1.1 requirements AnD speciFicAtions

Certainly the most important consideration in any design is the desired function or task to be per-
formed by the system. This may be given in terms of requirements to be met by the system. A suc-
cessful, feasible, or acceptable design must satisfy these. The requirements form the basis for the 
design and for the evaluation of different designs. Therefore, it is necessary to express the require-
ments quantitatively and to determine the permitted variation, or tolerance level, in each require-
ment. Suppose a water flow system is needed to obtain a specified volume flow rate Ro. Because 
there may be variations in the operating conditions that may result in changes in the flow rate R, 
it is essential to determine the possible increase or decrease in the flow rate that can be tolerated. 
Then the system is designed to deliver the desired flow rate Ro with a possible maximum variation 
of ± ΔR. This may be expressed quantitatively as

 − ∆ ≤ ≤ + ∆R R R R Ro o  (2.1)

Similarly, if a water cooler is being designed, the flow rate Ro and the desired temperature To at the 
outflow become the requirements. The former is expressed as given in Equation (2.1) and the latter as

 − ∆ ≤ ≤ + ∆T T T T To o  (2.2)

where ± ΔT is the acceptable variation in the outflow temperature T.
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In the design of thermal systems, common requirements concern temperature distributions and 
variations with time, heat transfer rates, temperature levels, and flow rates. Total pressure rise, 
time needed for a given process, total energy transfer, power delivered, rotational speed generated, 
etc., may also be the desired outputs from a thermal system, depending on the particular applica-
tion under consideration. Consider the thermal annealing process for materials such as steel, glass, 
and aluminum. The material is heated to a given elevated temperature, known as the annealing 
temperature; held at this temperature level for a specified time, as obtained from metallurgical 
or microscale structural considerations of the chosen material; and then cooled very gradually, 
as shown in Figure 2.1. By heating the material beyond a particular temperature To, known as 
its recrystallization temperature, and maintaining it at this temperature, the internal stresses are 
relieved and the microstructures become relatively free to align themselves. A slow cooling allows 
the removal of residual and thermal stresses and refinement of the structure to restore the ductil-
ity of the material. The desired temperature cycle, including the maximum allowable temperature 
at which the process becomes unsatisfactory and the acceptable variation in the cycle, is shown in 
the figure. The duration τsoaking, over which the temperature is held constant, within the two limits 
shown, is known as the soaking time and is also determined by the characteristics of the material. 
These requirements may, thus, be written quantitatively as

 , ,reqd soaking
cooling

≥ τ ≥ τ ∂
∂τ

≤T T
T

Bo o  (2.3)

where To, τo, and B are specified constants, obtained from the basic characteristics of the given 
material. The acceptable variations in these constants, often given as percentages of the desired 
values, may also be included in these equations. Then, a thermal system is to be designed so that the 
given material or body is subjected to the required temperature cycle, with the allowable tolerance.

Similarly, the requirements for other thermal systems outlined in Chapter 1 may be considered. 
For instance, the mass flow rate, as well as the temperature and pressure at the entrance to the die in 
the plastic extrusion process, shown in Figure 1.10(b), are the requirements for a screw extruder. The 
rate of heat removal and the lowest temperature that can be obtained in the freezer could be taken 
as the requirements for a refrigeration system. The maximum power delivered and speed attained 
could be the requirements for a transportation system. The energy removal rate and the maximum 
allowable temperature may be the requirements for the cooling system of electronic equipment.

FIGURE 2.1 Required temperature variation, with an envelope of acceptable variation, for the thermal pro-
cess of annealing of a given material.
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It is critical to determine the main requirements of the system and to focus our efforts on sat-
isfying these. Because it is often difficult to meet all the desired features of the system, require-
ments that are not particularly important for the chosen application may have to be ignored. It is 
best to first satisfy the most essential requirements and then attempt to satisfy other less impor-
tant ones by varying the design within the specified constraints and limitations. For instance, 
after a refrigeration system has been designed to provide the specified temperature and heat 
removal rate, effort may be exerted to find a satisfactory substitute for the refrigerants R-11 and 
R-12, both of which are chlorofluorocarbons, or CFCs; to replace the compressor with one that 
is more efficient; to vary the dimensions of the freezer; or to improve the temperature control 
arrangement. Thus, it is important to recognize the main requirements of the system and to design 
the system to achieve these, rather than consider every desired feature of the system at the very 
start of the design process.

2.1.1.1 Specifications
The system designed on the basis of the given requirements can be described in terms of its main 
characteristics. These form the design specifications, which list the requirements met by the system 
and the outputs that characterize the system. The final specifications of the system may include 
the performance characteristics; expected life of the system; recommended maintenance, weight, 
size, safety features; and environmental requirements. For instance, the specifications of a heat 
exchanger could be the overall heat transfer rate for given fluids and its dimensions. For a water 
chilling system, these could be the lowest attainable temperature and the corresponding flow rate 
and power consumption. The specifications of the system are, thus, the means of communication 
between the consumer and the designer/manufacturer.

2.1.2 given quAntities

The next step in the formulation of the design problem is the determination of the quantities that 
are given and are, thus, fixed. These items cannot be changed and, as such, are not varied in the 
design process. Materials, dimensions, geometry, and the basic concept or method, particularly the 
type of energy source, are some of the features commonly given in the design of a thermal system. 
Thus, some of the materials and dimensions may be given, while others are to be determined as 
part of designing the system. For a particular system, if most of the parameters are fixed, the design 
problem becomes relatively simple because only a small number of variables are to be determined. 
If the basic concept is not fixed, different concepts may be considered, resulting in considerable 
flexibility in the design.

Let us consider the injection molding process for plastics, as shown schematically for two differ-
ent machines in Figure 2.2. It is similar to the metal casting process described earlier and is thus a 
system dominated by heat transfer and fluid flow considerations (Tadmor and Gogos, 1979). It is an 
extensively used manufacturing process for a variety of parts ranging from plastic cups and toys to 
bathtubs, car bumpers, and molded parts made of composite materials. As shown here, the polymer 
is melted and injected into a mold cavity by applying force on the melt by means of a plunger or a 
rotating screw. As the polymer starts to solidify, additional amounts of melt may be injected to fill 
the gaps left due to shrinkage during solidification. The mold is held together by a clamping unit, 
which opens and closes the mold and also ejects the final solidified product.

For system design, the mold and the injected material may be kept fixed, while the melting and 
injection processes are varied. The system is a complicated one, but it can be considerably simpli-
fied by keeping several components and features fixed while a few components, such as the injection 
mechanism, are varied during design. In addition, the basic concept may be kept unchanged, using, 
for instance, either of the two schemes shown in the figure. Other approaches to melt and inject the 
mold, as well as to clamp and open the mold, are also possible. All these considerations substan-
tially influence the design process.
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Similarly, in the design of the cooling system for an electronic system, consisting of electronic 
components located on circuit boards, the electronic component size, the geometry and dimensions 
of the board, the number of electronic components on each board, and the distance between two 
boards are often given. The design focuses on the cooling system, such as a fan and duct arrange-
ment, keeping the geometry and heat dissipated by the components as fixed. A two-stroke engine 
may be chosen for the design of a transportation system, thus fixing the basic concept. In a solar 
energy system, sensible heat storage in water may be chosen as the concept, with the dimensions, 
geometry, and material of the tank being varied for the design. In the design of a cooling pond 
for cooling the condensers of a power plant, the location of the pond, which determines the local 
ambient conditions, is fixed and its dimensions are varied. In all of these cases, some of which are 
considered in later chapters, the given quantities are kept unchanged during the design process.

2.1.3 Design vAriAbles

The design variables are the quantities that may be varied in the system in order to satisfy the given 
requirements and constraints. Therefore, during the design process, attention is focused on these 
parameters, which are varied to determine the behavior of the thermal system and are then chosen 
so that the system meets the given requirements. As mentioned earlier, it is important to focus on 
the main design variables in the problem because the complexity of the design procedure is a strong 
function of the number of variables.

Let us consider again the plastic injection molding system discussed in the preceding section 
and shown in Figure 2.2. If only the cooling of the mold is left to be designed, while the other 
components in the system are fixed, the problem is simplified. However, even this is an involved 
design problem and has generated much interest and effort over the last three decades. Cooling 
may be achieved by the flow of a cooling fluid through channels in the mold. Different types, 
configurations, and dimensions of cooling channels may be considered, obtaining the thermal 
characteristics of the system for each case. The solidification rate and temperature gradients in 

FIGURE 2.2 (a) Ram-fed injection molding machine; (b) screw-fed injection molding machine. (Adapted from  
Tadmor and Gogos, 1979.)
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the material are usually given as the requirements that must be satisfied by using a variety of cool-
ing channels. This leads to a domain of acceptable designs. An appropriate design may be chosen 
on the basis of additional considerations such as cost, power requirements, size, etc. If the other 
components of the system, such as geometry and dimensions of the melting and injection section, 
are to be varied as well, the design becomes much more involved and the domain of acceptable 
designs is much larger.

The design variables are usually taken to represent the hardware of the system such as the 
plunger, heating arrangement, mold, clamping unit, cooling channels, and so on, in the above exam-
ple. However, the system performance is also affected by the operating conditions, which can be 
adjusted over ranges determined by the hardware. Therefore, the variables in the design problem 
may be classified in the following two categories.

2.1.3.1 Hardware
Hardware includes the components of the system, dimensions, materials, geometrical configuration, 
and other quantities that constitute the hardware of the system. Varying these parameters generally 
entails changes in the fabrication and assembly of the system. As such, changes in the hardware are 
not easy to implement if existing systems are to be modified for a new design, for a new product, or 
for optimization.

2.1.3.2 Operating Conditions
Operating conditions are the quantities that can often be varied relatively easily, over specified 
ranges, without changing the hardware of the given system, such as the settings for tempera-
ture, flow rate, pressure, speed, power input, etc. The design process would generally yield the 
ranges for such parameters, with optimization indicating the values at which the performance 
is optimal.

The design of a thermal system must include both types of variables and the final design obtained 
must indicate the materials, dimensions, and configurations of the various components, as well as 
the ranges over which the operating conditions such as pressure, temperature, and flow rate may 
be varied. These ranges are fixed by the hardware design; for instance, the temperature range may 
be determined by the heaters employed or flow rates by the pumps chosen. However, because the 
product obtained is a function of the operating conditions, these are often given as part of the 
specifications of the system. The following example illustrates the choice of variables in a practical 
thermal system.

Example 2.1

For the plastic screw extrusion system sketched in Figure 1.10(b), give the hardware variables and 
the operating conditions in the problem.

SOLUTION

The physical system under consideration consists of the following main parts: barrel, heating/cool-
ing arrangement, screw, die, feed hopper, and the drive mechanism, which includes the motor, 
bearings, and gear system. Therefore, the hardware variables can be listed as

1. Geometry, material, and dimensions of the hopper
2. Geometry, material, and dimensions of the barrel
3. Dimensions, energy source, and configuration of heating/cooling arrangement
4. Diameter and material of the screw
5. Shape, height, thickness, and pitch of screw flights
6. Geometry, material, and dimensions of the die
7. Physical characteristics of the drive, motor, and gear system
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Clearly, the above list includes a large number of variables. A design problem in which all of these 
can be varied is extremely complicated. Therefore, several of these are generally kept fixed and 
the ranges over which the others can be varied are determined from physical constraints, avail-
ability of parts, and information available from similar systems.

The operating conditions refer to the quantities that may be varied without changing the hard-
ware. These may be listed as

1. Plastic flow rate or throughput
2. Speed (revolutions/minute)
3. Temperature distribution at the barrel
4. Material extruded

All of these operating conditions can be varied over ranges that are determined by the hardware 
design of the system. In addition, in actual practice these may not be varied completely indepen-
dent of each other. For instance, the screw geometry and dimensions, along with the speed, will 
determine the maximum flow rate in the extruder. The heating/cooling arrangement determines 
the range of temperature variation. The plastic or polymer used may limit the speed or the tem-
perature level, and so on.

2.1.4 constrAints or limitAtions

The design must also satisfy various constraints or limitations in order to be acceptable. These 
constraints generally arise due to material, weight, cost, availability, and space limitations. The 
maximum pressure and temperature to which a given component may be subjected are limited by 
the properties of its material. For instance, a plastic or metal component may be damaged if the tem-
perature exceeds the melting point. The performance of semiconductor devices is very sensitive to 
the temperature and, therefore, the temperatures in electronic equipment are constrained to values 
less than 80°C. The pressure rise in a thermal system is constrained by the strength of the materials 
at the operating temperature levels. Such constraints may be written for temperature T, pressure P, 
and volume flow rate R as

 , ,T T P P R Rmax max max≤ ≤ ≤  (2.4)

Generally, the maximum values, indicated here by the subscript max, would be considerably less 
than levels at which permanent damage to the component or system might occur. Therefore, Tmax may 
be taken as, say, 50°C lower than the melting point of the material of which a given component is made, 
depending on the desired safety, accuracy of the model on which the design is based, and the material.

The choice of the material itself may be limited by cost, availability, waste disposal, and environ-
mental impact even if a particular material has the best characteristics for a given problem. In fact, 
material selection is a very important element in design, as discussed later in this chapter. Volume and 
weight restrictions also frequently limit the domain of acceptable design. Again, these may be given as

 , ,W W L L V Vmax max max≤ ≤ ≤  (2.5)

where W, L, and V are the weight, length, and volume, respectively. Such constraints arise from 
the expected application of the system. For instance, weight restrictions are very important in the 
design of portable computers, airplanes, rocket systems, and automobiles. Similarly, volume con-
straints are important in room air conditioners, household refrigerators, and industrial furnaces. All 
such constraints and limitations determine the range of the design variables and, thus, indicate the 
boundaries of the domain over which an acceptable design is sought.

Constraints also arise due to conservation principles. For instance, mass conservation dictates 
the speed of withdrawal in a hot rolling process. For a two-dimensional flat plate being reduced in 
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thickness from D1 to D2 across a set of rollers, as shown in Figure 1.10(d), mass conservation leads 
to the equation U1D1 = U2D2, where U1 is the speed before the rollers and U2 after, if the density of 
the material remains unchanged. Then this equation serves as a constraint on the speed after the 
rollers if the remaining quantities are specified.

Similarly, the energy rejected Qrejected from a power plant to a cooling pond is  mC T mp where∆  
is the mass flow rate of the cooling water, ΔT is its temperature rise in going through the condens-
ers, and Cp is the specific heat at constant pressure. This energy must be rejected to the environment 
through heat loss at the water surface and to the ground. If the latter is negligible, as is often the case, 
the surface temperature must rise in order to lose the energy to the ambient medium. An energy bal-
ance equation may thus be written to determine the average surface temperature rise as

 rejected surface new oldQ mC T hA T Tp ( )= ∆ = −  (2.6)

where h is the overall heat transfer coefficient, Asurface is the surface area, and (Tnew − Told) is the rise 
in the average surface temperature. A limitation of around 5°C on this temperature rise is speci-
fied by federal, state, county, or city regulations directed at minimizing the environmental effect. 
Therefore, the maximum amount of energy that may be rejected to the pond may be calculated. 
Similar considerations could lead to restrictions on temperature rise in the condensers, as well as on 
the total flow rate (Moore and Jaluria, 1972).

2.1.5 ADDitionAl consiDerAtions

Several additional considerations have to be taken into account for obtaining an acceptable or work-
able design. These considerations may arise from safety and environmental concerns, procurement 
of supplies needed, availability of raw materials, national interests, import and export concerns, 
waste disposal problems, financial aspects, existing technology, and so on. Many of these aspects 
affect the overall engineering enterprise, as discussed in Chapter 1. However, the design itself may 
be strongly influenced by these considerations, particularly those pertaining to the environmental 
and safety issues. For instance, even though nuclear energy is one of the cheapest and cleanest 
methods of generating electricity, concerns on radioactive releases have strongly curbed the growth 
of nuclear power systems. Systems are designed in the steel industry to use the hot combustion prod-
ucts from the blast furnace in order to reduce the discharge of pollutants and thermal energy into 
the environment, while also decreasing the overall energy input. Thermal pollution concerns could 
make it undesirable to depend only on a lake or river for discharge of thermal energy from a power 
plant, making it necessary to design additional systems such as cooling towers for heat disposal.

Disposal of solid waste, particularly hazardous waste from chemical plants and radioactive waste 
from nuclear facilities, is another very important consideration that could substantially affect the 
design of the system. The energy source is chosen in order to meet the federal or state guidelines 
for solid waste disposal. Adequate arrangements have to be included in the design to satisfy waste 
disposal requirements.

Safety concerns, particularly with nuclear facilities, demand that adequate safety features be built 
into the system. For instance, if the temperature or heat flux levels exceed safe values, the system must 
shut down. If the fluid level were too low in a boiler, a safety feature would not allow it to be turned on, 
thus avoiding damage to the heaters and keeping the operation safe. Similarly, the energy source may 
be changed from gas to electricity because of safety concerns in an industrial system.

The formulation of the design problem is based on all of the above aspects. Therefore, before pro-
ceeding to the design of the thermal system, the problem statement is given in terms of the following:

1. Requirements
2. Given quantities
3. Design variables
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4. Limitations or constraints
5. Safety, environmental, and other considerations

Because the design strategy, evaluation of the designs developed, and final design are all depen-
dent on the problem statement, it is important to ensure that all of these aspects are considered in 
adequate detail and quantitative expressions are obtained to characterize these. It is worthwhile to 
investigate all important considerations that may affect the design and to formulate the design prob-
lem in exact terms, as far as possible, along with allowable variations or trade-offs in the various 
quantities and parameters of interest. Once the design problem is formulated, we can proceed to the 
development of the design, starting with the basic concept.

Example 2.2

An air conditioning system is to be designed for a residential building. The interior of the build-
ing is to be maintained at a temperature of 22°C ± 5°C. The ambient temperature can go as high 
as 38°C and the rate of heat dissipated in the house is given as 2.0 kW. The location, geometry, 
and dimensions of the building are given. Formulate the design problem and give the problem 
statement.

SOLUTION

The given quantities are the maximum ambient temperature, which is 38°C, and the rate of energy 
input due to activities in the house, specified as 2.0 kW. The location, geometry, and dimensions 
of the house are all fixed quantities. The requirements for the system to be designed are given in 
terms of the temperature range, 17°C – 27°C (22°C – 5°C to 22 + 5°C), that is to be maintained 
in the house. No constraints are given in the problem. However, typical constraints will involve 
limitations on the size and volume of the system, on the flow rate of air circulating in the build-
ing, and on the total cost. Use of CFCs as refrigerants will be unacceptable due to environmental 
considerations.

The thermal load due to heat transfer to the house from the ambient must first be determined. 
This load will involve absorbed solar flux, back radiation to the environment, convective transport 
from ambient air, evaporation or condensation of moisture, and conductive energy loss to the 
ground. The ambient thermal load is a function of ambient conditions, geometry of the building, 
its geographical location, and dimensions. It can often be modeled as hAΔT, where h is the overall 
heat transfer coefficient, A is the total surface area, and ΔT is the temperature difference between 
the ambient and the house. The overall heat transfer coefficient includes all the transport mecha-
nisms, particularly convective denoted by hc and radiative denoted by hr, giving h = hc + hr. The 
total thermal load Q is then the ambient load plus the rate of energy dissipated inside the building. 
The rate of heat removal Qr by the thermal system shown in Figure 2.3 must be greater than this 
total load.

FIGURE 2.3 A thermal system for the central air conditioning of a house.
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The transient cooling of the building is also an important consideration. If the total thermal 
capacity of the building (mass × specific heat) is estimated as S, then its average temperature T is 
governed by the energy balance equation

 S
dT
d

Q Qrτ
= −

From this equation, the time τr needed to cool the building to 1/e of its initial temperature differ-
ence from the ambient, i.e., the characteristic response time, may be calculated, as discussed later 
in Chapter 3. If this time is posed as a requirement, the heat removal rate Qr or the capacity of the 
system may be appropriately determined; otherwise Qr must simply be greater than Q.

The system is designed for the highest load, which arises at an ambient temperature of 38°C 
and inside temperature of 17°C. Simulation is used to determine the effect of ambient conditions 
as well as the transient response of the building. From these considerations, an acceptable design 
is obtained for the given design problem.

The problem statement for the given system design may, thus, be summarized as

Given: Building geometry, location, and dimensions. Maximum ambient temperature as 
38°C. Rate of heat dissipated inside the house as 2.0 kW.

Requirements: Temperature inside the building must be maintained within 17°C and 27°C. 
In typical cases, the rate of cooling or response time τr is also a requirement.

Constraints: Limitations on size, volume, weight, and cost of the air conditioner. Limitation 
on maximum air flow rate circulating in the house may also be specified.

Design variables: Systems parts, such as condenser, evaporator, compressor, and throttling 
valve. Also, the refrigerant may be taken as a design variable.

Because of these requirements and constraints, the evaporator must operate at temperatures lower 
than 17°C to extract heat at the lowest temperature in the building. The condenser must oper-
ate at temperatures higher than 38°C in order to reject heat at the highest ambient temperature. 
Similarly, the total load will determine the capacity of the system. This specification is usually 
given in tons, where 1 ton is 3.52 kW and refers to the energy removal rate required to convert  
1 ton (2000 lb) of water to ice in 1 day. A thermostat control with an on/off mechanism is often 
used with the designed thermal system to maintain the desired temperature levels.

2.2 CONCEPTUAL DESIGN

At the very core of any design activity lies the basic concept for the process or the system. The design 
effort starts with the selection of a conceptual design, which is initially expressed in vague terms as 
a method or scheme that might satisfy the given requirements and constraints. As the design pro-
ceeds, the concept becomes better defined. Conceptual design is a creative process, though it may 
range from something quite innovative, representing an invention or a new approach not employed 
before, to modifications in existing systems. Inventions may lead to patents, as discussed later. 
Creativity, originality, experience, knowledge of existing systems, and information on current tech-
nology play a large part in coming up with the conceptual design. For instance, microprocessors, 
laser-Doppler velocimeters, ultrasonic probes, composite materials, iPhone, iPad, digital cameras, 
light-emitting diodes (LEDs), and liquid crystals represent some of the innovative ideas introduced 
in recent years. Solutions based on existing and developing technology can also lead to valuable 
conceptual designs such as those of interest in computer workstations and laptops, automobile fuel 
injection systems, hybrid cars, and solar power stations. Changes can be made in existing systems 
to meet the given need or opportunity. In fact, much of the present design and development effort is 
based on improvements in current processes and systems.

For a given problem statement, several concepts or ideas may be considered and evaluated to 
estimate the chances of success. The ideas at this stage are necessarily fuzzy and rough estimates 
are carried out to determine if the concepts are feasible or if there are problems that may be difficult 
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to overcome. Sometimes, these are simply back-of-the-envelope calculations that yield the overall 
inputs, outputs, expected ranges, etc. Such estimates allow the design group to narrow down the 
selection of the conceptual design to a few possible approaches. The selected conceptual designs 
are then subjected to the detailed design process, which would hopefully yield an acceptable design.

In order to illustrate the availability of different concepts and the choice of the most suitable 
one, let us consider the task of transporting coal from the loading dock to the blast furnace in a 
steel plant. Obviously, this can be achieved in many ways. Trucks, trains, conveyor belts, pipes, and 
carts are some of the methods that may be used. Each of these represents a different concept for the 
transportation system. The final choice is guided by the distance over which the material is to be 
transported, size and form in which coal is available, and rate at which the material is to be fed. For 
small plants, individual carts and trucks driven by workers may be adequate, whereas trains may be 
the most appropriate method for large distances and large plants. Clearly, there is no unique answer. 
In addition, within each concept, different techniques may be used to achieve the desired goals.

2.2.1 innovAtive conceptuAl Design

Innovative ideas can lead to major advancements in technology and must, therefore, be encouraged. 
Not all original concepts are earth-shattering and not all of these are practical. However, an envi-
ronment conducive to the generation of creative and innovative solutions to the given problem must 
be maintained and various ideas brought forth must be examined before they are discarded. Such 
ideas may originate in different divisions within a company, such as manufacturing, research and 
development, and marketing. In many cases, the concept may be infeasible because of cost, technical 
limitations, availability of materials, and so on. But the concepts that appear to have promise must be 
considered further to determine if it is possible to develop a successful design based on them.

It is not easy to teach someone how to be creative and innovative. In most cases, creativity is 
a natural talent and some people tend to be more original than others. There are no set rules that 
one might follow to become creative. However, experience with current technology and knowledge 
of systems being used for applications similar to the one under consideration are a big help in the 
search for a suitable conceptual design. In addition, it is necessary to provide an environment that 
is open to new ideas. Creative problem solving requires imaginative thinking, persistence, accep-
tance of all ideas from different sources, and constructive criticism. Several such methods that may 
help to develop creative thinking are discussed by Alger and Hays (1964) and by Lumsdaine and 
Lumsdaine (1995). Techniques such as brainstorming, where a group of people collectively try to 
generate a variety of ideas to solve a given problem, design contests, and awards to employees with 
the best ideas also promote the generation of innovative solutions. Many impressive designs, such as 
the Vietnam Veterans Memorial in Washington, D.C., have arisen from design competitions.

2.2.1.1 An Example
In the manufacture of electronic systems, a classical process that is frequently used is that of sol-
dering a pin to a board. Solid solder is placed around the pin in the form of a doughnut, as shown 
in Figure 2.4, and heated to a temperature beyond its melting point. The molten solder is driven by 
surface tension forces to form a joint, which solidifies on cooling to give the desired connection 
between the pin and the copper plated-through hole in the board. The heating had traditionally been 
done by radiation or by convection, using air or a liquid for immersion. Excessive and nonuniform 
heating of the boards was a common problem with radiation. Cleaning of the fluid and low heat 
transfer rates were the concerns with convection. In response to the need for an improved technique 
for this problem, a new and innovative method based on condensation of a vapor was proposed to 
yield a rapid heat transfer rate, while ensuring a clean environment with no overheating of the board. 
This resulted in the design of a thermal system to generate the vapor of a fluid with the appropriate 
boiling point. This vapor would then condense on a circuit board immersed in the condensation 
region, thus heating the material and forming the desired solder joint. Higher and more uniform 
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heat transfer rates are achieved by this method. The quality of the joint and the production rate are 
improved. Figure 2.4 gives the basic features of the process and of a simple condensation soldering 
system that can be used for such applications. Figure 2.5 shows a photograph of a condensation sol-
dering facility, based on this concept, for large electronic components, indicating the typical scale 
of such practical systems. Example 2.3 discusses this process in greater detail. Figure 2.6 shows a 
different type of facility that uses the same basic concept and is available commercially. This sys-
tem is more compact, easier to control, and has less fluid loss than the one shown in Figure 2.4(b). 
Dally (1990) may be consulted for further details on this and other soldering processes used in the 
manufacture of electronic circuitry. This system may also be used for other applications that require 
high rates of heating without overheating.

Many such innovative ideas have been introduced in recent years, particularly in the area of 
materials processing. Consequently, new materials, with a wide range of desired characteristics, and 
new processing techniques have been developed. Graphite tennis rackets, Teflon-coated cookware, 
lightweight camping equipment, lightweight laptop computers, and many such items in daily use 
are examples of these materials. Similarly, concerns with our environment and energy supply have 
resulted in many innovative systems for waste disposal, particularly for solid waste using methods 
such as incineration, and for unconventional energy sources such as solar, wind, and geothermal 
energy. Aerospace engineering is another area that has benefited from many new and original ideas 
that arose in response to the many challenging problems encountered due to, for example, high 
temperature, pressure, and velocity during rocket launching and re-entry. The space program has 
led to many significant advances like new alloys and composites, cellular phones, global positioning 
systems (GPS), and wireless accessories. Even in traditional fields, such as automobiles, many new 
concepts, such as microprocessor control, robotics, GPS navigation systems, and monitoring of the 
different subsystems, have been introduced in recent years. Therefore, creative and innovative con-
cepts are crucial to the advancement of technology, with some of these resulting in major changes 
in current practice and others introducing only marginal improvements. Patents, copyrights, trade-
marks, and so on are needed to protect intellectual property, as discussed later.

FIGURE 2.4 (a) Solder flow for forming a bond between a pin, or terminal, and a plated-through hole. (b) 
Schematic of a condensation soldering facility for electronic circuitry manufacture.
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2.2.2 selection From AvAilAble concepts

In an attempt to meet the given design requirements, concepts that have proved to be successful in 
the past for similar problems frequently provide a valuable source of information. With the techno-
logical advancements of recent years, a large variety of problems have been considered and many 
different solutions have been tried. In a given industry, the ideas that have been attempted in the 
past to solve problems similar to the one under consideration are well-known. Existing literature 
can also be used to generate additional information on various concepts and solutions that have been 
previously employed. The conceptual design for a given problem may then be selected from the list 
of earlier concepts or developed on the basis of this information. In this case, only the basic concept 
is similar to the earlier concepts; the system design may be quite different.

FIGURE 2.5 A practical condensation soldering facility. (From Lucent Technologies. With permission.)
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Let us consider the problem of thermal management of electronic systems. If forced convec-
tive cooling is to be employed for a given electronic circuitry, the extensive information avail-
able in the literature on these cooling systems may be used to select or develop the conceptual 
design. Figure 2.7 shows the schematics of some of the arrangements and processes used in practice. 
Additional information on the characteristics of each system, for example, on the heat removal rate, 

FIGURE 2.6 Condensation soldering machine for surface mounted components. (Adapted from  
Dally, 1990.)

FIGURE 2.7 Various arrangements and processes for the forced convective cooling of electronic systems.
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pressure needed, dimensions, and cost, is available in the literature. Based on this information, a 
particular conceptual design may be selected from the available techniques for cooling. If none of 
the approaches is satisfactory for the given problem, variations of these strategies and concepts may 
be used as the conceptual design for the given problem.

The choice of the basic concept from available techniques and methods is an important approach 
to conceptual design. It is based on both experience and information regarding different ideas that 
have been tried successfully or unsuccessfully in the past. Although the successful concepts are 
of particular interest, even those ideas that did not yield satisfactory designs may be considered 
because of changes in the problem statement and in technology. In some cases, different concepts 
may be combined to yield the conceptual design for the given problem. For instance, both forced 
air cooling with a fan and liquid immersion cooling may be employed for different parts of an elec-
tronic system because of different heat input levels.

2.2.3 moDiFicAtions in the Design oF existing systems

In many cases, existing or available systems may form the basis for design of a new system to meet 
the requirements and constraints of a new application. This is clearly the simplest approach for 
obtaining a conceptual design for the given problem. However, it would work only if relatively small 
changes in the requirements are of interest. Improvements in the performance and characteristics 
of the system and in the quality of the product can also often be obtained simply by modifying the 
design of existing systems. Frequently, optimization of the system or of the process is achieved by 
such changes in the design. The conceptual design is then simply the design of the existing system, 
along with the possible modifications needed to meet the requirements of the new problem. The 
overall configuration of the system is kept largely unchanged and only a few relevant components 
or subsystems are varied. Therefore, the design process becomes relatively simple because many 
parameters and quantities in the system are known, reducing the number of design variables.

Making modifications in existing systems refers to the use of the information available on the 
design of these systems for developing a conceptual design and not necessarily to physical alterations 
in actual existing systems, although this may also be possible in a few cases. The main idea here is to 
employ existing systems as the basic framework for design and to consider variations in different com-
ponents or parts of the system to satisfy the given problem statement. This is a very common approach 
in conceptual design, particularly for complex systems, because the effort involved is relatively small 
and because changes in the design of current systems can often lead to the desired result. Many ther-
mal systems in use today have evolved by means of such modifications through the years.

Let us consider a few examples where modifications in the design of existing systems may lead 
to viable conceptual designs. The Rankine cycle is the basic thermodynamic cycle used for steam 
power plants. However, the desire to improve the overall thermal efficiency of the system has led to 
many modifications. Some of the variations in the conceptual design are those related to superheat-
ing of the vapor leaving the boiler, reheating the steam passing through the boiler, and regenerative 
heating of the working fluid using stored energy from an earlier process in the system (Cengel and 
Boles, 2014). All of these are different conceptual designs based on an existing system design.

Another example is provided by the plastic screw extrusion process, shown schematically earlier 
in Figure 1.10(b). Though electric heaters are generally used, water or steam circulating in jackets, 
as shown in Figure 2.8, may also be used to avoid possible overheating and for better tempera-
ture control and higher thermal efficiency. Different jackets may be used to impose a temperature 
variation along the axis of the extruder. In a screw extruder, considerable variation in the product 
is obtained by varying the configuration of the screw. Different types of elements, such as reverse 
elements, kneading blocks, and spacer elements, and screws of different profiles and pitch may be 
used to alter the design of the system. The die at the end of the extruder may also be varied. Thus, 
the overall structure and configuration of the system is unchanged and individual components are 
varied to achieve different characteristics and performance. Figure 2.9 shows photographs of a 
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FIGURE 2.8 Schematic of a single screw extruder heated or cooled by the flow of steam or water in jackets 
at the extruder barrel.

FIGURE 2.9 A practical plastics/food extrusion system. (From Center of Advanced Food Technology, 
Rutgers University, New Jersey. With permission.)
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practical plastics/food extruder, which is seen to be much more complicated than the simple sketch 
given earlier due to the drive and control mechanisms, feeding system, and other additional features 
needed for an industrial process.

For a given application, the preceding three strategies may be employed, as needed, to obtain the 
conceptual design. Generally, the effort would first consider the possibility of modifying the design 
of existing systems. If this does not yield a satisfactory solution, different available concepts would 
be considered to develop a conceptual design for the given problem. If even this does not work, new 
approaches and techniques will have to be considered. The conceptual design is then subjected to 
the detailed, quantitative design process, as outlined in the next section, in order to obtain an accept-
able design that satisfies the given requirements and constraints. Obviously, there are circumstances 
where a satisfactory solution to the given problem is not obtained. Then the problem statement may 
be examined again or the project terminated.

Example 2.3

For the soldering problem sketched in Figure 2.4, consider different heating strategies to obtain a 
conceptual design for the condensation process.

SOLUTION

The basic problem under consideration involves heating the solid solder preform so that it melts 
and flows under the action of surface tension, gravitational, and viscous forces to yield the solder 
fillet that joins the pin or terminal with the copper plated-through hole and thus with the printed 
circuit board. The fillet solidifies on cooling to yield the desired bond. Figure 2.10 shows the typi-
cal variation of the solder temperature with time, indicating melting and solidification at constant 

FIGURE 2.10 Typical temperature cycle undergone by a solder joint formed by melting of a solid preform, 
followed by solidification.
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temperature. In common electrical circuitry, several such pins occur on each board and interest 
lies in a thermal system that achieves:

1. Rapid heating
2. Uniform heating of board materials
3. No damage to materials by overheating
4. Electrically insulating environment, so that electrical properties are not altered
5. Clean, nontoxic medium

Thermal systems may be designed for different heating mechanisms. Some of these, along with 
typical values of the corresponding heat transfer coefficient h for common geometries and dimen-
sions, are estimated as (Incropera and Dewitt, 2001)

 h W/m · K2( )
Natural convection in air and gases 5–10
Forced convection in air and gases 50–100
Natural convection in common liquids 350–550
Forced convection in common liquids 500–2,500
Radiative transport 600–10,000
Condensation 600–10,000
Fluidized bed 600–5,000

Convection has the advantage of heating the materials only up to the fluid temperature. As 
such, overheating can be avoided easily by choosing the fluid temperature below the temperature 
limitation of the materials involved. However, the heat transfer coefficient for natural convection 
in air or gases is extremely small. This is undesirable unless the fluid temperature is taken very 
large to obtain high heat transfer rates. If this is done, the materials may overheat and be damaged. 
Forced convection has higher heat transfer coefficients than natural convection. However, forced 
flow is strongly geometry-dependent and can lead to non-uniform heating due to separation and 
wakes, as shown in Figure 2.11(a). In addition, it will affect the shape of the solder fillet by exerting 
drag on the molten solder.

Natural convection using a liquid is attractive because it has reasonably high heat transfer 
coefficients and provides uniform heating. However, immersion in a liquid has the problem of 
accumulation of impurities, dust particles, and other undesirable deposits. Therefore, cleaning is a 
major concern in this case. Radiation provides a clean environment, but the heat flux absorbed is a 
strong function of the geometry and the surface properties of the material. Therefore, overheating 
is commonly encountered when radiation is used to heat the preform. Radiation masks, as shown 
in Figure 2.11(b), are generally needed to avoid overheating. Different masks are required for dif-
ferent geometrical configurations, making this a difficult and time-consuming effort. Fluidized bed 
heating has the same problems as forced convection.

The previous discussion indicates the kind of thinking that goes into the development of a 
conceptual design. Here, the heat transfer coefficients are obtained from the literature. Different 
heating mechanisms are considered and evaluated. The various strategies for heating, mentioned 
here, have been employed for different applications, despite their shortcomings. Finally, we come 

FIGURE 2.11 Heating of the solid solder preform by (a) forced convection and (b) thermal radiation.



54 Design and Optimization of Thermal Systems

to condensation as a means to heat the solder preform. This process has a high heat transfer coef-
ficient and provides uniform heating because an externally induced flow is not involved in the 
transport. The environment is clean because vapor obtained by boiling the liquid is used. The 
impurities, dust particles, and deposits are left behind in the liquid, which may be cleaned peri-
odically. However, the success of this approach depends on the availability of a nontoxic vapor at 
the appropriate temperature. The melting point is around 182°C for common solders. Therefore, 
fluids with boiling points higher than this temperature are needed. Several high-boiling fluorocar-
bons are suitable for the purpose because these are nontoxic and relatively inert. However, these 
fluids are expensive and the system design must consider minimizing fluid losses. With all these 
considerations in mind, condensation heating may be chosen for the process.

Even after condensation has been selected as the method for heating and an appropriate fluid has 
been found, several conceptual designs for the system can be developed. We need a boiling sump 
where the liquid is heated to provide the vapor region where the vapor condenses on the circuitry 
to heat the solder preform. The condensed vapor must be returned to the sump. One possibility is to 
have a boiler and transport the vapor to a condensing chamber where the soldering takes place. The 
condensate is then pumped back to the sump. Leakage of the vapor is minimized by proper design 
of entry and exit ports for the electronic part. Figure 2.12 shows a sketch of such an arrangement.

The systems shown in Figure 2.4(b) and Figure 2.6 are other conceptual designs. In these 
cases, the boiling liquid sump and the condensing vapor region are located in the same container. 
Condensing coils, which are cooled by circulating cold water, condense the vapor and generate a 
vapor region. If a part is immersed in this region, the vapor condenses on it and thus heats it at the 
desirable high heat transfer rates. Though the vapor region is physically contained in Figure 2.6, it 
is not contained in Figure 2.4(a), resulting in greater fluid loss in this design. The part to be heated 
passes through the top as well. However, the interface generated at the top reduces the fluid loss. 
Additional mechanisms to minimize fluid loss can also be devised because the fluid is generally 
quite expensive. Again, the conceptual design is not unique and several other solutions and sys-
tems are possible.

2.3 STEPS IN THE DESIGN PROCESS

The conceptual design comprises the basic approach and the general features of the system. These 
form the basis for the subsequent quantitative design process. The starting or initial design is then 
specified in terms of the configuration of the system, the given quantities from the problem state-
ment, and an appropriate selection of the design variables. This initial selection of the design vari-
ables is based on information available from other similar designs, on current engineering practice, 
and on experience. Employing approximations and idealizations, a simplified model is then devel-
oped for this initial design of the system so that its behavior and characteristics may be analyzed. 
Generally, the system behavior under a variety of conditions is investigated on the computer, by a 

FIGURE 2.12 A possible conceptual design for a condensation soldering facility.
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process known as simulation, because of the complexity of the governing equations in typical ther-
mal systems. An experimental or physical model may also be employed in some cases. The outputs 
from the modeling and simulation effort allow the designer to evaluate the design with respect to the 
requirements and constraints given in the problem statement. If an acceptable design that satisfies 
these requirements and constraints is obtained, the process may be terminated or other designs may 
be sought with a view to improve or optimize the system. If an acceptable design is not obtained, 
the design variables are adjusted and the processes of modeling, simulation, and design evaluation 
repeated. These steps are carried out until a satisfactory design is obtained. Different strategies may 
be adopted to improve the efficiency of this iterative procedure. Figure 2.13 shows a typical design 
procedure, starting with the conceptual design and indicating the steps mentioned here.

Usually, the engineering design process focuses on the quantitative design aspects after the prob-
lem statement and the conceptual design have been obtained. Then, the overall design process 
starts with the initial design of the physical system and ends with communication of the design to 
fabrication and assembly facilities involved in developing the system. The formulation of the design 
problem and conceptual design are precursors to this process and play a major role at various stages. 
Thus, the main steps that constitute the design and optimization process may be listed as:

1. Initial physical system
2. Modeling of the system
3. Simulation of the system
4. Evaluation of different designs
5. Iteration and obtaining an acceptable design
6. Optimization of the system design
7. Automation and control
8. Communicating the final design

FIGURE 2.13 Iterative process to obtain an acceptable design.
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Figure 2.14 shows a schematic of these different steps in the design and optimization of a system. 
The iterative process to obtain an acceptable design by varying the design variables is indicated 
by the feedback loop connecting simulation, design evaluation, and acceptable design. There is a 
feedback between simulation and modeling as well in order to improve the model representation of 
the physical system based on observed behavior and characteristics of the system, as obtained from 
simulation. Optimization of the system is undertaken after acceptable designs have been obtained. 
Automation and control are important for the satisfactory and safe performance of the given system. 
The results from the detailed design and optimization process are finally communicated to groups 
involved with fabrication, sales, and marketing. The basic considerations involved in these steps are 
outlined in the following sections and some of the crucial elements, such as modeling, simulation, 
and optimization, are discussed in greater detail in later chapters.

2.3.1 physicAl system

The starting point of the quantitative design process is the physical system obtained from concep-
tual design. This serves as the initial design that is modeled, simulated, and evaluated in the search 
for an acceptable design. Therefore, the system must be well-defined in terms of the following:

1. Overall geometry and configuration of the system
2. Different components or subsystems that constitute the system
3. Interaction between the various components
4. Given or fixed quantities in the system
5. Initial values of the design variables

A sketch may be used to represent the system configuration and the various components that 
interact with each other. Several of these were given in Chapter 1. For instance, Figure 1.8 presented 
the schematic for vapor compression and vapor absorption systems for refrigeration and air condi-
tioning. Similarly, Figure 1.10 gave the physical representations for several manufacturing thermal 
systems and Figure 1.12 those for electronic equipment cooling systems. These sketches indicate 
the different components and subsystems that are part of the overall thermal system. The physical 
characteristics of these components and how they are linked with the others, particularly in terms 
of material, heat, and fluid flow, are also included.

In several cases, particularly for thermodynamic systems, the behavior and characteristics of 
the system may be represented graphically. State diagrams, which represent the equilibrium states 
through which a given material goes, are commonly used to indicate the thermodynamic cycle in 
many applications such as those related to refrigeration, power plants, and internal combustion 
engines. Similarly, changes in temperature, pressure, and velocity with location and time are used 
to indicate the basic nature of the process in many systems. Such graphical representations are 
largely qualitative and often idealized, thus modeling the physical system. The actual numbers and 

FIGURE 2.14 Various steps involved in the design and optimization of a thermal system and in the imple-
mentation of the design.
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other quantitative details are obtained through analytical and numerical calculations. Figure 2.15 
shows qualitatively the typical thermodynamic cycles for a power plant and for a four-stroke internal 
combustion engine, indicating the various stages in the two processes. An analysis of these systems 
would then yield the actual pressures and temperatures involved (Moran and Shapiro, 2014).

The physical system must also include information on the given and, thus, fixed quantities in the 
problem and on the initial values of the design variables. Again, these may also be given in the form 
of sketches or graphs, as well as in symbolic or mathematical forms. Quantities that are often fixed 
are dimensions; materials and their characteristics; flow rates; and torque, pressure, or force exerted. 
Quantities that may be varied to obtain a satisfactory design are determined from the parameters 
that are not given, from operating conditions, and from the configuration of the system.

Consider the glass fiber drawing system shown in Figure 1.10(c). The basic configuration of the 
system is sketched in this figure. In addition, the dimensions and material of the fiber are given 
quantities, with specified tolerance levels. The draw speed of the fiber is a requirement in most 
cases for the desired productivity. The dimensions, material, and heating arrangement of the fur-
nace could be taken as the design variables, although the given constraints will generally fix the 
domain of variation to fairly tight limits. The tension exerted on the fiber is to be determined for 
given operating conditions. Therefore, the physical system is specified in terms of these inputs. 
Figure 2.16 shows a photograph of the actual optical fiber drawing system, known as the draw tower. 
The simple sketch shown in Figure 1.10(c) is a schematic that gives the essential features of the sys-
tem, which is much more complicated in actual practice due to power supply, control arrangement, 
feed mechanism, and other practical considerations.

2.3.2 moDeling

The modeling of the physical system, obtained from the conceptual design and from the formu-
lation of the design problem, is an extremely important step in the design and optimization of the 
system. Because most practical thermal systems are fairly complex, it is necessary to focus on 

FIGURE 2.15 Thermodynamic cycles for (a) a Rankine engine with superheating of steam for power genera-
tion, and (b) an internal combustion engine based on the four-stroke Otto cycle.
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the dominant aspects of the system, neglecting relatively small effects, in order to simplify the 
given problem and make it possible to investigate its characteristics and behavior for a variety 
of conditions. Idealization and approximation of the processes that govern the system are also 
used to simplify the analysis. The basic conservation principles and properties of the materials 
involved are also important elements in modeling of thermal systems. Chapter 3 is devoted to 
modeling of thermal systems and only a brief outline is given here as an introduction to this 
process.

Both analytical and experimental procedures are employed to model the system. Because experi-
mentation usually involves much greater time, effort, and cost, as compared to analysis, experimen-
tal methods are used sparingly and largely for the validation of the analytical/numerical model or 
when the inputs needed for design are not easily obtainable by analysis. Modeling of the thermal 
system yields a set of algebraic, differential, or integral equations, which determine the behavior of 
the actual system. These may be written as

 ( , , , , ) 0 for 1, 2, 3, ,1 2 3F x x x x i ni n… = = …  (2.7)

where xi and Fi represent, respectively, the physical variables and the equations, algebraic or dif-
ferential, that describe the problem. In most cases, numerical methods are necessary to solve these 
equations, particularly the nonlinear ordinary and partial differential equations often encountered 
in thermal systems. Discretized equations are then derived based on numerical techniques such as 
the finite difference and finite element methods for implementation on the computer, giving rise 
to a numerical model for the process or system. The analytical and/or numerical results obtained 
must be validated, preferably by comparisons with available experimental data, to ensure that the 
model is an accurate and valid representation of the physical system. The results obtained from 

FIGURE 2.16 Draw tower for the manufacture of optical fibers. (From Fiber Optic Materials Research 
Program, Rutgers University, New Jersey.)
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experimental and numerical methods are frequently represented in terms of simple algebraic equa-
tions by means of curve fitting. These equations can then be used to characterize the system behav-
ior and to optimize its performance.

Modeling of the thermal system also allows one to determine the conditions under which the 
results from an experimental scale model can be used to predict the behavior of an actual physical 
system. This involves dimensionless parameters that must be identical for the scale model and the 
actual system for obtaining similar distributions of flow, forces, heat transfer rates, and so on. Using 
the basic principles of dimensional analysis, the governing dimensionless groups are determined 
for a given thermal process or system. This also simplifies the experiment by reducing the number 
of parameters that need to be varied to characterize a given process, because most thermal systems 
are governed by a much smaller number of dimensionless groups as compared to the total number 
of physical variables in the problem.

As a result of the various simplifications and approximations, the given problem is brought to a 
stage where it may be solved analytically or numerically. Modeling not only simplifies the problem, 
but also eliminates relatively minor effects that only serve to confuse the main issues. It also pro-
vides a better understanding of the underlying mechanisms and thus allows a satisfactory inclusion 
of the experimental results into the overall model. Material property data and empirical results, 
available on the characteristics of devices and components that comprise the system, are also incor-
porated into the model.

Modeling is generally first applied to individual components, parts, or subsystems that make up 
the thermal system under consideration. Using the various experimental and analytical methods for 
modeling, separate models are thus developed for the constituents of the system. These individual 
models, or submodels, are then brought together or assembled in order to take into account the inter-
action between the various parts of the system. The different submodels are linked to each other 
through boundary conditions and the flow of mass, momentum, and energy between these. When 
these individual models are coupled with each other, the overall model for the thermal system is 
obtained. This model is subjected to a range of conditions to study the behavior of the system and 
thus obtain a satisfactory or optimal design.

Consider the simple power plant system sketched in Figure 2.17. The various subsystems, such 
as the boiler, condenser, turbine, and pump, are first considered individually and the corresponding 
models developed. After all these individual models, or submodels, have been developed, they must 
be brought together to yield the model for the complete thermal system, as shown schematically in 
Figure 2.18. In this particular example, the models of the individual subsystems are coupled through 
the fluid flow and the energy transport. Thus, the outflow from the boiler is the inflow to the turbine, 
whose outflow is the inflow to the condenser. Using such conditions, the different parts of the system 
are linked to each other through a central control unit. This then yields the model of the complete 
power plant. Additional subsystems such as the superheater, feedwater heater, and cooling tower 
may also be brought in for practical and more complicated systems. Similar considerations apply in 
the development of models for other thermal systems.

2.3.3 simulAtion

Simulation is the process of subjecting the model for a given thermal system to various inputs, 
such as operating conditions, to determine how it behaves and thus predict the characteristics of 
the actual physical system. Though simulation may be carried out with physical scale models and 
prototypes, the expense and effort involved generally make it impossible to use these for design 
because many different designs and operating conditions need to be considered and evaluated. 
Prototype testing is largely used before going into production, after the system design has been 
completed. Therefore, simulation with mathematical models is particularly valuable in the design 
process because it provides information on the behavior of the given system under a range of condi-
tions without actually constructing a prototype.
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The mathematical models derived for thermal systems are generally implemented on digital 
computers because of the complex nature of the governing equations, complicated boundary condi-
tions, and complicated geometrical configurations that are usually encountered. The presence of 
several coupled submodels, representing different components of the system, and the incorporation 
of material properties, experimental data, and other empirical information further complicate the 
model. The resulting numerical model is then subjected to different values of the design variables, 
over the ranges determined by the constraints. Both the hardware and the operating conditions are 
varied to study the system characteristics. This process is known as numerical simulation and is an 
important step in the design and optimization process. Only a brief outline of numerical simulation 

FIGURE 2.18 The main subsystems that combine to make up a power plant.

FIGURE 2.17 The physical system corresponding to the thermodynamic cycle shown in Figure 2.15(a). 
(Adapted from Howell and Buckius, 1992.)
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is given here, with a detailed discussion of the various procedures, types, and considerations, along 
with examples, given in Chapter 4.

An important question that must be answered in any numerical simulation is how closely 
or accurately it represents the actual, real-world, system. This involves ascertaining the valid-
ity of the various approximations made during modeling, as well as estimating the accuracy 
of the numerical algorithm (Roache, 2009). Certainly, if experimental data from a prototype 
are available, a comparison between these and the results from the simulation could be used to 
determine the validity and accuracy of the latter. However, such experimental data are rarely 
available, at least not during the design process. Consequently, the first step is to consider the 
simulation results in terms of the physical nature of the system and to ascertain that the observed 
trends agree with the expected behavior of the real system. Numerical parameters chosen by the 
designer or engineer, such as grid size, time step, computational domain, and so on, are then var-
ied to ensure that the results are independent of these. Sometimes, simpler or similar systems for 
which experimental results are available may be simulated to validate the model. For instance, 
if a new system for plastic injection molding is being developed, the simulation scheme may be 
applied to an earlier version for which experimental data are available. Comparisons between 
the simulation results and experimental data could then be used to estimate the accuracy of the 
simulation. Therefore, considerable effort is directed at obtaining an accurate one-to-one corre-
spondence between the model and the actual system.

After the final design is approved and a prototype is fabricated, more detailed results are obtained 
for the validation and improvement of the model and the simulation. In fact, results obtained over 
the years from systems on the market are also used to modify and improve the models and the simu-
lation for the design and optimization of these systems in the future.

Simulation is mainly used to determine the behavior of the thermal system so that the design can 
be evaluated for satisfactory performance. It also provides inputs for optimization. Though there are 
many strategies that can be used for simulating thermal systems, as discussed in Chapter 4, a com-
mon approach is to fix the hardware and vary the operating conditions over the desired ranges. The 
hardware is then changed to consider a different design and the process repeated. The simulation 
of the system is carried out with different design variables until an acceptable design or a range of 
acceptable designs is obtained.

Simulation of practical thermal systems is often quite involved and can take a considerable 
amount of effort and time. To reduce the computational burden, approximate models, known as 
surrogate or response surface models, are often employed to represent the behavior of the system 
without extensive computational runs. The model is based on the responses at selected points and is 
used to represent the system over the given domain of design parameters and operating conditions. 
More is said on response surfaces later in the book.

2.3.3.1 An Example
Suppose a simple counterflow heat exchanger, as shown in Figure 2.19(a), is to be designed. The 
design variables are the two outer diameters D1 and D2 of the inner and outer tubes, respectively; 
the two wall thicknesses t1 and t2; and the length L of the heat exchanger. The operating conditions 
are the inlet temperatures T1,i, T2,i and the mass flow rates  and1 2m m  of the two corresponding fluid 
streams. Let us assume that a mathematical and numerical model has been developed for this sys-
tem, allowing the calculation of the heat transfer rates and temperature distributions in the two fluid 
streams, as sketched in Figure 2.19(b). Let us take the heat transfer rate Q and the outlet temperature 
T2,o of the outer fluid stream as the outputs from the model and the remaining variables as inputs. 
Then these quantities may be given in terms of the design variables and the operating conditions, 
for given fluids, as

 ( )=Q F D D L t t m m T Ti i, , , , , , , ,1 2 1 2 1 2 1, 2, 
 (2.8)
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 ( )=T G D D L t t m m T To i i, , , , , , , ,2, 1 2 1 2 1 2 1, 2, 
 (2.9)

Simple analytical expressions may be derived if the overall heat transfer coefficient is taken as 
a known constant (Incropera and Dewitt, 2001). The diameters and the length may be chosen so 
that the constraints due to size or space limitations are not violated. Tube diameter and thickness 
choices may be restricted to those available from the manufacturer to reduce costs. The length L 
and diameter D1 may initially be held constant while different values of D2 are considered. Then 
L and D2 may be kept fixed, while D1 is varied, and so on. Each combination of these three design 
variables represents a different system design that is subjected to different flow rates and tempera-
tures, which represent the operating conditions, to study the behavior of the system in terms of outlet 
temperatures and overall rate of heat transfer. Thus, the model is used to consider many different 
designs and operating conditions in order to obtain the inputs for evaluating the design as well as 
for optimizing the system. Different design possibilities can be considered easily once the model 
and simulation scheme have been developed. Numerical simulation is, therefore, the appropriate 
approach even for such a simple system. Additional considerations arise in practical heat exchang-
ers, such as different tube materials, ambient heat loss, insulation, and so on, making numerical 
simulation an important element in the design process. Further consideration of heat exchangers is 
given in Chapter 5.

The operating conditions for a particular system design are usually varied over fairly wide 
ranges. Certainly, the ranges expected in practice are taken into account during the simulation. But 
it is okay to get carried away and consider values far beyond the expected domain because these 
results will indicate the versatility of the system and how it would perform if the operating condi-
tions exceeded the ranges for which the system is designed. Conditions beyond those employed for 
the design are often known as off-design conditions and simulation at these conditions provides 

FIGURE 2.19 (a) A counterflow heat exchanger, and (b) typical temperature distributions in the two fluid 
streams.
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valuable information on the operation of the system and on the model, particularly on its range of 
applicability. This also relates to the safety of the system because operating temperature, pressure, 
speed, and so on may exceed the design conditions due to a malfunction in the system or operator 
error. Simulation would indicate if the system would be damaged under these conditions and how 
its performance would be affected. In the foregoing heat exchanger example, simulation would yield 
the heat transfer rate and the outlet temperatures of the two fluids for different designs, given by 
the tube diameters D1 and D2 and the length L, and for different operating conditions, including off-
design conditions, given by the flow rates m m,1 2  , and the inlet temperatures T1,i and T2,i.

2.3.4 evAluAtion: AcceptAble Design

The next step in the design process is the evaluation of the various designs generated for deter-
mining if any of them are acceptable for the given design problem. As discussed earlier, an 
acceptable design is one that satisfies the given requirements for the system without violating 
the constraints. Therefore, the results from the simulation of the system are considered in terms 
of the problem statement to determine if a particular design is acceptable. Safety, environmen-
tal, regulatory, and financial constraints are also considered at this stage. If the design is not 
satisfactory because it violates the constraints or does not meet the requirements, a different 
design is chosen, simulated, and evaluated. This process is continued until an acceptable design 
is obtained. If none of the designs chosen over the given ranges of the design variables is found 
to be satisfactory, we may terminate the process or go back to the conceptual design stage and 
seek other alternatives.

If the design under consideration is found to meet all the requirements and constraints, an 
acceptable or workable design is obtained and the design specifications are noted. If we are only 
interested in obtaining a workable design, the design process may be terminated at this stage. 
However, in almost all practical cases, there are many possible solutions to the given design 
problem and the acceptable design obtained is, by no means, unique. Therefore, it is more useful 
to seek additional satisfactory designs by continuing the simulation with different values of the 
design variables. This effort would generally lead to a domain of acceptable or workable designs. 
From this domain, the best design may be chosen based on a given criterion such as minimum 
cost or highest efficiency.

Evaluating the design in terms of the results from the simulation and the given design problem 
statement is an important step in the design process because it involves the decision to continue or 
stop the process. Though several different possibilities exist, the following are some of the common 
ones:

1. Acceptable design obtained. Terminate iteration, communicate design.
2. Acceptable design obtained. Continue iteration to cover the given ranges of the design 

variables.
3. Acceptable design not obtained. Continue iteration with different design variables.
4. Acceptable design not obtained over ranges of design variables. Terminate iteration.

The first and the third conditions are the ones shown in Figure 2.13. The second one yields a 
region of acceptable designs from which an optimal design may be developed, as mentioned previ-
ously. The last condition indicates that a satisfactory design is not obtained over the given ranges 
of the design variables for the chosen concept. If additional conceptual designs are available, the 
design process may be reapplied to a different conceptual design; otherwise a solution to the given 
design problem is not obtained. All these possibilities, along with some others, do arise in actual 
practice because there are cases where an acceptable design is not achieved with the given require-
ments and constraints. In such cases, some of the requirements may be relaxed in order to obtain 
an acceptable design.
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Considering again the simple counterflow heat exchanger discussed in the preceding section, the 
requirements and constraints may be written as

Requirements Q Q Q T T To o o: 2,= ± ∆ = ± ∆  (2.10)

Constraints D D D t D D L Lmin max max: ( ) 2 ( )1 1 2 2 2 2< < − < <  (2.11)

Operating Conditions m T i: 1 1,  (2.12)

: ( ) ,2 2 2 2, 2, 2,   ( )= ± ∆ = ± ∆Fixed Quantities m m m T T To i i o i  (2.13)

where the subscript o refers to specified values and min and max refer to the minimum and maxi-
mum allowable values, respectively. The minimum and maximum values are based on space limita-
tions, manufacturing, cost, and other considerations. Specified tolerance levels or variations in the 
values are also given. Obviously, different requirements and constraints may be given for different 
applications. Here, fluid stream 2 is taken as fixed, whereas fluid stream 1 is varied. Clearly, the tube 
material is another important consideration that may be included in the problem. Thus, the simula-
tion of the system may be carried out for different designs and for different operating parameters, 
with the preceding equations as the requirements and constraints. All the quantities are varied over 
the permissible ranges.

If numerical simulation is carried out with different designs, obtained by varying the design 
variables over the given ranges, and if all acceptable designs are collected, a region over which the 
design is satisfactory is obtained. This region may be represented mathematically in terms of the 
design variables as

 F x x x xb n( , , , , ) 01 2 3 … =  (2.14)

where the function Fb indicates the boundary of the region and x1, x2, …, xn are the design vari-
ables. The boundary may also be shown graphically in terms of two variables taken at a time. For 
instance, the ranges of the design variables D2 and length L for the heat exchanger problem outlined 
previously, along with the domain of acceptable designs, may be sketched as shown in Figure 2.20 
for a particular value of D1. Similar regions may be shown for other values of D1, as well as for D1 
and L as the two variables, with D2 as given. Such graphical representations are obviously difficult 
to obtain or use for a large number of design variables. However, this could be done easily on the 
computer. The main idea here is that a number of acceptable designs may be obtained on the basis 

FIGURE 2.20 Domain of acceptable designs, along with the given constraints, for a heat exchanger.
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of simulation. The selection for the best or optimal design may then be carried out from this region 
of acceptable designs.

2.3.5 optimAl Design

It is rare that the design process would be terminated as soon as an acceptable design is obtained. 
Only when the cost or effort involved in optimization is deemed too high would the design activ-
ity stop after an acceptable design is obtained. With growing competition in the world today, it has 
become necessary to reduce costs while improving product quality. Therefore, working with the 
first acceptable design obtained is no longer adequate. At the very least, several possible designs 
must be considered and the best chosen from among these, as measured in terms of an appropri-
ate quantity such as cost, efficiency, or product characteristics. Optimization refers to a systematic 
approach to minimize or maximize a chosen quantity or function. The optimization process is 
obviously applied to acceptable designs so that the given requirements and constraints are satisfied. 
Then the design finally obtained is an optimal one, not just an acceptable one. Much of the latter 
portion of this book is devoted to optimization of thermal systems and only a brief introduction to 
the subject is given here to indicate its importance and position in the design process.

Optimization is of particular importance in thermal systems because of the strong dependence of 
cost and output on system design. Usually, the optimal design is not easily determined from avail-
able simulation or acceptable design results. A fairly elaborate effort has to be exerted in most cases 
to obtain the optimal design. Because simulation is generally an involved and time-consuming pro-
cess for most practical thermal systems, special techniques that reduce the number of designs to be 
simulated are of particular interest. Frequently, there are large differences between the performance 
of optimized and nonoptimized systems in terms of energy consumption, product quality, overall 
thermal efficiency, and total costs, making it imperative to seek an optimal design.

Optimization of a thermal system can be carried out in terms of the design hardware or the 
operating conditions. The latter approach is particularly valuable because it allows one to operate 
a given thermal system under optimum conditions, thus minimizing costs and maximizing effi-
ciency and product quality. No changes in the design hardware are needed; only the conditions 
such as temperature, pressure, flow rate, and speed at which the system is operated are adjusted to 
deliver optimum performance. The design specifications for many thermal systems thus include the 
information on optimal operating conditions. For instance, the best setting for the temperature in a 
refrigerator and the optimal speed for an engine may be given. Similarly, the design hardware for a 
given thermal system may be optimized in order to obtain the best performance for a desired set of 
operating conditions.

Generally, optimization follows the iterative design stage that yields the acceptable designs for 
a given application, as shown schematically in Figure 2.14. An appropriate quantity or function, 
known as the objective function and denoted by U(x1, x2, x3, …, xn) in terms of the design variables, 
is chosen for minimization or maximization, that is,

 U x x x xn( , , , , ) Minimum/Maximum1 2 3 … →  (2.15)

The constraints arising from conservation principles and from physical limitations in the prob-
lem, such as those pertaining to size, weight, strength, temperature, energy input, and so on, may be 
equalities or inequalities, given respectively as

 G x x x xi n( , , , , ) 01 2 3 … =  (2.16)

and

 H x x x Cj n j( , , x , , )1 2 3 … ≤  (2.17)
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Here Gi represents the equality constraints, with i = 1, 2, 3, …, m, where m is the number of equality 
constraints. Cj is a given quantity corresponding to the constraint Hj and j = 1, 2, 3, …, l, where l is 
the number of inequality constraints.

Depending on the nature of the problem, particularly on the form in which the simulation results 
are available, various optimization methods may be applied to find the extremum of the chosen 
objective function. A sensitivity analysis may then be undertaken to determine how this function 
varies with the design variables and the operating conditions in order to choose the most appropri-
ate, convenient, and cost-effective values at or near the extremum that would optimize the system 
or its operation. In addition, practical considerations related to safety, economic, and environmental 
issues have to be taken care of, resulting in trade-offs, before the final design is decided. The result-
ing objective function may also be compared with the values for the various acceptable designs 
encountered during the optimization process in order to estimate the improvements obtained as a 
result of optimization.

In many practical thermal systems, it is often difficult to work with a single-objective function. 
There may be several criteria or design objectives, making the optimization process more com-
plicated than the approach outlined previously for a single-objective function. For instance, in the 
cooling of electronic equipment, the overall heat transfer rate is to be maximized. But the pressure 
head needed for the flow is also an important consideration because it affects the cost and opera-
tion of the system, and this quantity is to be minimized. The two objectives, heat removal rate and 
pressure head, oppose each other because an improvement in one objective leads to a deterioration 
in the other. The optimal solutions obtained by separate optimization of the two objective functions 
do not yield optimal solutions to the multi-objective problem. In a few cases, the different objective 
functions may be combined to yield a single-objective function, which tries to capture the indi-
vidual behavior of the objective functions. Then a single-objective function optimization problem is 
solved. However, there is inherent arbitrariness in combining different objectives and a true optimal 
design may not be obtained. Thus, a multi-objective design optimization problem has to be solved 
in many cases of practical interest. The solution is obtained in a manner similar to single-objective 
function optimization and a trade-off between different objectives is employed, as discussed in later 
chapters.

2.3.5.1 Examples
Let us consider a few simple systems to illustrate these ideas. In the case of the heat exchanger dis-
cussed in the preceding sections, it is clear that there would generally be a large number of accept-
able designs that would satisfy the requirements and constraints such as those given by Equation 
(2.10) through Equation (2.13), yielding the domain sketched in Figure 2.20. Let us assume that the 
cost of the equipment is to be minimized. If the material of the tubes were kept fixed, this would 
require minimizing the total material used. Manufacturing costs may also be included, often taken 
as an overhead on material cost. An expression for the total volume V of the material may be written 
in terms of the design variables as

 = π + πV D Lt D Lt1 1 2 2 (2.18)

These quantities are to be varied in the domain of acceptable designs in order to minimize 
the objective function V. The market availability of different tube sizes may also be included in 
this process to employ dimensions that are easily obtainable without significantly affecting the 
optimum, as confirmed by sensitivity studies. Once this optimal design is obtained, the operat-
ing conditions m1  and T1,i may also be varied to determine if the costs could be further mini-
mized by reducing the flow rate and the inlet temperature of fluid stream 1, while the other fluid 
stream is fixed in the problem. Thus, the overall costs may be minimized. Additional aspects 
such as pressure needed for the flow may be included for a more complete design of a practical 
heat exchanger.
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Similar considerations arise for other thermal systems. For instance, the desired heat removal 
rate Q in a refrigerator can be achieved by using a vapor compression system, as sketched in 
Figure 1.8. The corresponding thermodynamic cycle is shown in Figure 2.21. Because Q = mΔh, 
where Δh is the change in enthalpy h per unit mass of the refrigerant in the evaporator and m  is the 
mass flow rate of the refrigerant, the thermodynamic cycle is not unique, even if the fluid is kept 
fixed. Different temperatures and pressures for the condenser, evaporator, and compressor and dif-
ferent flow rates m  can be employed to obtain an acceptable design. However, if the coefficient of 
performance (COP), which gives the ratio of the heat removed to the required input work, is to be 
maximized, the desired optimal design is more clearly defined. In terms of the state points shown 
in Figure 2.21, the COP is given by

 = −
−

h h
h h

COP 1 4

2 1

 (2.19)

where the compression and throttling processes may not be at constant entropy, or isentropic. The 
domain of acceptable designs is thus narrowed down to obtain an optimized system. Though a 
unique solution is possible, generally one tends to narrow the region to a sufficiently small domain 
so that an appropriate optimal design may be chosen from it based on convenience and availability 
of parts needed for the system. Different temperature settings of the refrigerator and different heat 
loads may finally be considered to determine if optimum operating conditions exist at which, say, 
the total energy consumption is the least.

Because of the considerable improvement in most practical thermal systems through optimiza-
tion, in terms of cost, efficiency, power consumption, product quality, and so on, it is now accepted 
that the design process would generally include optimization of the system.

2.3.6 sAFety FeAtures, AutomAtion, AnD control

An important ingredient in the successful operation of a thermal system is the control scheme, 
which not only ensures safety for the system and the operator but also maintains the operating 
conditions within specified limits. Sensors that monitor the temperatures, pressures, flow rates, and 
other physical quantities in the system are employed to turn off the inflow of material and energy 
into the system if the safety of people working on it or that of the system is threatened. For instance, 
if the temperature Tc of the compressor in an air conditioning system rises beyond a given safe level 
Tmax, the system is turned off. Similarly, the gas flow into a furnace, power supplied to an electronic 
system, fuel input to an energy conversion system, and gasoline flow into an internal combustion 
engine may be reduced or cut off if overheating of the components occurs. In a car, sensors indicate 
overheating of the engine, as well as malfunction of other components, allowing the driver to turn it 

FIGURE 2.21 Thermodynamic cycle for a vapor compression cooling process, indicating the various com-
ponents of the thermal system.
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off or take other corrective measures. In many cases, safety features do not allow the system to be 
turned on if appropriate conditions are not met. For example, if the water level in a boiler is too low, 
a sensor-driven arrangement is used to avoid an accidental turning on of the heaters. Such safety 
features are employed in essentially all thermal systems and are incorporated into the final design 
of the system before fabrication of the prototype.

The automation and control of thermal systems is more involved than the simple inclusion of 
safety features in the system. It includes the following main aspects:

1. Sensors for providing the necessary inputs
2. Process interface for analog/digital conversion
3. Control strategies
4. Actuators
5. Safety features
6. Process programming

The input signals from the sensors (thermistors, thermocouples, flux meters, flow meters, pres-
sure transducers, etc.) are electronically processed and fed into the control system, which deter-
mines the action to be taken. An appropriate signal is then given to the actuators, which make the 
desired changes in the system, such as reducing the flow rate, increasing the heat input, and turning 
off the power. Figure 2.22 shows a schematic of a typical control arrangement for a thermal system.

Most thermal systems need appropriate control arrangements for satisfactory performance. For 
instance, in a plastic extrusion process, the barrel is to be maintained at a specified temperature 
level for a given application. Temperature sensors, such as resistors or thermocouples, are located in 
the barrel and their output is coupled with a scheme to control the heating/cooling arrangement, for 
example, energy input to the heaters, in order to maintain the temperature at the given value with 
an acceptable tolerance. Similarly, temperature control is used in cooling and heating systems to 
ensure that desired conditions are maintained. Several different sensors are available for tempera-
ture, velocity, flow rate, pressure, and other variables (Figliola and Beasley, 2014). Though an on/
off arrangement with inputs from a sensor is commonly used in practical thermal systems, other 
control strategies such as proportional, derivative, integral, and combinations of these control meth-
ods are also used. Microprocessors are used extensively to automate and control thermal systems. 
The inputs from the sensors, along with the desired values of the various operating parameters, 
are employed to maintain the appropriate levels and thus ensure automatic, safe, and satisfactory 
operation of the system. The subject of automation and control is a broad one, and it is not possible 
to discuss the extensive information available in the literature on different types of control systems; 
see, for instance, Palm (1986) and Raven (1994). An example on locating sensors for safety follows.

FIGURE 2.22 Schematic showing the use of sensors for control and safety.
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Example 2.4

For the condensation soldering facility shown in Figure 2.4(b), give the types of sensors and loca-
tions of these that you would employ for ensuring safety of the system and the operator, as well 
as for control of the process.

SOLUTION

Several aspects must be considered for safety and for control. Considering first the safety issues, 
the important items are:

1. The heater must not overheat. A temperature sensor must be used to measure the heater 
temperature and turn it off if the temperature exceeds safety limits specified by the 
manufacturer.

2. The liquid level in the sump must be adequate to provide the vapor and cover the heater. 
A sensor, such as an ultrasonic sensor, may be used to ensure that the liquid level is not 
below a specified value. If the level is too low, it should not be possible to turn on the 
heater.

3. The temperature in the condensation region may be monitored to ensure that the opera-
tor does not venture into the facility or open up a side port for cleaning or maintenance 
unless the temperature is low enough. The temperature indicates that the concentration 
of vapor is low and temperature levels are safe. Though nontoxic, the vapor is heavier 
than air and can be dangerous because of lack of oxygen.

Considering now the sensors for control, the main items to be addressed are:

1. The vapor temperature must be high enough for reflow soldering to occur, say 183°C for 
the typical solder alloy. A temperature sensor in the condensing vapor region monitors 
this. When the temperature reaches the appropriate levels, a signal, such as a green light, 
may be given to indicate that the facility is ready.

2. The outlet temperature of the cooling water circulating through the condensing coils 
must not be too high because this would reduce the condensing effect. Generally, only 
a few degrees’ temperature rise in the water is acceptable. Again, a temperature sensor 
at the outlet of water flow may be used. If the temperature is higher than the specified 
value, the heater input may be reduced or the water flow rate increased. A flow meter 
may be used to measure the water flow rate.

3. A temperature or concentration sensor above the condensation interface may be used 
to determine if an excessive amount of vapor is escaping from the facility. If the loss is 
judged to be excessive, the heater input may be reduced or the water flow rate increased. 
In some cases, the water temperature may also be reduced by chilling.

Clearly, the answer to this problem is not unique and several other arrangements for obtaining the 
required information can be devised. Temperature sensors are among the cheapest and the easiest 
to use, making them very attractive for thermal system control. Ultrasonic and optical sensors are 
useful in determining presence of fluids. Flow meters, such as rotameters and anemometers, are 
used for measuring flow. Figure 2.23 gives a sketch showing the locations of these sensors. The 
control system is based on the outputs obtained from these sensors and adjusts mainly the water 
flow rate and the heater input to control the process.

2.3.7 communicAting the Design

The communication of the final design to the client or customer and to those who will implement 
the design is an important ingredient in the overall success of the project. It is necessary to bring out 
the salient features of the design, particularly how it meets the requirements of the application and 
constraints imposed on the design. The basic approach adopted in the development of the design, 
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including information on modeling and simulation, must also be presented in order to stress the 
accuracy and validity of the results obtained. The impact and significance of the design with respect 
to the need or opportunity that initiated the effort (e.g., through a request for proposals [RFP] or 
other communication from a client) as well as to the relevant industry must be communicated.

Though it has always been important, communication has become particularly crucial these 
days, because team effort is quite common. Different individuals, often with different backgrounds 
and expertise, study different aspects of the overall problem. Different parts of the system may be 
designed separately and brought together during the course of the design process. An example of 
this approach is the design and assembly of a rocket launching system. Different groups are tasked 
with the design of different subsystems, such as the shields, solid propellant combustors, thrusters, 
landing modules, and electronic systems. All these designs and parts are brought together for the 
final design and assembly. The success of the entire project is strongly dependent on the interaction 
and communication among different groups. Therefore, good communication between the various 
people working on the project is very important. A project leader or head of the design group may 
be responsible for bringing everything together and for presenting the results to the management. 
Because the final decision regarding the undertaking usually rests with managers, who must take 
financial, personnel, and other company-related aspects into consideration, it is crucial that the 
design be presented in proper terms and at the appropriate level.

There are several ways to communicate the details of the final design, the chosen approach being 
dependent on the target audience. Detailed engineering drawings, along with a list of parts and mate-
rials selected, are needed for fabrication of the designed thermal system. Computer programs and 
numerical simulation results may be more appropriate for prototype testing. Working models and 
results on important outputs from the system under different operating conditions, often shown as 
charts and graphs, are useful for presentation to the customer. An outline of the final report may be 
sent to different levels of management to make them aware of what has been achieved. The commu-
nication between the design group and other units generally continues throughout the duration of the 
effort to ensure that all the important elements in the design are considered. Also, at various stages, 
changes in direction or inclusion of additional aspects may involve different groups. The communica-
tion at the end of the design process is simply the culmination of all these efforts and interactions.

Some of the important modes of communication are as follows:

1. Technical reports. These may be short memoranda or reports to communicate status or 
new findings to specific, interested groups. Formal detailed reports are written at the end 
of the project to communicate the methodology and results to diverse groups.

FIGURE 2.23 Locations of different sensors for safety and control in Example 2.4.
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2. Oral presentations. These may be held to give general or technical details on the design. 
Again, the presentation depends on the audience.

3. Graphics and visual aids. These would help in explaining the main ideas and the results 
in a presentation.

4. Engineering drawings. These give the detailed information on the components and sub-
systems of the thermal system. Materials used and important fabrication details are also 
given.

5. Design specifications. The specifications of the thermal system are given in order to indi-
cate what might be expected of the system in terms of performance and characteristics.

6. Computer programs and simulation results. These are for interested technical personnel 
who may want to evaluate the effort, as well as for future design and optimization efforts.

7. Working models. Physical working models and results obtained from these are of interest 
to the customer as well as to technical personnel involved with the development of the 
system. Results from a prototype may also be included, if available.

In conclusion, a few methods that are employed to keep the appropriate people and groups 
informed of the progress are outlined here. Figure 2.24 shows a scheme for communication at vari-
ous levels and between groups. Additional methods are available for other purposes (Dieter, 2000). 
Patents and copyrights communicate the important ideas to the world at large, as well as protect 
the invention, discovery, or creation, as discussed in the next section. When the design is final-
ized, the results are communicated to various groups in order to implement the design. The design 
then proceeds to the fabrication stage. A prototype may be developed and tested before going into 
production. Finally, sales and marketing personnel take over and the system goes into its intended 
application in the outside world.

2.3.8 pAtents AnD copyrights

As has been mentioned earlier, the design process involves creativity, leading to new concepts, 
methods, and devices. Because considerable effort is generally used in coming up with new ideas, 
products, and techniques, it is important to protect the investment made in such efforts and the 
resulting inventions. The ideas and intellectual work done in developing the relevant technology 
are collectively known as intellectual property. Patents and copyrights are the means used for the 
protection of intellectual property of a company or an individual.

FIGURE 2.24 A possible scheme for different levels of communication at the conclusion of the design 
process.
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Patents are awarded to and issued in the name(s) of the inventor(s). However, if the work has been 
done as part of employment, the rights of the patent generally rest with the company that employed 
the inventor(s). A patent gives the right to the patentee to prevent other companies or individuals 
from using, fabricating, or marketing the patented invention. However, the patent represents a prop-
erty and can, therefore, be leased or sold by the owner. A patent protects the invention for a speci-
fied period, being 17 years for patents issued by the U.S. government. Patents cover a wide variety 
of inventions in the following categories: processes, machines, manufactured items, materials, and 
human-made microorganisms. Computer programs are generally not patented, though these are 
copyrighted, as mentioned below, and applications based on computer usage may be patented. The 
leadership role played by a company in the world is often judged by the number of patents issued 
annually to the company. Bell Telephone Laboratories had this distinction in the United States for 
many years. The increase in the number of patents issued to Japan, China, and other countries is 
often mentioned as a measure of technological innovation by industry around the world.

To obtain a patent, it must be established that the invention is new, feasible, useful, and not 
something commonly used in the relevant area. Thus, natural laws, mathematical equations, com-
monly used procedures, and fundamental concepts cannot be patented. A thorough search is first 
carried out to determine if the idea is new. If it has been published in the literature more than a 
year before applying for a patent, it is not treated as new. Judgment has to be made by the Patent 
Office whether sufficient details have been provided in an earlier public disclosure to merit rejec-
tion of the application. An invention made abroad may be patented in the United States for use and 
development, if it is not used or known here. To prove the authenticity of an invention, good records 
are essential because the patent is given to the person who can prove that he or she was the first to 
conceive or develop it. A bound laboratory notebook is satisfactory proof for the date of the inven-
tion if a person capable of understanding the concept witnesses the entry. Similarly, reports and 
other documents may be used to establish the date of the invention. The feasibility and usefulness 
of the invention must be demonstrated, preferably through a working model. Many inventions that 
violate basic laws, such as the first and second laws of thermodynamics, have been proposed in the 
past and turned down.

Patents form a very useful source of information. An annual index of patents is published each 
year and details on the invention can be obtained from the description given for the patent. A pat-
ent is a legal document and contains enough information to allow one to use the invention if the 
patent is licensed and after it expires. Each patent is assigned a number and the inventors are listed 
at the very top of the patent. The title, particulars about filing, search for patentability, and relevant 
references are then listed. An abstract communicates the main idea of the invention, followed by 
a sketch in many cases and details on the invention. Figure 2.25 shows these features on the first 
page of a typical patent concerning a manufacturing process. The objectives of the invention, the 
field in which the invention lies, and the background material are also included in the patent. The 
claims of the invention are the description of its legal rights, ranging from very broad and general 
claims, which may often be disallowed, to very specific claims. By broadening the claims, the pat-
ent seeks to cover a wide range of applications that may not even have occurred to the inventor(s). 
For instance, if a process is developed for heating materials for bonding purposes, the patent may 
take the broad claim of heating articles rather than for bonding purposes alone. Detailed discussion 
of the theoretical basis of the invention is generally avoided, again to avoid restrictions on the pat-
ent. Infringement of a patent usually leads to extensive litigation, depending on the financial effects 
of the infringement.

Copyrights are used for a variety of items that represent creative expressions in the arts and 
sciences. These include books, computer software, music, audio and video recordings, drawings, 
paintings, and so on. The term of the copyright is 50 years beyond the life of the writer or com-
poser. For a company, it is 75 years from the publication of the material. However, copyrights do 
not cover ideas, only the expression of the idea. In recent years, copyrights have become impor-
tant because of the substantial investments made in computer software development, in books, 
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and in other creative activities in different fields. Strong legal action is often taken if infringement 
of copyright occurs.

Trademarks are symbols, names, words, patterns, etc., used by a company to indicate its prod-
ucts, and they may be used and protected indefinitely. Trademarks tend to be simple and easy 
to remember so that their appearance in a magazine, newspaper, or television will immediately 
reveal the association with a given company or product. A trademark is a company property and 
the symbol ® is used to indicate that it has been registered. Apple, Nike, Ford, GM, and Microsoft 
have well-known trademarks, as do most other prominent companies. Formulas, procedures, and 

FIGURE 2.25 The first page of a typical U.S. patent showing the main features and items included in the 
description of the invention.



74 Design and Optimization of Thermal Systems

information that a company wants to maintain as secret are not patented, but kept as trade secrets. 
The formula for Coca-Cola is a well-known example of a trade secret that is kept locked in a safe in 
Atlanta. There is no legal protection and the company is responsible for keeping it a secret.

Licensing of a patented invention may be undertaken by a company or an individual by giving 
exclusive rights to another company to manufacture, use, and sell the item over a specified region. 
Several companies may be licensed or a single company may be chosen. Royalties are paid, usually as 
a percentage of the profit, to the holders of the patent. A fixed sum of money may also be paid. Thus, 
patents can become a source of revenue, being quite substantial in many cases. Computer software has 
become very important in the last two decades, with many companies such as Microsoft Corporation 
engaged in developing, selling, and leasing software. Appropriate pricing and sale of the software 
recover the expenses borne by the company in the development of the software. General-purpose, as 
well as application-specific, computer programs for simulating engineering systems are extensively 
available and are in common use, despite large leasing and purchasing costs. For further details on 
patents and copyrights, books such as those by Pressman (1979) and Burge (1999) may be consulted.

The following simple example illustrates the main steps in the design of a thermal system.

Example 2.5

A small steel piece is hardened by heating it to a temperature To, which is beyond its recrys-
tallization temperature, and then quenching it in a liquid for rapid cooling. A microstruc-
ture known as martensite is formed, imparting hardness to the material. The heated piece is 
immersed in a liquid contained in a large tank. The rate of temperature decrease |∂T/∂τ| must 
be greater than a specified value B for a given duration Δτ immediately after quenching to 
obtain satisfactory hardening. Discuss the various steps in the design of the appropriate sys-
tem to achieve this process.

SOLUTION

The physical system includes the metal piece being heat-treated, the liquid, and the tank, as 
shown in Figure 2.26. The given quantities are the temperature To and the properties of the metal 
piece. Several approximations can be made to simplify the analysis. Because the volume of the 
liquid is given as large, compared to the piece being hardened, the liquid may be treated as an 
isothermal, extensive medium at temperature Ta. This implies that the change in the liquid tem-
perature due to heat transfer from the metal piece is negligible. Then, the tank does not play any 
part in the energy balance. Furthermore, the piece is small and is made of steel, which is a good 
conductor of thermal energy. Therefore, the temperature variation in the piece may be neglected 

FIGURE 2.26 Thermal system for quenching of a heated steel piece for hardening.
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and its temperature T is taken as uniform and as a function of time τ only, i.e., T(τ). This is the 
lumped mass approximation, which is discussed in greater detail in Chapter 3. Because T depends 
only on τ, full differentials dT/dτ may be used, instead of partial ones.

An energy balance for the steel piece gives the equation for the temperature T(τ), which 
decreases with time due to convective cooling, as

 ( )ρ
τ

= − −CV
dT
d

hA T Ta

where ρ is the density of the material of the steel piece, C is its specific heat, V is the volume of 
the steel piece, A is its surface area, and h is the convective heat transfer coefficient at the sur-
face of the piece. The natural convection flow generated in the fluid by the heat transfer process 
has to be determined to obtain the heat transfer coefficient h. However, this is an involved pro-
cess and an average value of the heat transfer coefficient h may be obtained from heat transfer 
correlations available in the literature. Even though h depends on the temperature difference 
T − Ta and thus on time, it is assumed that it is a constant in order to simplify the problem. The 
initial condition for the above equation is T = To at τ = 0. Thus, the mathematical model for the 
system is obtained.

Let us now consider the simulation of the system. The solution to the preceding equation is
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Therefore, at τ = 0, T = To and as τ →∞, T → Ta, i.e., the metal piece finally cools down to the fluid 
temperature. The rate of temperature decrease dT/dτ is given by
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because the magnitude of the temperature decrease rate must exceed B for a duration of Δτ. 
Obviously, this rate is greater than B for time less than Δτ, being highest at τ = 0. Therefore, the 
design variables may be chosen to satisfy this requirement. Because the metal piece is given, 
along with temperature To, all the quantities in the above solution are fixed except Ta and h. 
Therefore, these may be varied to obtain the desired rate of cooling over the given duration Δt.

The average heat transfer coefficient h is a function of the fluid, the geometry and dimensions 
of the piece, and the temperature difference To – Ta. Correlations for the heat transfer coefficient 
for natural and forced convection under various conditions and for different geometries are avail-
able in the literature (Incropera and Dewitt, 2001). The use of these correlations brings in the 
dependence of the cooling rate on the physical variables in the problem. The fluid is the most 
important parameter and may be chosen for high thermal conductivity, which yields a high heat 
transfer coefficient, low cost, easy availability, nontoxic behavior, and high boiling point, if boil-
ing is to be avoided in the liquid. If boiling is allowed, the latent heat of vaporization becomes 
an important variable to obtain a high heat transfer coefficient. Oils with high boiling points are 
generally used for quenching. The temperature Ta is another variable that can be effectively used 
to control the cooling rate. A combination of a chiller and a hot fluid bath may be used to vary 
Ta over a wide range. Clearly, many solutions are possible and a unique design is not obtained. 
Different fluids that are easily available may be tried first to see if the requirement on the cooling 
rate is satisfied. If not, a variation in Ta may be considered. Optimization of the system may then 
be based on cost.
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2.4 COMPUTER-AIDED DESIGN

An area that has generated a considerable amount of interest over the last three decades as a solution 
to many problems being faced by industry and as a precursor to the future trends in engineering 
design is that of computer-aided design (CAD). With the tremendous growth in the use and avail-
ability of digital computers, resulting from advancements in both the hardware and the software, 
the computer has become an important part of design practice. Much of engineering design today 
involves the use of computers, as discussed in the preceding sections and as presented in detail in 
later chapters. However, the term computer-aided design, as used in common practice, largely refers 
to an independent or stand-alone system, such as a computer workstation, and interactive usage 
of the computer to consider various design options and obtain an acceptable or optimal design, 
employing the software for modeling and analysis available on the system. Still, the basic ideas 
involved in a CAD system are general and may be extended to more involved design processes and 
to larger computer systems.

2.4.1 mAin FeAtures

As mentioned above, a CAD system involves several items that facilitate the iterative design pro-
cess. Some of the important ones are:

1. Interactive application of the computer
2. Graphical display of results
3. Graphic input of geometry and variables
4. Available software for analysis and simulation
5. Available database for considering different options
6. Knowledge base from current engineering practice
7. Storage of information from earlier designs
8. Help in decision making

Thus, the system hardware consists of a central processing unit (CPU) for numerical analysis, 
hard disk for storage of data and design information, an interactive graphics terminal, and a plotter/
printer for hard copy of the numerical results.

The computer software codes for analysis are often based on finite-element methods (FEMs) 
for differential equations because this provides the flexibility and versatility needed for design 
(Zienkiewicz, 1977; Reddy, 2009). Different configurations and boundary conditions can be eas-
ily considered by FEM codes without much change in the numerical procedure. Other methods, 
particularly the finite-volume and the finite-difference method (FDM), are also used extensively for 
thermal systems (Patankar, 1980). The software may also contain additional codes on curve fitting, 
interpolation, optimization, and solution of algebraic systems. Some of the important numerical 
schemes are discussed in Chapter 4. Analytical approaches may also be included. Commercially 
available computer software, such as Maple, Mathematica, Mathcad, COMSOL Multiphysics, and 
Matlab, may be used to obtain analytical as well as numerical solutions to various problems such 
as integration, differentiation, matrix inversion, root solving, curve fitting, and solving systems of 
algebraic and differential equations. The use of Matlab for these problems is discussed in detail in 
Appendix A.

The interactive use of the computer is extremely important for design because it allows the user 
or designer to try many different design possibilities by entering the inputs numerically or graphi-
cally, and to obtain the simulation results in graphical form that can be easily interpreted. Iterative 
procedures for design and optimization can also be employed effectively with the interactive mode. 
A graphics terminal is usually employed to obtain three-dimensional, oblique, cross-sectional, or 
other convenient views of the components.
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The storage of data needed for design, such as material properties, heat transfer correlations, 
characteristics of devices, design problem statement, previous design information, accepted engi-
neering practice, regulations, and safety features can also substantially help in the design process. 
In this connection, knowledge-based design procedures, which employ the available experience on 
the system or process, may also be incorporated in the design scheme. Besides providing important 
relevant information for design, the rules of thumb and heuristic arguments used for design can 
be built into the system. Therefore, such systems are also often known as expert systems because 
expert knowledge from earlier design experience is part of the software, providing help in the deci-
sion-making process as well. Because knowledge acquired through engineering design practice 
is usually an important component in the development of a successful design, knowledge-based 
systems have been found to be useful additions to the CAD process. Chapter 11 presents details on 
knowledge-based systems for design, along with several examples demonstrating concepts that can 
substantially aid the design process.

2.4.2 computer-AiDeD Design oF thermAl systems

The main elements of a CAD system for the design of thermal processes and equipment are shown in 
Figure 2.27. The various features that are usually included in such CAD systems are indicated. The 
modeling aspect is often the most involved one when dealing with thermal systems. The remaining 
aspects are common to CAD systems for other engineering fields. Much of the effort in CAD has, 
over recent years, been largely devoted to the design of mechanical systems and components such as 
gears, springs, beams, vibrating devices, and structural parts, employing stress analysis, static and 
dynamic loading, deformation, and solid body modeling. Many CAD systems, such as AutoCAD 
and ProE, have been developed and are in extensive use for design and instruction.

Because of the complexity of thermal systems, it is not easy to develop similar CAD systems 
for thermal processes. However, the availability of numerical codes for many typical thermal com-
ponents and types of equipment has made it possible to develop CAD systems for relatively simple 
applications such as heat exchangers, air conditioners, heating systems, and refrigerators. Even 
for these systems, inputs from other sources, particularly on heat transfer coefficients, are often 
employed to simplify the simulation. For more elaborate thermal systems, interactive design gener-
ally is not possible because numerical simulation might involve considerable CPU time and memory 
requirements. Supercomputers are also needed for accurate simulations of many important ther-
mal systems, such as those in materials processing and aerospace applications. However, parallel 
machines that employ a large number of computational processors to accelerate numerical analysis 
are being used in powerful workstations that may be used for CAD of practical thermal processes. 
In addition, detailed simulation results from large machines such as supercomputers may be cast 

FIGURE 2.27 Various elements or modules that constitute a typical CAD system.
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in the form of algebraic equations by the use of curve fitting. If a given thermal system can be 
represented accurately by such algebraic systems, the design process becomes considerably simpli-
fied, making it possible to develop a CAD system for the purpose. Response surfaces may also be 
obtained from the simulation to study the response of important physical quantities to the variables 
in the problem. This facilitates the search for an optimum, as discussed in later chapters.

Example 2.6

Discuss the development of a CAD system for the forced-air baking oven shown in Figure 2.28. 
The electric heater is made of 5% carbon steel, the gas inside the oven is air, the wall is brick, the 
insulation is fiberglass, and the material undergoing heat treatment is aluminum. The geometry 
and dimensions of the oven are also given, or fixed, and only the heater and the fan are the design 
variables.

SOLUTION

This problem is taken as an example to illustrate the basic ideas involved in the CAD of thermal 
systems. The main components of this thermal system are:

1. Heater
2. Fan
3. Wall
4. Insulation
5. Air
6. Material to be baked or heated

The basic thermal cycle that the material must undergo is similar to the one shown in Figure 2.1. 
Thus, an envelope of acceptable temperature variation, giving the maximum and minimum tem-
peratures within which the material must be held for a specified time, provides the design require-
ments. The constraints are given by the temperature limitations for the various materials involved 
and any applicable restrictions on the airflow rate and heater input. The materials, dimensions, 
and geometry are given and are, thus, fixed for the design problem. Only the fan and the heater 
may be varied to obtain an acceptable design.

The first step is to develop a mathematical and numerical model for the physical system 
shown in Figure 2.28. The basic procedures for modeling are discussed in the next chapter and 

FIGURE 2.28 Forced-air oven for thermal processing of materials.
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a relatively simple model to obtain the temperatures in the various parts of the system is outlined 
here. The simplest model for this dynamic problem is one that assumes all components have 
uniform temperature within the component at a given time. Thus, the material, air, heater, wall, 
and insulation are all treated as lumped, with their temperatures as functions of time τ only. The 
governing equations for these components may then be written as

 ( )ρ
τ

= −CV
dT
d

A q qin out

where ρ is the density, C is the specific heat at constant pressure, V is the volume, A is the 
surface area, qin is the input heat flux, and qout is the heat flux lost at the surface. All the properties 
are taken as constant to simplify the analysis. Thus, a system of ordinary differential equations is 
obtained.

For the boundary conditions that link the energy equations for the various system parts, both 
convection and radiation are considered, assuming gray-diffuse transport with known surface 
properties. The properties for different materials are used when considering each component 
of the system. The conditions under which such a model is valid are discussed in detail in 
Chapter 3. Even though analytical solutions may be possible in a few special cases, all of these 
equations are coupled to each other through the boundary conditions and are best solved numeri-
cally to provide the desired flexibility and versatility in the solution procedure.

With the mathematical and numerical model defined, the fixed quantities in the problem may 
be entered. These include the geometry and the dimensions of the system. The size and weight of 
the item undergoing thermal processing are given. The relevant material properties must also be 
specified. Frequently a material database is built into the system for common materials, such as 
metals, ceramics, composite materials, and air, and may be used to obtain these properties. The 
requirements for the design, as well as the constraints (particularly the temperature limitations on 
the various materials), are also entered. All of these inputs are given interactively, so that the design 
variables and operating conditions can be varied and the resulting effects obtained from the CAD 
system. This allows the user to select the input parameters based on the computed outputs.

We are now ready for simulation and design of the given thermal system. The heater design 
involves its location, dimensions, and heat input. If the location is fixed at the top surface, as 
shown in Figure 2.28, and if the effect of dimensions is assumed to be small, which is reasonable, 
the heat input Q is the design variable that represents the heater. Similarly, the fan affects the flow 
rate m  and, thus, the heat transfer coefficients at the material surface, hm, at the heater hh, and 
at the oven walls, hw . We could solve for the flow and thermal field in the air and obtain these 
heat transfer coefficients from the numerical results. However, this is a more complicated problem 
than the one outlined here. Thus, the heat transfer coefficients may be taken from correlations 
available in the literature.

Simulation results are obtained by varying the heat input Q and the convective heat transfer 
coefficients, hm, hh, and hw, all these being dependent on the flow rate, geometry, and dimensions. 
Figure 2.29 and Figure 2.30 show typical numerical results obtained during the heating phase, 
indicating the temperatures in the heater, material, gas, and wall for different parametric values. 
The validity of the numerical model is confirmed by ensuring that the results are independent of 
numerical parameters such as the time step used, studying the physical behavior of the results 
obtained, and comparisons with analytical and experimental results for individual parts of the 
system and for the entire system, if available. In most cases, results for the system are not avail-
able until a prototype is developed and tested before going into production. However, a higher Q 
results in higher temperatures, with the heater responding the fastest and the walls the slowest. An 
increase in h increases the energy removed by air and lowers the temperature levels. This is the 
expected physical behavior.

The next step is to consider various combinations of Q and the flow rate m , which yields the 
convection coefficients, and to determine if the desired requirements are satisfied without violating 
the given constraints. The duration during which the heater or the fan is kept on can be varied. In 
addition, different variations of these with time can be considered to obtain the desired variation in 
the material temperature. Obviously, many different designs and operating conditions are possible. 
Again, interactive usage of the CAD system is extremely valuable in this search for an acceptable 
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FIGURE 2.29 Variation of the heater, material, gas, and inner wall temperatures with time for different 
values of the energy input Q to the heater at a fixed air flow rate m .

FIGURE 2.30 Results for different values of the convective heat transfer coefficient hw, which represents the 
air flow rate m , at a fixed Q.
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design. An acceptable design is obtained when all of the requirements and constraints are met, such 
as that indicated by Figure 2.31. A large number of cases are simulated even for a relatively simple 
problem like this one. The graphical displays help in determining if the design process is converging. 
The software can be used to monitor the temperatures and indicate if a violation of the constraints has 
occurred in any system part. In addition, the temperature of the piece being heated is checked against 
the envelope of acceptable variation to see if an acceptable design is obtained.

This example briefly outlines some of the main considerations in developing a CAD system for 
thermal processes. The model is at the very heart of a successful design process, and, therefore, it 
is important to develop a model that is a valid representation of the system, has the needed accu-
racy, and is appropriate for the given application. A knowledge-based design procedure could 
also be included during iterative design to accelerate convergence and to ensure that only realistic 
and practical systems emerge from the design (Jaluria and Lombardi, 1991). As mentioned previ-
ously, the fluid flow problem needs to be solved for a more accurate modeling of the convective 
heat transfer and for a proper representation of the fan as a design variable. However, the problem 
may then become much too complicated for a simple interactive CAD system and would prob-
ably involve detailed simulation on larger machines to obtain the inputs needed for design.

2.5 MATERIAL SELECTION

The choice of materials for the various parts of the system has become an important consideration 
in recent years because of the availability of a wide range of materials, because material cost is 
a substantial portion of the overall cost, and because the performance of the system can often be 
substantially improved by material substitution. Recent advancements in material science and engi-
neering have made it possible to produce essentially custom-made, engineered materials to satisfy 
specific needs and requirements. In the past, the choice of material was frequently restricted to 
available metals, alloys, and common nonmetals. Thus, it used to be a fairly routine procedure to 
select a material that would satisfy the requirements of a given application. However, material selec-
tion today is a fairly sophisticated and involved process. The properties of the material, as well as 
its processing into a finished component, must be considered in the selection. The substitution of the 
material currently being used by a new or different material is also commonly employed to reduce 
costs and improve performance. However, material substitution should be carried out in conjunction 
with design in order to derive the full benefits of the new material (Budinski and Budinski, 2009).

FIGURE 2.31 Results from iterative redesign to obtain an acceptable design, indicated by the solid line, that 
satisfies the given requirements and does not violate any constraints.
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2.5.1 DiFFerent mAteriAls

Many different types of materials are available for engineering applications. These may be classi-
fied in terms of the following broad categories:

1. Metals and alloys
2. Ceramics
3. Plastics and other polymers
4. Composite materials
5. Semiconductor materials
6. Liquids and gases
7. Other materials

Figure 2.32 shows a schematic of the different types of materials, along with some common 
materials employed in engineering practice. A brief discussion follows:

Metals and alloys have been employed extensively in engineering systems because of their 
strength, toughness, and high electrical and thermal conductivity. Availability, cost, and 
ease in processing to obtain a desired finished product, through processes such as forming, 
casting, heat treatment, welding, and machining, have contributed to the traditional popu-
larity of metals. A variety of metals have been employed in different applications to satisfy 
their special requirements. Thus, copper has been used for tubes and pipes because of its 
malleability, which allows easy bending, and for electrical connections because of its high 
electrical conductivity. Similarly, aluminum has been used for its low weight in airplanes 
and in other transportation systems. High thermal conductivity of both aluminum and cop-
per make them good materials for heating and cooling systems. Gold has been used in elec-
tronic circuitry because of its resistance to corrosion. Alloys substantially expand the range 
of applicability of metals due to significant changes achieved in the properties. Steel, in its 
different compositions, is probably the most versatile and widely used material in practical 
systems, from automobiles and trains to turbines and furnaces. Solder, which is an alloy 
of tin and lead, is widely employed in electronic circuitry to make electrical connections. 
Changes in its composition can be used to obtain different strengths and melting points. 
For instance, a eutectic mixture of 63% tin and 37% lead has a melting point of 183°C and 
a mixture of 10% tin and 90% lead melts over the temperature range of 275°C to 302°C. 
Additions of silver also affect the melting point and other properties, as discussed by Dally 
(1990). Similarly, other alloys such as brass, Inconel, nichrome, and titanium alloys are 
used in different applications.

Ceramics, which are generally formed by fusing powders, such as those of aluminum 
oxide (Al2O3), beryllium oxide (BeO), and silicon carbide (SiC), under high pressure 
and temperature, have many characteristics that have led to their increased usage in 
recent years. These include high temperature resistance, low electrical conductivity, low 
weight, hardness, corrosion resistance, and strength, though they are generally brittle. 
They have a relatively low thermal resistance, as compared to other electrical insulators. 
Consequently, ceramics are extensively employed in electronic circuitry, particularly in 
circuit boards. They are also used in high temperature and corrosive environments, as 
tool and die materials, and in engine components. Ceramics also include glasses as a 
subdivision and these have their own range of applications due to transparency. The 
optical fiber is a recent addition to this group of materials, with applications in telecom-
munications, sensors, measurements, and controls. Various other optical materials used 
in television screens, optical networks, lasers, and biosensors are also of considerable 
interest to industry.
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Polymers, which include plastics, rubbers or elastomers, fibers, and coatings, have the advan-
tages of easy fabrication, low weight, electrical insulation, resistance to corrosion, durabil-
ity, low cost, and a wide range of properties with different polymers. Consequently, plastics 
have replaced metals and alloys in a wide range of applications. Because these materials 
are electrically insulating, they find use in plastic-coated cables, plastic casings for elec-
tronic equipment, and electrical components and circuitry. Similarly, the ease of forming 
or molding polymeric materials has led to their use in many diverse areas ranging from 
containers, trays, and bottles to panels, calculators, and insulation. Clearly, polymers are 
among the most versatile materials today, despite the temperatures that can be withstood 
by them without damage being limited to 200°C to 300°C in most cases.

FIGURE 2.32 Different types of materials used in engineering systems.



84 Design and Optimization of Thermal Systems

Composite materials, which are engineered materials formed as combinations of two or more 
constituent materials usually consisting of a reinforcing agent and a binder, have grown in 
importance in the last three decades. The component materials generally have significantly 
different mechanical properties and remain separate and distinct within the final structure. 
Many naturally occurring materials such as wood, bone, and muscle are composite materi-
als. Therefore, many biological implants are made of appropriate composite materials. The 
demand for materials with high strength-to-weight ratio has led to tremendous advancements 
in this field. The reinforcing elements are largely fibers of glass, carbon, ceramic, metal, boron, 
or organic materials. The base or matrix material is usually a polymer, metal, or ceramic. 
Chemical bonding is generally used to bind the different elements to obtain a region that may 
be regarded as a continuum. Different techniques are available for the fabrication of compos-
ite materials, as discussed by Hull and Clyne (2008) and Luce (1988). The main advantage 
of composite materials is that they can often be custom-made for a particular design need. In 
addition, they have low weight and high stiffness, strength, and fatigue resistance. They are 
used for helicopter rotor blades, car body moldings, pressure vessels, glass-reinforced plastics, 
concrete, asphalt, printed circuit boards, bone replacements, and many other applications.

Semiconductor materials, which have a small energy gap between the valence and conduction 
bands, are important in a wide range of applications. Semiconductor electronic devices 
are produced by doping, which involves introducing controlled amounts of impurity into 
a semiconducting crystal. These materials include elements like silicon and germanium, 
compounds like gallium arsenide and gallium phosphide, and several other similar materi-
als that are often termed semiconductor materials because they are neither good electrical 
conductors nor good electrical insulators. They are used extensively in electronic systems 
because they have the appropriate properties to develop electronic devices like transistors 
and integrated circuits, which are obviously of tremendous importance and value today. 
Diamond, which is pure carbon, may also be included here. Similarly, graphene, which is a 
single layer of carbon atoms arranged in a hexagonal lattice, has generated a lot of interest 
in recent years because of its potential in nanodevices and structures.

Liquids and gases are of particular interest in thermal processes because fluid flow is 
commonly encountered in many thermal systems. Gases such as inert gases, oxygen, air, 
carbon dioxide, and water vapor are frequently part of the system and affect the transport 
processes. Similarly, liquids such as water, oils, hydrocarbons, and mercury (which is also a 
metal) are employed in thermal systems for heat transfer, material flow, pressure transmission, 
and lubrication. In addition, in many cases, materials that are solid at normal temperatures are 
employed in their molten or liquid state, for instance, plastics in extrusion and injection mold-
ing, metals in casting, and liquid metals in nuclear reactors. The flow characteristics of the 
fluid, as indicated by its viscosity; thermal properties, particularly the thermal conductivity; 
availability and cost; corrosive behavior; and phase change characteristics vary substantially 
from one fluid to another and usually form the basis for selecting an appropriate material.

Other materials. Several other materials of engineering interest are not covered by the groups 
given earlier. These include materials such as different types of wood, stone, rock, biologi-
cal materials, and other naturally occurring materials that are of interest in various applica-
tions. New materials in each category are continually being developed to meet the demand 
for specific properties and characteristics and to improve existing materials in a variety of 
applications. Substantial research and development effort is directed at obtaining new and 
improved materials for enhancing the performance of present systems, reducing costs, and 
helping future technological advancements. Coming years are expected to see a variety of 
new and emerging materials, as well as new fabrication techniques (Jaluria, 2018).

Therefore, the main categories of materials are metals and alloys, ceramics, polymers, compos-
ite materials, fluids, and semiconductor materials. Each group has its own characteristics. Some 
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were just mentioned; see also Table 2.1. The range of application of each type of material is deter-
mined by the physical characteristics and the cost. Materials may also be categorized in terms of 
their applications, for instance, electronic, insulation, construction, optical, and magnetic materials. 
However, it is more common and useful to discuss materials in terms of their basic characteristics 
and to use the classes of materials outlined above.

2.5.2 mAteriAl properties AnD chArActeristics For thermAl systems

We have discussed different types of materials, their general properties, and typical areas of appli-
cation. Though most of the properties mentioned earlier are of interest in engineering systems, let us 
now focus on thermal processes and systems. Obviously, many material properties are of particular 
interest in thermal systems; for instance, a low thermal conductivity is desirable for insulation and a 
high thermal conductivity is desirable for heat removal. A large thermal capacity, which is the prod-
uct of density and specific heat, is needed if a slow transient response is desired and a small thermal 
capacity is necessary for a fast response. The material properties that are of particular importance 
in thermal systems, along with their usual symbolic representation employed in this book, are:

1. Thermal conductivity, k
2. Specific heat, C
3. Density, ρ
4. Viscosity, μ
5. Latent heat during phase change, hsl or hfg

6. Temperature for phase change, Tmp or Tbp

7. Coefficient of volumetric thermal expansion, β
8. Mass diffusivity, DAB

TABLE 2.1 
Typical Characteristics of Common Materials



86 Design and Optimization of Thermal Systems

Here, the subscripts sl, fg, mp, bp, and AB refer to solid-liquid, liquid-vapor, melting point, 
boiling point, and species A diffusing into species B, respectively. The phase change may also 
occur over a range of temperatures, which is the case for an alloy or a mixture, rather than at a 
fixed temperature. The specific heat may be at constant pressure or at constant volume, these being 
essentially the same for solids and liquids, which may generally be taken as incompressible. Several 
other thermal properties such as the coefficient of linear thermal expansion, heat of sublimation, 
and thermal-shock resistance are also of interest in thermal systems.

All these properties vary tremendously among the common materials used in thermal processes. 
For instance, the thermal conductivity varies from around 0.026 for air to 0.61 for water to 429.0 W/mK  
for silver. Typical ranges are shown in Figure 2.33. Similarly, other properties are available in the 
literature (Touloukian and Ho, 1972; American Society of Metals, 1961; ASHRAE, 2017; Eckert and 
Drake, 1972; Incropera and Dewitt, 2001). In addition, properties such as thermal diffusivity α, where 
α = k/ρC, and kinematic viscosity ν, where ν = μ/ρ, are also frequently used to characterize the mate-
rial. Many common materials and their properties are given in Appendix B.

In addition to the aforementioned thermal properties of the material, several characteristics dis-
cussed in the preceding section are important in the design of thermal systems. Certainly, corrosion 
resistance and range of temperature over which the material can be used are important consider-
ations. Similarly, strength, toughness, stiffness, and others are important in the design because 
of the need to maintain the structural integrity of the system. Material cost and availability are 
obviously important in any design process. Manufacturability of the material is also important, as 
mentioned earlier. Waste disposal and environmental impact of the material are additional consid-
erations in the characterization and evaluation of the material.

2.5.3 selection AnD substitution oF mAteriAls

In view of the material properties and characteristics discussed in the preceding section, the factors 
involved in the selection of a suitable material in the design of a thermal system are:

1. Satisfactory thermal properties
2. Manufacturability
3. Static, fatigue, and fracture characteristics
4. Availability
5. Cost
6. Resistance to temperature and corrosion
7. Environmental effects
8. Electric, magnetic, chemical, and other properties

FIGURE 2.33 Range of thermal conductivity k for a variety of materials at normal temperature and pressure.
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Material selection is not an easy process because of the many considerations that need to be taken 
into account. These lead to a variety of constraints, many of which may be conflicting. Though cost 
is an important parameter in the selection, it is not the only one. We want to choose the best mate-
rial for a given application while satisfying many constraints. However, information on material 
properties is often not available to the desired detail or accuracy. The range of available materials 
has increased tremendously in recent years, making material selection a very involved process. 
However, the choice of the most appropriate material for a given application is crucial to the success 
of the design in today’s internationally competitive environment. With a proper choice of materials, 
the system performance can be improved and costs reduced. In several cases, material substitution 
is necessary because of regulations stemming from environmental or safety considerations. For 
example, the incentive for improvements in gasoline, including addition of ethanol, arises from 
pollution, availability, cost, and political considerations. Substitution of asbestos by other insulating 
materials is due to the health risks of asbestos. Obviously, all such considerations complicate mate-
rial selection and substantial effort is generally directed at this aspect of design.

The basic procedure for material selection may be described in terms of the following steps.

1. Determination of material requirements. The thermal process or system being designed is 
considered to determine the conditions and environment that the chosen material must with-
stand. From this consideration, the desired properties and characteristics, along with possible 
constraints, are obtained. For example, the simulation of a furnace would indicate the tempera-
tures that the materials exposed to this environment must endure. Similarly, the expected pres-
sures in an extruder would provide the corresponding requirements for the selected material.

2. Consideration of available materials. Material property databases are available and may 
be employed to compare the material requirements with the properties of available materi-
als. In such a search, the focus is on the desired properties and characteristics. The require-
ments in terms of thermal properties will be largely considered at this stage for thermal 
processes. Cost, environmental effects, and other considerations and constraints are not 
brought in. Therefore, a large number of material choices may emerge from this step. This 
is done mainly to avoid eliminating any material that meets the appropriate requirements.

3. Selecting a group of possible materials. From the materials that would satisfy the main 
requirements of the application, a smaller group is chosen for a more detailed consider-
ation. At this stage, other considerations and constraints are brought in. Thus, a material 
that is very desirable due to its thermal properties may be eliminated because of cost 
or undesirable environmental impact. Gold, which is a good choice for electronic circuit 
elements because of its inert nature, is retained only for surface plating due to the cost. 
Manufacturability of the material to obtain a given part is also an important consideration 
at this stage. Information on previously used materials for the given problem and for simi-
lar systems may also be used to narrow the list of possible materials. Because there may 
be several requirements for the material properties, a weighted index that takes all of these 
into account, according to their relative importance, may also be employed. A short list of 
possible materials is thus obtained.

4. Study of material performance. A detailed study of the materials obtained from the 
preceding step is undertaken to determine their performance under the specific condi-
tions expected to be encountered in the given application. Experimental work may also 
be carried out to obtain quantitative data and to characterize these materials. Available 
literature on these materials and information on their earlier use in similar environ-
ments are also employed. There are many standard sources for material property data 
(Dieter, 2000); some of them were mentioned earlier.

5. Selection of best material. Based on the information gathered on the short list of pos-
sible materials, the most appropriate material for the given application is chosen. The cost 
and availability of the material are very important considerations in the final selection. 
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However, in many cases, cost may have to be sacrificed in the interest of superior perfor-
mance. In a few cases, the material may be developed to meet the specific needs of the 
problem. This is true in many electronic systems where the materials employed for the 
circuit board, the circuitry, and the connections are developed as variations from existing 
composite materials, ceramics, solder, etc. (Dally, 1990).

2.5.3.1 Final Comments
Material selection is an involved process and is somewhat similar to the iterative design process 
discussed earlier for thermal systems. Several options are considered and the best one is chosen 
based on available property data and material characteristics. Prior experience may also be used to 
help in this selection process by bringing in existing expert knowledge on materials and information 
on current practice. Then the decision-making process may be automated by using a large database 
on available materials and their characteristics. In many cases, an existing process or system is to 
be improved by substituting the current material with a different material. In several applications, 
plastics, ceramics, and composite materials have recently replaced metals and alloys. Plastics are 
now used for most containers and housings because of lower weight and cost involved. Similarly, 
composite materials led to improvements over metals in many of their important characteristics, 
while keeping the cost lower. Thus, substantial improvements in system performance and reduction 
in costs are obtained by material substitution. However, redesign of the component, subsystem, or 
system should be undertaken to obtain the maximum benefit from material substitution.

Example 2.7

a. In a food processing system, food materials are placed on flat plates that are attached to 
and moved continuously by a conveyor belt. The food is subjected to gas heating at the 
bottom of the plate for a given amount of time. Select a suitable material for the plates.

b. Select suitable materials for an electronic system, considering the board on which elec-
tronic components are located and electrical connections between these components 
by means of exposed circuitry on the board.

SOLUTION

a. In this problem, a high thermal conductivity material is desirable because of heat conduc-
tion through it to the food material. In addition, the material must be strong, durable, and 
corrosion resistant because of the application. Table 2.1 indicates that metals and alloys 
would satisfy these requirements. Ceramics have lower conductivity and may be too brittle 
for this application. Though copper and aluminum have high thermal conductivities (401 
and 237 W/mK, respectively, at 300 K), alloys such as bronze and brass are easier to form 
into the desired shape and to bond to the conveyor. But then the conductivities are much 
smaller (around 50 W/mK). Steel is a better choice because of better corrosion resistance 
and cost. Stainless steel can be chosen due to its high corrosion resistance, but it is a dif-
ficult material to work with for fabrication, it is relatively expensive, and it has a lower 
thermal conductivity (approximately 15 W/mK). Carbon steels are cheaper, easier to form, 
and better conductors of heat (thermal conductivity around 60 W/mK).

In view of the above considerations, carbon steel may be chosen as the appropriate 
material, with the exact percentage of carbon chosen based on cost and availability. 
Because food is involved, a nonstick surface is desirable. A Teflon coating on the surface 
can be used for this purpose.

b. For the electrical connections, a high electrical conductivity is needed, pointing to met-
als. Ceramics and polymers are electrical insulators and composites are generally not 
good conductors either. Silver, copper, gold, and aluminum are very good electrical con-
ductors, with conductivities of 6.8, 6.0, 4.3, and 3.8 × 107 (ohm-m)−1. Aluminum is use-
ful if weight considerations are important. However, copper is a good choice because 
it is relatively cheap and easy to form and bond to obtain the desired configuration of 
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electrical circuitry. Its melting point is high (1358 K). However, it does not have good 
corrosion resistance and may cause problems if the system is to be used under humid 
conditions. Gold is excellent in corrosion resistance, is a good conductor, and has a high 
melting point (1336 K). However, it is much more expensive than copper and is hard to 
bond to other metals. Therefore, the electrical circuitry connections may be made of 
copper with gold plating used for corrosion resistance. Silver plating may also be used, 
but it is not as corrosion resistant and durable as gold.

For the board material, on the other hand, we need an electrical insulator. It must be 
strong enough to support the circuitry and components. Therefore, polymers, ceramics, or 
composites may be used. However, ceramics are brittle and relatively difficult to machine. 
Polymers are good for the purpose, but they may be too flexible unless thick plates are used. 
Composite materials are a good choice because these could be reinforced with metal or 
glass fibers to obtain the desired strength. The other properties could also be varied by the 
choice of the structure of the material. Therefore, a variety of composite materials may be 
chosen for the purpose.

Clearly, several other material options are possible for these applications and a unique answer is 
rarely obtained. However, these examples indicate the initial selection of the type of material, nar-
rowing of the available choices, and final selection of an appropriate material.

2.6 SUMMARY

This chapter presents the basic considerations in the design of thermal systems. Several important 
concepts and ideas are introduced and discussed in terms of typical thermal processes.

The formulation of the design problem is the first step in design; the entire design process and 
the success of the final design depend on the problem statement. The formulation involves determin-
ing the requirements that must be met by the system; parameters that are given and are thus fixed; 
design variables that may be changed in order to seek an acceptable or workable system; constraints 
or limitations that must be satisfied; and any additional aspects arising from safety, environmental, 
financial, and other concerns. The final design must satisfy all the requirements and must not violate 
any of the constraints imposed on the system, its parts, or the materials involved. It is important 
to formulate the design problem in clear and quantitative terms, while focusing on the important 
features of the design and neglecting minor ones because it may be difficult or impossible to solve 
the problem if every possible requirement and constraint is to be satisfied.

Conceptual design is the next step in the design of a thermal system to meet a given need or 
opportunity. Originality and creativity are expressed in the form of the basic concept or idea for 
the design. The configuration and main features of the thermal system are given in general terms 
to indicate how the requirements and constraints of the given problem will be met. The conceptual 
design may range from a new, innovative idea to available concepts applied to similar problems 
and modifications in existing systems. Many conceptual designs are based on available designs and 
concepts, incorporating new materials and techniques. Knowledge of current technology, existing 
systems and processes, and advances in the recent past is a strong component in the development of 
appropriate conceptual designs. Usually, several concepts are considered and evaluated for a given 
application, and the one that has the best chance of success is ultimately chosen.

The selected conceptual design leads to an initial physical system that is subjected to the detailed 
design process, starting with the modeling and simulation of the system. Modeling involves simplify-
ing and approximating the given process or system to allow a mathematical or numerical solution to 
be obtained. However, it must be an accurate and valid representation of the physical system so that 
the behavior of the system may be investigated under a variety of conditions by using the model. 
Modeling of thermal systems is an extremely important aspect in the design process because most of 
the inputs needed for design and optimization are obtained from a numerical simulation of the model. 
Experimental results, material property data, and information on the characteristics of various devices 
are also incorporated in the overall model to obtain realistic and practical results from the simulation.



90 Design and Optimization of Thermal Systems

The outputs from the simulation are used to determine if the design satisfies the requirements 
and constraints of the given problem. If it does, an acceptable or workable design is obtained. 
Several such acceptable designs may be sought to establish a domain from which the best or optimal 
design may be determined. Though several designs may be acceptable, the best design, optimized 
with respect to a chosen criterion, is essentially unique or may be selected from a narrow region of 
design variables. In many cases, multiple objective functions are of interest and the optimization 
strategy must consider these. For a chosen system hardware, the operating conditions may also be 
optimized to obtain the best outcome. The need for optimization of thermal systems has grown 
tremendously in recent years due to international competition. Additional aspects such as safety and 
control of the system, environmental issues, and communication of the design are also discussed.

The basic features of a CAD system are also outlined. Such a system involves interactive use of a 
stand-alone computer to help the design process by providing results from the simulation of the system 
that is being designed. Storage of relevant information, graphical display of results, and knowledge 
base from current engineering practice, including rules for decision-making, add to the usefulness of 
a CAD system. However, because of the complexity of typical thermal systems and processes, such 
CAD systems are often limited to the design of relatively simple systems and equipment.

Finally, the important aspect of material selection is considered in this chapter. The crucial part 
played by materials in the design of thermal systems cannot be exaggerated because the success of 
a design is strongly affected by the choice of suitable materials for the various parts of the system. 
With the advent of new fabrication techniques such as three-dimensional printing and new materi-
als, particularly ceramics, semiconductor materials, and composite materials, it is essential that we 
seek out the most appropriate material and manufacturing process for each application. Substitution 
of currently used materials by new and improved ones is also undertaken to improve the system 
performance and reduce costs. However, redesign of the system must generally be undertaken when 
material substitution is considered in order to obtain maximum benefit from such a substitution. 
Different types of materials and the basic procedure for material selection are presented.
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PROBLEMS

Note: All the questions given here are open-ended. Thus, some inputs and approximations may have 
to be supplied by you and several acceptable solutions are possible. Appropriate literature may be 
consulted for these problems as well as for similar open-ended problems in later chapters.

 2.1 In the Czochralski crystal growing process, a solid cylindrical crystal is grown from a rotating 
melt region, as shown in Figure P2.1. We are interested in obtaining a homogeneous cylinder 
of high purity of a given material such as silicon and with a uniform specified diameter. For 
this manufacturing process, list the important inputs, requirements, and specifications needed 
to design the system. Also, give the design variables and constraints, if any.

 2.2 For a continuous casting system, shown in Figure 1.10(a), formulate the design problem 
in terms of given quantities, design variables, and constraints, employing symbols for the 
dimensions, temperatures, and other physical quantities. We wish to obtain a casting of 
given diameter for the chosen material.

FIGURE P2.1 
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 2.3 Give the design variables and operating conditions for the following manufacturing 
processes:
a. Ingot casting
b. Plastic extrusion
c. Hot rolling

 2.4 Cooling towers, as shown in Figure 1.14(b), are to be designed for heat rejection from a 
power plant. The rate of heat rejection to a single tower is given as 200 MW. Ambient air at 
temperature 15°C and relative humidity 0.4 is to be used for removal of heat from the hot 
water coming from the condensers of the power plant. The temperature of the hot water is 
20°C above the ambient temperature. Give the formulation of the design problem in terms 
of the fixed quantities, requirements, constraints, and design variables.

 2.5 The condensers of a 500 MW power plant operating at a thermal efficiency of 30% are to be 
cooled by the water from a nearby lake, as sketched in Figure 1.14(a). If the intake water is 
available at 20°C and if the temperature of the water discharged back into the lake must be 
less than 32°C, quantify the design problem for the cooling system. How is the net energy 
removed from the condensers finally lost to the environment?

 2.6 Formulate the design problem for the following manufacturing processes, employing sym-
bols for appropriate physical quantities.
a. Hot rolling of a steel plate of thickness 2 cm to reduce the thickness to 1 cm at a feed 

rate of 1 m/s; see Figure 1.10(d).
b. Solder plating of a 2-mm-thick epoxy electronic circuit board by moving it across a 

solder wave at 350°C, the solder melting point being 275°C. See Figure P2.6(b).

c. Extrusion of aluminum from a heated cylindrical block, of diameter 15 cm at a tem-
perature of 600 K, to a rod of diameter 5 cm at the rate of 0.2 cm/s. See Figure P2.6(c).

FIGURE P2.6(b) 

FIGURE P2.6(c) 
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d. Arc welding by means of an electrode moving at 5 cm/s and supplying 1000 W to 
join two metal plates, each of thickness 5 mm. See Figure P2.6(d).

 2.7 A system for the storage of thermal energy is to be designed using an underground tank of 
water. The tank is buried at a depth of 3 m and is a cube of 1 m side. The water in the tank 
is heated by circulating it through a solar energy collection system. A given heat input to 
the water may be assumed due to the solar energy flux. Characterize the design problem in 
terms of the fixed quantities and design variables.

 2.8 Consider a typical water cooler for drinking water. If the water intake on a summer day is at 
40°C and the cooler must supply drinking water in the range of 14°C to 21°C at a maximum flow 
rate of 1 gallon/min (3.785 × 10−3 m3/min), give the requirements for the design. Also, choose an 
appropriate conceptual design and suggest the relevant design variables and constraints.

 2.9 For the plastic extrusion system considered in Example 2.1, formulate the design problem in 
terms of quantities that would generally be given, quantities that may be varied to obtain an 
acceptable design, and possible design requirements and constraints.

 2.10 Coal for a steel plant is delivered by train at a station that is 10 km from the storage units of 
the plant. List different ways of transporting the coal from the station to the storage units 
and discuss the possible advantages and disadvantages of each approach. Choose the most 
appropriate system, giving reasons for your choice. Take the typical daily consumption of 
coal to be 104 kg.

 2.11 Water from a purification plant is to be stored in a tank that is located at a height of 
100 m and supplies the water needed by a chemical factory. Develop different concep-
tual designs for achieving this task and choose the most suitable one, justifying your 
choice. The average consumption of water by the factory may be taken as 1000 gallons/h  
(3.785 m3/h).

 2.12 For the following tasks, consider different design concepts that may be used to achieve the 
desired goals. Compare the different options in terms of their positive and negative features. 
Then narrow your deliberations to one concept. Sketch the conceptual design thus obtained 
and give qualitative reasoning for your choice. Remember that the design chosen by you 
may not be the only feasible one.
a. Scrap plastic pieces are to be melted and then solidified in the form of cylindrical 

rods at a rate of about 20 kg/h.
b. Solar energy collected by a flat plate collector system is to be stored to supply hot 

water at a temperature of 70°C ± 5°C to an industrial unit.
c. Water from a purification plant is to be transported to and stored in a tank at a height 

of 5 m above the plant. A maximum flow rate of 10 gallons/min (0.03785 m3/min) is 
desired.

d. The water from a river is to be supplied at a flow rate of 50 gallons/min and a pressure 
of 5 atm to a water treatment plant.

FIGURE P2.6(d) 
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e. A company wants to discharge its nontoxic chemical waste into a river, with the 
smallest impact on the local water region, within 25 m of the discharge point.

f. Food materials are to be frozen by reducing the temperature to below –15°C. A net 
energy removal rate of 100 kW is desired.

g. A building of floor area 500 m2 is to be heated by circulating hot air. The temperature 
of the air must not exceed 90°C.

 2.13 For the following systems, discuss the nature, type, and possible locations of sensors that 
may be used for safety as well as for control of the process.
a. A water heating system consisting of a furnace, pump, inlet/outlet ports, and piping 

network, as shown in Figure P2.13(a)

b. A system to heat short metal rods in a gas furnace and then bend these into desired 
shapes in a metal-forming process

c. Electronic circuitry for a data center
d. Cooling and fuel systems of a typical car
e. A forced-hot-air-flow oven for drying paper pulp, as shown in Figure P2.13(e)

 2.14 For the air conditioning system considered in Example 2.2, discuss the types and locations 
of sensors that may be employed for the safety and control of the system.

 2.15 Look up any patent in the literature. List the different parts of the patent and outline the 
information conveyed by such a document. How does one ensure that the basic concept is 
protected and that a slight change in the method is not treated as something new and not 
covered by the patent?

 2.16 Copyrighting of computer software is quite prevalent today because its development is gen-
erally expensive. However, most details on the algorithm are to be provided for copyrighting. 

FIGURE P2.13(a) 

FIGURE P2.13(e) 
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Suggest a few approaches that may be employed to avoid duplication and use of the software 
by others without appropriate permission and licensing.

 2.17 If a CAD system is envisaged for the design of HVAC (heating, ventilation, and air con-
ditioning) systems, what relevant characteristics would be desirable? What should the dif-
ferent parts of the CAD system contain? Are there some features that are crucial to the 
successful use of the CAD approach for this problem?

 2.18 Repeat the preceding problem for a power plant heat rejection system consisting of condens-
ers, circulating water, and cooling towers.

 2.19 In view of the increasing speed and storage capacity of computer workstations, discuss what 
additional features could be included in the CAD system outlined in Example 2.6 to make 
the system more versatile and useful for practical processes.

 2.20 Consider different materials that may be used for the following applications. Using the 
general characteristics of these materials, choose the most appropriate one, giving reasons 
for the choice. The final material selected is not unique and several options may be possible. 
Discuss your selection criteria. Remember to include cost, availability, and safety issues in 
your considerations of different material choices.
a. Outer casing for a personal computer
b. Material for the boards used in the electronic circuitry of a television
c. Materials for the tube and shell of a heat exchanger
d. The mold material for the casting of aluminum, as shown in Figure 1.3. How will the 

material differ if steel were being cast instead?
e. Materials for the seats in an airplane. Are any thermal considerations involved in the 

material selection?
f. Electronic circuitry used in an airplane
g. Materials for the wall and the insulation of a gas furnace used for melting scrap steel 

pieces
h. Liquid that may be used for immersion cooling of an electronic system

 2.21 Consider the cooling systems for an automobile and for a personal computer. Suggest vari-
ous materials that may be employed, discussing the differences between the two appli-
cations. Narrow your choices to the best one or two candidates, giving reasons for this 
selection.

 2.22 There are several subsystems in an automobile. List a few of these. Pick any one thermal 
subsystem and, using your imagination and experience, give a set of requirements and con-
straints that must be satisfied for a workable design. Also, give the design variables that you 
may be able to select to obtain a successful design. Give a rough sketch of the subsystem 
chosen by you and express the constraints, requirements, etc., mathematically, as far as 
possible.

 2.23 Let us assume that your design group, working in an industrial concern, has completed the 
design of the following thermal systems, using several new ideas and materials. What are 
the important means of communicating these designs and to which groups within or outside 
the company do you need to make appropriate presentations?
a. A very efficient room air conditioning system
b. A new radiator design for an automobile
c. A substantially improved and efficient household refrigerator

 2.24 For the thermal systems in the preceding problem, outline the main design steps employed 
by you and your design group to reach optimal solutions.

 2.25 You have just joined the design and development group at Panasonic, Inc. The first task you 
are given is to work on the design of a thermal system to anneal television glass screens. 
Each screen is made of semi-transparent glass and weighs 10 kg. You need to heat it from 
a room temperature of 25°C to 1100°C, maintain it at this temperature for 15 minutes, and 
then cool slowly to 500°C, after which it may be cooled more rapidly to room temperature. 
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The allowable rate of temperature change with time, ∂T/∂t, is given for heating, slow cool-
ing, and fast cooling processes. Any energy source may be used and high production rates 
and uniform annealing are desired.
a. Give the sketch of a possible conceptual design for the system and of the expected 

temperature cycle. Briefly give reasons for your choice.
b. List the requirements and constraints in the problem.
c. Give the location and type of sensors you would use to control the system and ensure 

safe operation. Briefly justify your choices.
d. Outline a simple mathematical model to simulate the process.

 2.26 You are asked to design the cleaning and filtration system for a round swimming pool of diam-
eter D and depth H. The system must be designed to run the entire volume of water contained 
in the pool through the system in 5 hours, after which a given level of purity must be achieved.
a. Give the formulation of the design problem.
b. Provide a sketch of a possible conceptual design.
c. Suggest the location of two sensors for purity measurements.

 2.27 As an engineer at General Motors Co., you are asked to design an engine cooling system. 
The system should be capable of removing 15 kW of energy from the engine of the car at a 
speed of 80 km/h and ambient temperature of 35°C. The system consists of the radiator, fan, 
and flow arrangement. The dimensions of the engine are given. The distance between the 
engine of the car and the radiator must not exceed 2.0 m and the dimensions of the radiator 
must not exceed 0.5 m × 0.5 m × 0.1 m.
a. Give the formulation of the design problem. No explanations are needed.
b. Give a possible conceptual design.
c. If you are allowed two sensors for safety and control, what sensors would you use and 

where would you locate these?
 2.28 As an engineer employed by a company involved in designing and manufacturing food pro-

cessing equipment, you are asked to design a baking oven for heating food items at the rate 
of 2 pieces per second. Each piece is rectangular, approximately 0.06 kg in weight, and less 
than 4 cm wide, 6 cm long, and 1 cm high. The length of the oven must not exceed 2.0 m and 
the height as well as the width must not exceed 0.5 m.
a. Sketch a possible conceptual design for the system. Very briefly give reasons for your 

selection.
b. List the design variables and constraints in the problem.
c. Which materials will you use for the outer casing, inner lining, and heating unit of 

the oven? Briefly justify your answers.
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3 Modeling of Thermal Systems

3.1 INTRODUCTION

3.1.1 importAnce oF moDeling in Design

Modeling is one of the most crucial elements in the design and optimization of thermal systems. 
Practical processes and systems are generally very complicated and are thus difficult to analyze. 
Idealizations and approximations are used to simplify the problem to make it amenable to a solu-
tion. The process of simplifying a given problem so that it may be represented in terms of a system 
of equations, for analysis, or a physical arrangement, for experimentation, is termed modeling. By 
the use of models, relevant quantitative results are obtained for the design and optimization of 
processes, components, and systems. However, despite its importance, and even though analysis is 
taught in many engineering courses, very often little attention is given to modeling.

Modeling is needed for understanding and predicting the behavior and characteristics of thermal 
systems. Once a model is obtained, it is subjected to a variety of operating conditions and design 
variations. If the model is a good representation of the actual system under consideration, the outputs 
obtained from the model characterize the behavior of the actual system. This information is used in 
the design process as well as in the evaluation of a particular design to determine if it satisfies the given 
requirements and constraints. Modeling also helps in obtaining and comparing alternative designs by 
predicting the performance of each design, ultimately leading to an optimal design. Thus, the design 
and optimization processes are closely coupled with the modeling effort, and the success of the final 
design is very strongly influenced by the accuracy and validity of the model employed. Consequently, 
it is important to understand the various types of models that may be developed; the basic procedures 
that may be used to obtain a satisfactory model; validation of the model obtained; and its representa-
tion in terms of equations, important parameters, and relevant data on material properties.

3.1.2 bAsic FeAtures oF moDeling

The model may be descriptive or predictive. We are all very familiar with models that are used to 
describe and explain various physical phenomena. A working model of an engineering system, such 
as a robot, an internal combustion engine, a heat exchanger, or a water pump, is often used to explain 
how the device works. Frequently, the model may be made of clear plastic or may have a cutaway 
section to show the internal mechanisms. Such models are known as descriptive and are frequently 
used in classrooms and in marketing to explain the basic operation and underlying principles.

Predictive models are of particular interest to our present topic of engineering design because 
these can be used to predict the performance of a given system. The equation that describes the 
cooling of a hot metal sphere immersed in an extensive cold-water environment represents a pre-
dictive model because it allows us to obtain the temperature variation with time and determine the 
dependence of the cooling curve on physical variables such as initial temperature of the sphere, 
water temperature, and material properties. Similarly, a graph of the number of items sold versus the 
item price, such as that shown in Figure 1.6, represents a predictive model because it allows one to 
predict the volume of sales if the price is reduced or increased. Models such as the control mass and 
control volume formulations in thermodynamics, representation of a projectile as a point to study 
its trajectory, and enclosure models for radiation heat transfer are quite common in engineering 
analysis for understanding the basic principles and for deriving the characteristic equations. A few 
such models are sketched in Figure 3.1.
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Modeling is particularly important in thermal systems and processes because of the generally 
complex nature of the transport, resulting from variations with space and time, nonlinear mecha-
nisms, complicated boundary conditions, coupled transport processes, complicated geometries, and 
variable material properties. As a result, thermal systems are often represented by sets of time-
dependent, multidimensional, nonlinear partial differential equations with complicated domains 
and boundary conditions. Finding a solution to the full three-dimensional, time-dependent problem 
is usually an extremely involved process. In addition, the interpretation of the results obtained 
and their application to the design process are usually complicated by the large number of vari-
ables involved. Even if experiments are carried out to obtain the relevant input data for design, the 
expense incurred in each experiment makes it imperative to develop a model to guide the experi-
mentation and to focus on the dominant parameters. Therefore, it is necessary to neglect relatively 
unimportant aspects, combine the effects of different variables in the problem, employ idealizations 
to simplify the analysis, and reduce the number of parameters that characterize the process or 
system. This effort also generalizes the problem so that the results obtained from one analytical or 
experimental study can be extended to other similar systems and circumstances.

Physical insight is the main basis for the simplification of a given system to obtain a satisfactory 
model. Such insight is largely a result of experience in dealing with a variety of thermal systems. 
Estimates of the underlying mechanisms and different effects that arise in a given system may 
also be used to simplify and idealize. Knowledge of other similar processes and of the appropri-
ate approximations employed for these also helps in modeling. Overall, modeling is an innovative 
process based on experience, knowledge, and originality. Exact, quantitative rules cannot be easily 
laid down for developing a suitable model for an arbitrary system. However, various techniques 
such as scale analysis, dimensional analysis, and similitude can be employed to aid the modeling 
process. These methods are based on a consideration of the important variables in the problem and 
are presented in detail later in this chapter. However, modeling remains one of the most difficult and 
elusive, though extremely important, aspects in engineering design.

In many practical systems, it is not possible to simplify the problem enough to obtain a sufficiently 
accurate analytical or numerical solution. In such cases, experimental data are obtained, with help 

FIGURE 3.1 A few models used commonly in engineering: (a) Control volume, (b) control mass, (c) graphi-
cal representation, and (d) enclosure configuration for thermal radiation analysis.
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from dimensional analysis to determine the important dimensionless parameters. Experiments are 
also crucial to the validation of the mathematical or numerical model and for establishing the accuracy 
of the results obtained. Material properties are usually available as discrete data at various values of 
the independent variable, e.g., density and thermal conductivity of a material measured at different 
temperatures. For all such cases, curve fitting is frequently employed to obtain appropriate correlating 
equations to represent the data. These equations can then serve as inputs to the model of the system, as 
well as to the design process. Curve fitting can also be used to represent numerical results in a compact 
and convenient form, thus facilitating their use. Figure 3.2 shows a few examples of curve fitting as 
applicable to thermal processes, indicating best and exact fits to the given data. In the former case, the 
curve does not pass through each data point but represents a close approximation to the data, whereas 
in the latter case the curve passes through each point. Curve fitting approaches the problem as a quan-
titative representation of available data. Though physical insight is useful in selecting the form of the 
curve, the focus in this case is clearly on data processing and not on the physical problem.

The validation of the model developed for a given system is another very important consider-
ation because it determines whether the model is a faithful representation of the actual physical 
system and indicates the level of accuracy that may be expected in the predictions obtained from the 
model. Validation is based on the physical behavior of the model, application of the model to sim-
pler and existing systems and processes, and comparisons with available experimental, analytical 
or numerical results. In addition, as mentioned in Chapter 2, modeling and design are linked so that 
the feedback from system simulation and design is used to improve the model. Models are initially 
developed for individual processes and components, followed by a coupling of these individual 
models to obtain the model for the entire system. This final model usually consists of the governing 
equations; correlating equations derived from experimental data; and curve-fit results from data on 
material properties, characteristics of relevant components, financial trends, environmental aspects, 
and other considerations relevant to the design.

3.2 TYPES OF MODELS

Several types of models can be developed to represent a thermal system. Each model has its own 
characteristics and is particularly appropriate for certain circumstances and applications. The clas-
sification of models as descriptive or predictive was mentioned in the preceding section. Our inter-
est lies mainly in predictive models that can be used to predict the behavior of a given system for 
a variety of operating conditions and design parameters. Thus, we will consider only predictive 
models here, and modeling will refer to the process of developing such models. Four main types 
of predictive models are of interest in the design and optimization of thermal systems. These are:

1. Analog models
2. Mathematical models
3. Physical models
4. Numerical models

FIGURE 3.2 Examples of curve fitting in thermal processes.
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3.2.1 AnAlog moDels

Analog models are based on the analogy or similarity between different physical phenomena and 
allow one to use the solution and results from a familiar solved problem to obtain the corresponding 
results for a different unsolved problem. The use of analog models is quite common in heat transfer 
and fluid mechanics (Pritchard and Mitchell, 2015; Incropera and Dewitt, 2001). An example of an 
analog model is provided by conduction heat transfer through a multilayered wall, which may be 
analyzed in terms of an analogous electric circuit with the thermal resistance represented by the 
electrical resistance and the heat flux represented by the electric current, as shown in Figure 3.3(a). 
The temperature across the region is the potential represented by the electric voltage. Then, Ohm’s 
law and Kirchhoff’s laws for electrical circuits may be employed to compute the total thermal 
resistance and the heat flux for a given temperature difference, as discussed in most heat transfer 
textbooks.

Similarly, the analogy between heat and mass transfer is often used to apply the experimental 
and analytical results from one transport process to another. The density differences that arise in 
room fires due to temperature differences are often simulated experimentally by the use of pure 
and saline water, the latter being more dense and, thus, representative of a colder region. The flows 
generated in a fire can then be studied in an analogous salt-water/pure-water arrangement, which 
is often easier to fabricate, maintain, and control. Figure 3.3(b) shows the analog modeling of a fire 
plume in an enclosure. The flow is closely approximated. However, the jet is inverted as compared 
to an actual fire plume, which is buoyant and rises; salt water is heavier than pure water and drops 
downward. A graph is itself an analog model because the coordinate distances represent the physi-
cal quantities plotted along the axes. Flow charts used to represent computer codes and process flow 
diagrams for industrial plants are all analog models of the physical processes they represent; see 
Figure 3.3(c).

Clearly, the analog model may not have the same physical appearance as the system under con-
sideration, but it must obey the same physical principles. However, even though analog models are 
useful in the understanding of physical phenomena and in representing information, energy, or 
material flow, they have only a limited use in engineering design. This is mainly because the analog 
models themselves have to be solved and may involve the same complications as the original prob-
lem. For instance, an electrical analog model results in linear algebraic equations that are usually 
solved numerically. Therefore, it is generally better to develop the appropriate mathematical model 
for the thermal system rather than complicate the modeling by bringing in an analog model as well.

3.2.2 mAthemAticAl moDels

A mathematical model is one that represents the performance and characteristics of a given sys-
tem in terms of mathematical equations. These models are the most important ones in the design 

FIGURE 3.3 Analog models. (a) Conduction heat transfer in a composite wall; (b) analog model of plume 
flow in a room fire using salt water and pure water; and (c) flow diagram for material flow in an industry.
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of thermal systems because they provide considerable versatility in obtaining quantitative results 
that are needed as inputs for design. Mathematical models form the basis for numerical modeling 
and simulation, so that the system may be investigated without actually fabricating a prototype. In 
addition, the simplifications and approximations that lead to a mathematical model also indicate the 
dominant variables in a problem. This helps in developing efficient experimental models, if needed. 
The formulation and procedure for optimization are also often based on the characteristics of the 
representative equations. For example, the sets of equations that describe the characteristics of a 
metal casting system or the performance of a heat exchanger, shown respectively in Figure 1.3 and 
Figure 1.5, would, therefore, constitute the mathematical models for these two systems. A solution 
to the equations for a heat exchanger would give, for instance, the dependence of the total heat trans-
fer rate on the inlet temperatures of the two fluids and on the dimensions of the system. Similarly, 
the dependence of the solidification time in casting on the initial temperature and cooling conditions 
is obtained from a solution of the corresponding equations. Such results form the basis for design 
and optimization.

As mentioned earlier, the model may be based on physical insight or on curve fitting of experi-
mental or numerical data. These two approaches lead to two types of models that are often termed 
as theoretical and empirical, respectively. Heat transfer correlations for convective transport from 
heated bodies of different shapes represent empirical models that are frequently employed in the 
design of thermal systems. The basic objective of mathematical modeling is to obtain mathematical 
equations that represent the behavior and characteristics of a given component, subsystem, process, 
or system. Mathematical models focus on the physical principles such as conservation laws to derive 
the representative equations. Curve fitting of data to obtain mathematical representations of experi-
mental or numerical results, thus yielding empirical models, is discussed later.

3.2.3 physicAl moDels

A physical model is one that resembles the actual system and is generally used to obtain experi-
mental results on the behavior of the system. An example of this is a scaled down model of a 
car or a heated body, which is positioned in a wind tunnel to study the drag force acting on the 
body or the heat transfer from it, as shown in Figure 3.4. Similarly, water channels are used to 
investigate the forces acting on ships and submarines. In heat transfer, a considerable amount of 
experimental data on heat transfer rates from heated bodies of different shapes and dimensions, 
in different fluids, and under various thermal conditions have been obtained by using such scale 
models. In fact, physical modeling is very commonly used in areas such as fluid mechanics and 
heat transfer and is thus of particular importance in thermal systems. The physical model may 
be a scaled down version of the actual system, as mentioned previously, a full-scale experimental 
model, or a prototype that is essentially the first complete system to be checked in detail before 
going into production. The development of a physical model is based on a consideration of the 
important parameters and mechanisms. Thus, the efforts directed at mathematical modeling are 
generally employed to facilitate physical modeling. This type of model and the basic aspects that 
arise are discussed in Section 3.4.

3.2.4 numericAl moDels

Numerical models are based on mathematical models and allow one to obtain, using a computer, 
quantitative results on the system behavior for different operating conditions and design parameters. 
Only very simple cases can usually be solved by analytical procedures; numerical techniques are 
needed for most practical systems. Numerical modeling refers to the restructuring and discretiza-
tion of the governing equations in order to solve them on a computer. The relevant equations may be 
algebraic equations, ordinary or partial differential equations, integral equations, or combinations 
of these, depending upon the nature of the process or system under consideration.
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Numerical modeling involves selecting the appropriate method for the solution, for instance, 
the finite difference or the finite element method; discretizing the mathematical equations to put 
them in a form suitable for digital computation; choosing appropriate numerical parameters, such 
as grid size and time step; and developing the numerical code and obtaining the numerical solution; 
see, for instance, Gerald and Wheatley (2003), Recktenwald (2000), Mathews and Fink (2004), 
and Jaluria (2012). Additional inputs on material properties, heat transfer coefficients, component 
characteristics, etc., are entered as part of the numerical model. The validation of the numerical 
results is then carried out to ensure that the numerical scheme yields accurate results that closely 
approximate the behavior of the actual physical system (Roache, 2009). The numerical scheme for 
the solution of the equations that describe the flow and heat transfer in a solar energy storage system, 
for instance, represents a numerical model of this system. Because numerical modeling is closely 
linked with the simulation of the system, these two topics are presented together in the next chapter. 
Figure 3.5(a) shows a sketch of a typical numerical model for a hot water storage system in the form 
of a flowchart. Figure 3.5(b) shows the various components of the code, such as material properties, 
mathematical model, experimental data, and analytical methods that are linked together through 
the main numerical scheme to obtain the solution.

3.2.5 interAction between moDels

Even though the four main types of modeling of particular interest to design are presented as sepa-
rate approaches, several of these frequently overlap in practical problems. For instance, the develop-
ment of a physical scale model for a heat treatment furnace involves a consideration of the dominant 
transport mechanisms and important variables in the problem. This information is generally 
obtained from the mathematical model of the system. Similarly, experimental data from physical 
models may indicate some of the approximations or simplifications that may be used in developing 
a mathematical model. Although numerical modeling is based largely on the mathematical model, 

FIGURE 3.4 Physical modeling of (a) fluid flow over a car and (b) heat transfer from a heated body, these 
being located in a wind tunnel.
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outputs from the physical or analog models may also be useful in developing the numerical scheme. 
Mathematical modeling is generally the most significant consideration in the modeling of thermal 
systems and, therefore, most of the effort is directed at obtaining a satisfactory mathematical model. 
If an analytical solution of the equations obtained is not convenient or possible, numerical model-
ing is employed. Physical models are used if the numerical solution is not easy to obtain; they also 
provide important physical insight and validation data for the mathematical and numerical models.

3.2.6 other clAssiFicAtions

Several other classifications of modeling are frequently used to characterize the nature and type of 
the model. Thus, the model may be classified as steady state or dynamic, deterministic or probabi-
listic, lumped or distributed, and discrete or continuous.

A steady-state model is one whose properties and operating variables do not change with time. 
If time-dependent aspects are included, the model is dynamic. Thus, the initial, or startup, phase 
of a furnace would require a dynamic model, but this would often be replaced by a steady-state 
model after the furnace has been operating for a long time and the transient effects have died down. 
The development of control systems for thermal processes and devices generally requires dynamic 
models. Deterministic models generally predict the behavior of the system with certainty, whereas 
probabilistic models involve uncertainties in the system that may be considered as random or as 
represented by probability distributions. Models for supply and demand are often probabilistic, 
whereas typical thermal systems are analyzed with deterministic models. Lumped models use aver-
age values over a given volume, whereas distributed models provide information on spatial varia-
tion. Discrete models focus on individual items, whereas continuous models are concerned with the 
flow of material in a continuum. In a heat treatment system, for instance, a discrete model may be 
developed to study the transport and temperature variation associated with a given body, say a gear, 
undergoing heat treatment. The flow of hot gases and thermal energy, on the other hand, is studied 
as a continuum, using a continuous model. Both the discrete and the continuous models are com-
monly used in modeling thermal systems and processes (Rieder and Busby, 1986).

Once the model has been developed, its type may be indicated by using the classifications men-
tioned here. For instance, the model for a hot water storage system may be described as a dynamic, 
continuous, lumped, deterministic mathematical model. Similarly, the mathematical model for a 
furnace may be specified as steady state, continuous, distributed, and deterministic.

FIGURE 3.5 Numerical modeling. (a) A computer flowchart for a hot water storage system and (b) various 
inputs and components that constitute a typical numerical model for a thermal system.
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3.3 MATHEMATICAL MODELING

Mathematical modeling is at the very core of the design and optimization process for thermal sys-
tems because the mathematical model brings out the dominant considerations in a given process 
or system. The solution of the governing equations by analytical or numerical techniques usually 
provides most of the inputs needed for design. Even if experiments are carried out for validation of 
the model or for obtaining quantitative data on system behavior, mathematical modeling is used to 
determine the important variables and the governing parameters. Finally, the experimental results 
are usually correlated by curve fitting to yield mathematical equations. The collection of all the 
equations that characterize the behavior of the thermal system then constitutes the mathematical 
model, which is generally analyzed and simulated on the computer, as discussed in Chapter 4.

This section deals with mathematical modeling based on physical insight and on a consideration 
of the governing principles that determine the behavior of a given thermal system. The use of curve 
fitting to obtain empirical models, which also form part of the overall mathematical model, is dis-
cussed later in this chapter. Because the development of a mathematical model requires physical 
understanding, experience, and creativity, it is often treated as an art rather than a science. However, 
knowledge of existing systems, characteristics of similar systems, governing mechanisms, and com-
monly made approximations and idealizations provides substantial help in model development.

3.3.1 generAl proceDure

A general step-by-step procedure may be outlined for mathematical modeling of a thermal system. 
Such a procedure is given here, with simple illustrative examples, to indicate the application of 
various ideas. However, there is no substitute for experience and creativity, and, as one continues to 
develop models for a variety of thermal systems, the process becomes simpler and better defined. 
Generally, there is no unique model for a typical thermal system and the approach given here simply 
provides some guidelines that may be used for developing an appropriate model. Frequently, very 
simple models are initially developed and the model is gradually improved over time by including 
additional complexities.

3.3.1.1 Transient/Steady State
One of the most important considerations in modeling is whether the system can be assumed to be at 
steady state, involving no variations with time, or if the time-dependent changes must be taken into 
account. Because time brings in an additional independent variable, which increases the complexity 
of the problem, it is important to determine whether transient effects can be neglected. Most ther-
mal processes are time-dependent, but for several practical circumstances, they may be approxi-
mated as steady. Thus, even though the hot rolling process, sketched in Figure 1.10(d), starts out as 
a transient problem, it generally approaches a steady-state condition as time elapses. Similarly, the 
solar heat flux incident on the wall of a house clearly varies with time. Nevertheless, over certain 
short periods, it may be approximated as steady. Several such processes may also be treated as peri-
odic, with the conditions and variables repeating themselves in a cyclic manner.

Two main characteristic time scales need to be considered. The first, τr , refers to the response 
time of the material or body under consideration, and the second, τc, refers to the characteristic time 
of variation of the ambient or operating conditions. Therefore, τc indicates the time over which the 
conditions change. For instance, it would be zero for a step change and the time period τp for a peri-
odic process, where τp = 1/f, f being the frequency. As mentioned in Chapter 2 and discussed later 
in this chapter, the response time τr for a uniform-temperature (lumped) body subjected to a step 
change in ambient temperature for convective cooling or heating is given by the expression
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where ρ is the density, C is the specific heat, V is the volume of the body, A is its surface area, and h 
is the convective heat transfer coefficient. Several important cases can be obtained in terms of these 
two time scales, as follows:

1. τc is very large, i.e., τc →∞: In this case, the conditions may be assumed to remain unchanged 
with time and the system may be treated as steady state. At the start of the process, the 
variables change sharply over a short time and transient effects are important. However, 
as time increases, steady-state conditions are attained. Examples of this circumstance are 
the extrusion, wire drawing, and rolling processes, as sketched in Figure 3.6(a). Clearly, 
as the leading edge of the material moves away from the die or furnace, steady-state condi-
tions are attained in most of the region away from the edge. Thus, except for the starting 
transient conditions and in a region close to the edge, the system may be approximated as 
steady. A similar situation arises in many practical systems where the initial transient is 
replaced by steady conditions at large time; for instance, in the case of an initially unheated 
electronic chip that is heated by an electric current and finally attains steady state due to 
the balance between heat loss to the environment and the heat input [see Figure 3.6(b)]. The 
transient terms, which are of the form ∂φ/∂τ, where φ is a dependent variable, are dropped 
and the steady-state characteristics of the system are determined.

2. τc ≪ τr: In this case, the operating conditions change very rapidly, as compared to the 
response of the material. Then the material is unable to follow the variations in the operat-
ing variables. An example of this is a deep lake whose response time is very large com-
pared to the fluctuations in the ambient medium. Even though the surface temperature may 
reflect the effect of such fluctuations, the bulk fluid is expected to show essentially no effect 
of temperature fluctuations. Then the system may be approximated as steady with the 
operating conditions taken at their mean values. Such a situation arises in many practical 
systems due to rapid fluctuations in the heat input or the flow rate, while the mean values 
remain unchanged. If the mean value itself varies with time, then the characteristic time of 
this variation is considered in the modeling. In addition, if the operating conditions change 
rapidly from one set of values to another, the system goes from one steady-state situation 
to another through a transient phase. Again, away from this rapid variation, the problem 
may be treated as steady.

3. τr ≪ τc: This refers to the case where the material or body responds very quickly but 
the operating or boundary conditions change very slowly. An example of this is the slow 
variation of the solar flux with time on a sunny day and the rapid response of the collector. 
Similarly, an electronic component responds very rapidly to the turning on of the system, 
but the walls of the equipment and the board on which it is located respond much more 
slowly. Another example is a room that is being heated or cooled. The walls respond very 
slowly as compared to the items in the room and the air. It is then possible to take the 

FIGURE 3.6 Attainment of steady-state conditions at large time. (a) Modeling of heated moving material, 
and (b) temperature variation of an electronic chip heated electrically.
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surroundings as unchanged over a portion of the corresponding response time. Therefore, 
in such cases, the transport may be modeled as quasi-steady, with the steady problem being 
solved at different times. This implies that the part or system goes through a sequence of 
steady states, each being characterized by constant operating or environmental conditions. 
Figure 3.7 shows a sketch of such quasi-steady modeling. This is a frequently employed 
approximation in time-dependent problems, because many practical systems involve such 
slowly varying operating, boundary, or forcing conditions.

4. Periodic processes: In many cases, the behavior of the thermal system may be repre-
sented as a periodic process, with the characteristics repeating over a given time period τp.  
Environmental processes are examples of this modeling because periodic behavior over 
a day or over a year is of interest in many of these systems. The modeling of solar energy 
collection systems, for instance, involves both the cyclic nature of the process over a day 
and night sequence, as well as over a year. Long-term energy storage, for instance, in salt-
gradient solar ponds or in large water tanks, is considered as cyclic over a year. Similarly, 
many thermal systems undergo a periodic process because they are turned on and off over 
fixed periods. The main requirement of a periodic variation is that the temperature and 
other variables repeat themselves over the period of the cycle, as shown in Figure 3.8(a) 
for the temperature of a natural water body such as a lake. In addition, the net heat transfer  
over the cycle must be zero because, if it is not, there is a net gain or loss of energy. 

FIGURE 3.7 Replacement of the ambient temperature variation with time by a finite number of steps, with 
the temperature held constant over each step.

FIGURE 3.8 Periodic temperature variation in (a) a natural lake over the year, and (b) a body subjected sud-
denly to a periodic variation in the heat input.
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This would result in a consequent increase or decrease of temperature with time and a 
cyclic behavior would not be obtained. These conditions may be represented as

 Q d

p

∫ ( )τ τ =
τ

0
0

 (3.2)

 T T p( ) ( )=τ τ+τ  (3.3)

where Q(τ) is the total heat transfer rate from a body as a function of time τ. For a deep lake 
with a large surface area, Q(τ) is essentially the surface heat transfer rate because very little 
energy is lost at the bottom or at the sides. Either one of the above conditions may be used 
in the modeling of a periodic process.

The main advantage of modeling a system as periodic is that results need to be 
obtained only over the time of a cycle. The conditions given by Equation (3.2) and 
Equation (3.3) can be used for validation as well as for the development of the numeri-
cal code. Frequently, the system undergoes a starting transient and finally attains a 
periodic behavior. This is typical of many industrial systems that are operated over 
fixed periods following a startup. Figure 3.8(b) shows the typical temperature varia-
tion in such a process. The time-dependent terms are retained in the equations and the 
problem is solved until the cyclic behavior of the system is obtained. Because of the 
periodic nature of the process, analytical solutions can often be obtained, particularly 
if the periodic process can be approximated by a sinusoidal variation (Gebhart, 1971; 
Eckert and Drake, 1972).

5. Transient: If none of the above approximations is applicable, the system has to be mod-
eled as a general time-dependent problem with the transient terms included in the model. 
Because this is the most complicated circumstance with respect to time dependence, 
efforts should be made, as outlined above, to simplify the problem before resorting to 
the full transient, or dynamic, modeling. However, there are many practical systems, 
particularly in materials processing and manufacturing, that require such a dynamic 
model because transient effects are crucial in determining the quality of the product and 
in the control and operation of the system. Heat treatment and metal casting systems are 
examples in which a transient model is essential to study the characteristics of the system 
for design.

3.3.1.2 Spatial Dimensions
This consideration refers to the number of spatial dimensions needed to model a given system. 
Though all practical systems are three-dimensional, they can often be approximated as two- or 
one-dimensional to considerably simplify the modeling. Thus, this is an important simplification 
and is based largely on the geometry of the system under consideration and on the boundary condi-
tions. As an example, let us consider the steady-state conduction in a solid bar of length L, height H, 
and width W, as shown in Figure 3.9. Let us also assume that the thermal boundary conditions are 
uniform, though different, on each of the six surfaces of the solid. Now the temperature distribution 
within the solid T(x, y, z), where x, y, z are the three coordinate distances, as shown, is governed by 
energy balance given by the following partial differential equation, if the thermal conductivity is 
constant and no heat source exists in the material:
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This equation may be generalized by using the dimensionless variables
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= = = θ =  (3.5)

to yield the dimensionless equation
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where Tref is a reference temperature and may simply be the ambient temperature or the temperature 
at one of the surfaces. Other definitions of the nondimensional variables, particularly for θ, are used 
in the literature.

With this nondimensionalization, the second derivative terms in Equation (3.6) are all of the 
same order of magnitude because X, Y, and Z all vary from 0 to 1, and the variation in θ is also on 
the order of 1. Then, the magnitude of each term in this equation is determined by the magnitude 
of the coefficient. It can be seen that if L2/W 2 ≪ 1, the last term in Equation (3.6) becomes small 
and may be neglected, making the problem two-dimensional, with the temperature a function of 
only x and y, i.e., T(x,y). If, in addition, L2/H2 is also much less than one, the second term may also 
be neglected, making the problem one-dimensional, with the temperature varying only with x, i.e., 
T(x). Thus, the problem can be simplified considerably if the region of interest is much larger in one 
dimension as compared to the others with uniform boundary conditions at the surfaces.

Similarly, cylindrical configurations can be modeled as axisymmetric, i.e., symmetric about the 
axis, with the temperature and other dependent quantities varying only with the radial coordinate 
r and the axial coordinate z. If the cylinder is also very long, i.e., L/R ≫ 1, where L is the length and 
R the radius, the problem becomes one-dimensional in r. Spherical regions can also be frequently 
approximated as one-dimensional radial problems. Similar results are obtained by using scale anal-
ysis, which is based on a consideration of the scales of the various quantities involved (Bejan, 1993).

The modeling of a given system as one-dimensional, two-dimensional, or axisymmetric, even 
though it is actually a three-dimensional problem, is an important simplification in modeling and 
is frequently used (Bergman et al., 2017). The approximation of a fin or an extended surface in heat 
transfer as one-dimensional, by assuming negligible temperature variation across its thickness, is 
commonly employed. Similarly, convective transport from a wide flat plate is modeled as two-
dimensional and the developing flow in circular tubes as axisymmetric, leading to the results being 
independent of the angular position. Three-dimensional modeling is generally avoided unless abso-
lutely essential because of the additional complexity in obtaining a solution to the basic equations. 
In addition, results from a three-dimensional model are not easy to interpret and special techniques 
are often needed just to visualize the flow and the temperature field. It is difficult to determine 
the exact values of the parameters, such as L2/W2 and L2/H2 (or correspondingly L/W and L/H) in 

FIGURE 3.9 Three-dimensional conduction in a solid block.
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Equation (3.6), for which these approximations may be made for an arbitrary system. However, if 
these parameters are typically of order 0.1 or less, the approximations are expected to result in neg-
ligible loss of accuracy in the solution.

3.3.1.3 Lumped Mass Approximation
The preceding consideration may be continued to obtain a particularly simple model, termed as the 
lumped mass approximation. In this model, which is extensively used and is thus an important cir-
cumstance, the temperature, species concentration, or any other transport variable is assumed to be 
uniform within the domain of interest. Thus, the variable is lumped and no spatial variation within 
the region is considered. For steady-state conditions, algebraic equations are obtained instead of 
differential equations. Most thermodynamic systems, such as air conditioning and refrigeration 
equipment, internal combustion engines, and power plants, are analyzed assuming the conditions in 
the different components as uniform and, thus, as lumped (see Cengel and Boles, 2014).

For transient problems, the variables change only with time, resulting in ordinary differential 
equations instead of partial differential equations. Consider, for instance, a heated body at an initial 
temperature of To cooling in an ambient medium at temperature Ta by convection, with h as the con-
vective heat transfer coefficient. Then, if the temperature T is assumed to be uniform in the body, 
the energy equation is the one that was given earlier in Example 2.5 and may be rewritten as

 CV
dT

d
hA T Ta( )ρ

τ
= − −  (3.7)

where the symbols were defined earlier for Example 2.5 and for Equation (3.1). If the temperature 
difference (T − Ta) is substituted by θ, the energy equation and its solution are obtained as

 CV
d

d
hAρ θ

τ
= − θ (3.8)
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oexpθ = θ − τ

ρ





 (3.9)

where θo = To − Ta. The quantity ρCV/hA represents a characteristic time and is the time needed for the 
temperature difference from the ambient, T − Ta, to drop to 1/e of its initial value, where e (= 2.71828) 
is the base of the natural logarithm. This e-folding time is also known as the response time of the body, 
as given earlier in Equation (3.1). This model and the corresponding temperature variation are shown 
in Figure 3.10.

The applicability of the lumped body approximation is based on the ratio of the conductive 
resistance to the convective resistance for such a heat transfer process. If this ratio is much smaller 

FIGURE 3.10 Lumped mass approximation of a heated body undergoing convective cooling.



110 Design and Optimization of Thermal Systems

than 1.0, the convective resistance dominates and the temperature variation in the material is 
negligible compared to that in the fluid. This ratio is expressed in terms of the Biot number Bi, where 
Bi = hL/k, L being the characteristic dimension given by V/A. Thus, if Bi ≪ 1, the lumped mass 
approximation may be used. Usually, a value of around 0.1 or less for Bi is adequate for this approxi-
mation. For conduction in layers of different materials, the corresponding thermal resistances may 
be calculated to determine if any of these could be approximated as lumped. For instance, a thin, 
highly conducting layer may be treated as lumped.

For radiative transport processes, an equivalent convective heat transfer coefficient hr can often 
be derived to determine the Biot number and whether the lumped mass approximation is applicable. 
For instance, if the radiative heat transfer between two bodies at temperatures T1 and T2 varies as 

S T T ,1
4

2
4( )−  where S is a constant, this may be written as S T T T T T T( ) ( ) ( )+ +  −. .1

2
2
2

1 2 1 2 , which 
may be approximated as ST T Tavg ( )−4 3

1 2 , if T1 and T2 are close to each other. Then, the equivalent 
convective heat transfer coefficient is STavg4 3 , where Tavg is the average of T1 and T2. Similarly, other 
heat transfer processes may be approximated.

The lumped mass approximation is used frequently in modeling because of the considerable 
simplification it generates and also because it accurately represents the process in many cases. A 
spherical metal ball being heat treated, a well-mixed water tank for hot water storage, the hot upper 
layer in a room fire that is often turbulent and well mixed, and a heated electronic component in an 
electrical circuit are all examples where the lumped mass approximation may be applicable.

The model may be used for other thermal boundary conditions as well, for instance, a constant 
heat flux input q or a combined convective-radiative heat loss, giving rise to the following equations:

 CV
dT

d
qAρ

τ
=  (3.10)

 CV
dT

d
hA T T A T Ta

4
surr
4( )( )ρ

τ
= − − − εσ −  (3.11)

where ε is the surface emissivity, σ is the Stefan-Boltzmann constant, and Tsurr represents the tem-
perature of the surrounding environment. This simple radiative transport equation applies for a 
gray and diffuse body surrounded by a large or black enclosure. The first equation yields a linear 
variation of T with time for constant q and the second equation is a nonlinear equation that may be 
solved analytically or numerically.

3.3.1.4 Simplification of Boundary Conditions
Most practical systems and processes involve complicated, nonuniform, and time-varying boundary 
conditions. However, considerable simplification can be obtained, without significant loss of accu-
racy or generality, by approximating the boundaries as smooth, with simpler geometry and uniform 
conditions, as sketched in Figure 3.11. Thus, roughness of the surface is neglected unless interest 
lies in scales of that size or the effect of roughness is being investigated. The geometry may be 
approximated in terms of simpler configurations such as flat plate, cylinder, or sphere. The human 
body is, for example, often approximated as a vertical cylinder for calculating the heat transfer from 
it. A large cylinder is itself approximated as a flat surface for convective transport if the thickness of 
the boundary layer δ adjacent to the surface is much smaller than the diameter D of the cylinder, i.e., 
δ/D ≪ 1. Conditions that vary over the boundaries or with time are often approximated as uniform 
or constant to considerably simplify the model.

Isothermal and uniform heat flux surfaces are rarely obtained in practice. However, a given 
temperature distribution over a boundary may be replaced by the average value if the ampli-
tude of the variation in temperature, ΔT, is small compared to the mean Tavg, i.e., ΔT/Tavg ≪ 1. 
Similar considerations may be applied to the surface heat flux and other boundary conditions. 



111Modeling of Thermal Systems

The assumption of uniform flow at the inlet to a circular tube or channel is commonly employed, 
while keeping the total flow rate at a specified value. The velocity distribution at the inlet is not 
very important for a long channel because the flow develops rapidly downstream. However, all 
such approximations must keep the total energy input, flow rate, etc., the same as those for the 
given profile. Such simplifications of the boundary conditions not only reduce the complexity 
of the model, but also make it easier to understand and generalize the results obtained from 
the model.

3.3.1.5 Negligible Effects
Major simplifications in the mathematical modeling of thermal systems are obtained by neglecting 
effects that are relatively small. Estimates of the relevant quantities are used to eliminate consider-
ations that are of minor consequence. For instance, estimates of convective and radiative loss from 
a heated surface may be used to determine if radiation effects are important and need to be included 
in the model. If Qc and Qr are the convective and radiative heat transfer rates, respectively, these 
may be estimated for a surface of area A as

 Q hA T T Q A T Tc a r( ) and 4
surr
4( )= − = εσ −  (3.12)

where given or expected values of the surface temperature T may be employed to estimate the 
relative magnitudes of these transport rates. Clearly, at relatively low temperatures, the radia-
tive heat transfer may be neglected and at high temperatures it may be the dominant mecha-
nism. Such estimates are often based on available information from other similar processes 
and systems to quantify the range of variation of the relevant quantities, such as temperature 
in this case.

Similarly, the change in the volume of a material as it changes phase from, say, liquid to solid, 
may be neglected in several cases if this change is small. Changes in dimensions due to temperature 
variation are usually neglected, unless these changes are significant or lead to an important con-
sideration in the problem. Potential energy effects are usually neglected, compared to the kinetic 
energy changes, in a gas turbine. Such approximations are well-known and extensively used in fluid 
mechanics, heat transfer, and thermodynamics.

FIGURE 3.11 Several commonly used approximations. (a) Uniform flow at inlet to a channel; (b) uniform 
surface heat flux; (c) negligible curvature effects; and (d) negligible effect of surface roughness.
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3.3.1.6 Idealizations
Practical systems and processes are certainly not ideal. Undesirable energy losses, friction forces, 
fluid leakages, contact thermal resistance, and so on, affect the system behavior. However, idealiza-
tions are usually made to simplify the problem and to obtain a solution that represents the best per-
formance. Actual systems may then be considered in terms of this ideal behavior and the resulting 
performance given in terms of efficiency, coefficient of performance, or effectiveness. For instance, 
thermodynamic devices, such as turbines, compressors, pumps, and nozzles, are analyzed as ideal 
and then the efficiency of the device is used to obtain results for the actual systems. Heat losses are 
often neglected in modeling heat exchangers and the performance of an ideal system is studied. 
Frictional losses are neglected to simplify the model for many systems with moving parts, again 
using a performance-related factor to characterize an actual system. Similarly, supports are often 
taken as perfectly rigid and walls with insulation as perfectly insulated. A change that occurs over 
a short period of time is frequently idealized as a step change. For instance, a step change is often 
assumed for the heat flux, temperature, or convective condition at the surface of a body being heated 
in a furnace or by a hot fluid. The fluid around a heated body is idealized as being extensive if the 
extent of the region is large compared to the heat transfer region. In all these cases, idealizations are 
made to simplify the model, focus on the main considerations, and avoid aspects that are often dif-
ficult to characterize such as frictional effects, leakages, and contact resistance. Figure 3.12 shows 
the schematics of some of the idealizations used in mathematical modeling.

3.3.1.7 Material Properties
For a satisfactory mathematical modeling of any thermal system or process, it is important to employ 
accurate material property data. The properties are usually dependent on physical variables such 
as temperature, pressure, and species concentration. In polymeric materials such as plastics, the 
viscosity of the fluid also depends on the shear rate and thus on the flow field. Even though the proper-
ties vary with temperature and other variables, they can be taken as constant if the change in the prop-
erty, say thermal conductivity k, is small compared to the average value kavg, i.e., Δk/kavg ≪ 1. Here, 
the change in the property is evaluated over the anticipated range of variables that affect the property.

FIGURE 3.12 Idealizations used in mathematical modeling. (a) Ideal turbine behavior; (b) step change in 
heat flux; and (c) perfectly insulated outer surface of a heat exchanger.
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However, in many practical circumstances the constant property approximation cannot be made 
because of large changes in these variables. In such cases, curve fitting is often used to represent 
the variation of the relevant properties. For instance, the variation of the thermal conductivity with 
temperature may be represented by a function k(T), where

 k T k a T T b T To o o( ) [1 ( ) ( ) ]2= + − + −  (3.13)

Here, ko is the thermal conductivity at a reference temperature To and a and b are constants 
obtained from the curve fitting of the experimental data on this property at different temperatures. 
Higher order polynomials and other algebraic functions may also be used to represent the property 
data. Similarly, curve fitting may be used for other properties such as density, specific heat, and 
viscosity. Such equations are very valuable in the mathematical modeling of thermal systems and in 
numerical modeling and simulation.

3.3.1.8 Conservation Laws
The conservation laws for mass, momentum, and energy form the basis for deriving the fundamen-
tal equations for thermal systems and processes. The equations are simplified by using the various 
considerations given in the preceding discussion. The resulting equations may be algebraic, dif-
ferential, or integral.

Algebraic equations arise mainly from curve fitting, such as Equation (3.13), and also apply for 
steady-state, lumped systems. As mentioned earlier, thermodynamic systems are often approximated 
as steady and lumped (Howell and Buckius, 1992; Cengel and Boles, 2014), resulting in algebraic 
governing equations. In some cases, overall or global balances also lead to algebraic equations. For 
instance, the energy balance at a furnace wall, under steady-state conditions, yields the equation

 T T h T T
k

d
T Th a s( )4 4( ) ( )εσ − = − + −  (3.14)

from a balance between the radiative heat transfer to the inner surface of the wall and the convective 
and conductive heat losses from the surface. Here, Th is the temperature of the heater radiating to 
the inner surface at temperature T, Ta is the temperature of air adjacent to the inner surface, and Ts 
is the outer surface temperature of the wall. The temperature T at the wall may then be obtained by 
solving Equation (3.14), which is a nonlinear equation and will generally require iterative methods. 
For systems of algebraic equations as well as for a single nonlinear equation, numerical methods are 
generally needed to obtain the solution (Jaluria, 2012).

Differential approaches are the most frequently employed conservation formulation because they 
apply locally, allowing the determination of variations in time and space. Ordinary differential 
equations arise in a few idealized situations for which only one independent variable is consid-
ered. Therefore, if the lumped mass assumption can be applied and transient effects are important, 
Equation (3.7), Equation (3.10), and Equation (3.11) would be the relevant energy equations. If sev-
eral lumped mass systems are considered as constituents of a thermal system, a set of simultaneous 
ordinary differential equations arises. For instance, the temperatures T1, T2, T3, …, Tn of n compo-
nents of a given system are represented by a system of equations of the form

 



dT
d

F T T T T

dT
d

F T T T T

dT
d

F T T T T

n

n

n
n n

, , , , ,

, , , , ,

, , , , ,

1
1 1 2 3

2
2 1 2 3

1 2 3

( )

( )

( )

τ
= … τ

τ
= … τ

τ
= … τ

 (3.15)



114 Design and Optimization of Thermal Systems

where the F variables are functions of time and the temperatures and thus couple the equations. 
These equations can be solved numerically to yield the temperatures of the various components as 
functions of time τ (see Example 2.6).

Partial differential equations are obtained for distributed models. Thus, Equation (3.4) is the 
applicable energy equation for three-dimensional, steady conduction in a material with constant 
properties. Similarly, one-dimensional transient conduction in a wall, which is large in the other two 
dimensions, is given by the equation

 C
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= ∂
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  (3.16)

if the material properties are taken as variable. For constant properties, the equation becomes
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where α = k/ρC is the thermal diffusivity. Similarly, equations for two- and three-dimensional cases 
may be written.

For convective transport, the flow field affects the thermal transport and the energy equation is 
obtained for a two-dimensional, constant-property, transient problem, with negligible viscous dis-
sipation and pressure work, as
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where Cp is the specific heat of the fluid at constant pressure and u and v are the velocity com-
ponents in the x and y directions, respectively. Convective transport equations are derived, 
presented, and discussed in most books on heat transfer, particularly those on convective heat trans-
fer (Burmeister, 1993). Partial differential equations that describe most practical thermal systems 
are amenable to a solution by analytical methods in very few cases and numerical methods are gen-
erally necessary. Finite-difference and finite-element methods are the most commonly employed 
techniques for partial differential equations. Ordinary differential equations can often be solved 
analytically, particularly if the equation is linear.

The integral formulation is based on an integral statement of the conservation laws and may 
be applied to a small finite region, from which the finite-element and finite-volume methods are 
derived, or to the entire domain. For instance, conduction in a given region is governed by the inte-
gral equation

 C TdV k
T

n
dS q dVp

V S V
∫ ∫ ∫ρ ∂

∂τ
= ∂

∂
+ ′′′  (3.19)

where V is the volume of the region, A is its surface area, q′′′ is an energy source per unit volume in 
the region, and n is the outward drawn normal to the surface. This integral equation states that the rate 
of net energy generated in the region plus the rate of net heat conducted into the region at the surfaces 
equals the rate of increase in stored thermal energy in the region. Similar equations may be derived 
for convection in a given domain. Radiative transport often leads to integral equations because energy 
is absorbed over the volume of a participating fluid or material. In addition, the total radiative trans-
port, in general, involves integrals over the area, wavelength, and solid angle. Figure 3.13 shows a few 
examples of integral and differential formulations for the mathematical modeling of thermal systems. 
More is said about the preceding equations as we consider different thermal systems in later chapters.
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3.3.1.9 Further Simplification of the Basic Equations
After the basic equations from conservation principles are assembled, along with the relevant 
boundary conditions, employing the various approximations and idealizations outlined here, further 
simplification can sometimes be obtained by a consideration of the various terms in the equations 
to determine if any of them can be neglected. This is generally based on a nondimensionalization of 
the equations and evaluation of the important parameters, as given earlier in Equation (3.6).

For instance, the cooling of an infinite heated rod moving continuously at speed U along the 
axial direction x [Figure 1.10(d) and Figure 3.6(a)] is given by the dimensionless equation
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where ∇2 is the Laplacian operator in cylindrical coordinates, similar to x y
+∂

∂
∂

∂

2

2

2
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dimensional Cartesian system that would apply for a moving flat plate that is wide in the third 
direction z, see the right hand side of Equation (1.8). The energy equation is nondimensionalized 
by the rod diameter D, and the Peclet number Pe is given by Pe = UD/α. The dimensionless tem-
perature θ is defined as θ = T/Tref, where the reference temperature Tref may be the temperature 
at x = 0. Also, dimensionless time τ′ is defined here as τ′ = ατ/D2, where τ is physical time. If 
Pe is very small, Pe ≪ 1, the second term from the left, which represents convective transport 
due to rod movement, may be neglected, reducing the given circumstance to a simple conduction 
problem.

Similarly, at low Reynolds number Re in a flow, Re ≪ 1, where Re = UL/ν, ν being the kinematic 
viscosity and L a characteristic dimension, the inertia or convection terms can be neglected in the 
momentum equation. This is the creeping flow approximation, which is used in film lubrication 
modeling. Several such approximations are well-known and frequently employed in modeling, as 
discussed in standard textbooks on heat transfer, fluid mechanics, thermodynamics, and mechanics.

FIGURE 3.13 Differential formulations. (a) Flow in an enclosed region due to inflow and outflow of the 
fluid; and (b) temperature distribution due to conduction in a solid body. Also shown are a few integral formu-
lations: (c) flow in a pipe and (d) flow through a turbine.
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3.3.1.10 Summary
The preceding discussion gives a step-by-step approach that may be applied to the system or its 
parts in order to develop an appropriate mathematical model. Generally, modeling is first applied to 
the various components and then these submodels are assembled to obtain the overall model for the 
system. In many cases, rigorous proofs and appropriate estimates cannot be easily obtained to deter-
mine if a particular approximation is applicable. In such cases, approximations and simplifications 
are made without adequate justification in order to derive relatively simple mathematical models. 
The results from analysis and numerical solution of these models can then be used to verify if the 
approximations made are valid. In addition, the approximations may be gradually relaxed to obtain 
models that are more accurate. Thus, one may go from simple to increasingly complicated models, 
if needed. Clearly, modeling requires a lot of experience, practice, understanding, and creativity. 
The following simple examples illustrate the use of the approach given here to develop suitable 
mathematical models.

Example 3.1

Consider typical thermodynamic systems, such as
A power plant, shown in Figure 2.17, with the thermodynamic cycle in Figure 2.15(a).
A vapor compression cooling system, shown in Figure 1.8, with the thermodynamic cycle in 

Figure 2.21.
An internal combustion engine, with the thermodynamic cycle in Figure 2.15(b).
Discuss the development of simple mathematical models for these in order to calculate the 

energy transport rates and the overall performance.

SOLUTION

In all of these commonly used systems, as well as in many others like them, the major focus 
is on the heat input or removal rate and on the work done. Many of the details, such as the 
temperature and velocity distributions in the various components, are not critical. Similarly, 
though the transients are important in controlling the system as well as at startup and shut-
down, the system performance under steady operation is of particular interest for system 
analysis and design.

Keeping the preceding considerations in mind, the two main assumptions that can be made for 
each component are:

Steady-state conditions
Lumped flow and temperature

This implies that time dependence is neglected and uniform conditions are assumed to exist 
within each component. Energy loss to or gain from the environment may be neglected for ideal-
ized conditions, which will yield the best possible performance and can thus be used for calculat-
ing the efficiency of actual systems.

Then, considering the vapor compression system of Figure 2.21, we obtain for a mass flow 
rate of m

Heat rejected at the condenser = m (h2 − h3)
Heat removed at the evaporator = m (h1 − h4)
Work done on the compressor = m (h2 − h1)

These expressions yield the coefficient of performance (COP), given in Equation (2.19), as 
(h1 − h4)/(h2 − h1).

Similarly, for the power plant given by the cycle in Figure 2.15(a), the heat input in the boiler or 
condenser is m (hout − hin) and work done by the turbine or the pump is m (hin − hout), where in and 
out refer to conditions at the inlet and outlet of the component. Thus, boiler heat input is positive, 
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condenser heat input is negative (heat rejected), work done by the turbine is positive, and work 
done by the pump is negative (work done on the pump).

The internal combustion engine and other thermodynamic systems may be similarly analyzed 
to yield the net heat input and work done, allowing subsequent design and optimization of the 
system. The design considerations are discussed in Chapter 5.

Example 3.2

For common heat exchangers, such as the parallel and counterflow heat exchangers shown in 
Figure 1.5, discuss the development of a simple mathematical model to analyze the system.

SOLUTION

In heat exchangers, the main physical aspect of interest is the overall heat transfer between the 
two fluids. Though the flow rates and inlet/outlet temperatures are of interest, the velocity and 
temperature distributions at various cross-sections of the heat exchanger are generally of little 
interest. Similarly, transient aspects, although important in some cases, are usually not critical. 
Thus, energy transfer under steady flow, as a function of the operating conditions and the heat 
exchanger design, is generally needed. With this in mind as the major consideration, we can 
assume the following:

The flow is lumped across the cross-sections of the channels or tubes.
The temperature is also uniform across these cross-sections.
Steady-state conditions exist.
The conduction along the axis is neglected.

With these assumptions, the temperature in, say, the inner tube or channel of the heat exchangers 
in Figures 1.5(a) and (b) varies only with distance in the axial direction. The overall energy balance is

 m C T T Qc p c c out c in, , , ( )− =

where Q is the rate of heat input to the colder fluid, indicated by the subscript c, over the entire 
length. If energy loss to the ambient is neglected, we have for the hotter fluid, which is indicated 
by subscript h,

 m C T T Qh p h h in h out, , , ( )− =

In addition, the total heat transfer Q may be written as

 Q q A q DL h A T Th c  ( )   ( )= = π = −

where q is the heat flux per unit area due to the difference in the bulk temperatures, Th and Tc , 
respectively, of the hot and cold fluids, A is the contact area, being πDL for a tube of diameter D 
and length L, and h is the convective heat transfer coefficient. Further details on the analysis and 
design of such heat exchangers are discussed in Chapter 5.

Example 3.3

In the design of a hot water storage system, it is given that a steady flow of hot water at 75°C 
and a mass flow rate m of 113.1 kg/h enters a long circular pipe of diameter 2 cm, with convec-
tive heat loss at the outer surface of the pipe to the ambient medium at 15°C with a heat transfer 
coefficient h of 100 W/m2K. The density ρ, specific heat at constant pressure Cp, and thermal 
conductivity k of water are given as 103 kg/m3, 4200 J/kgK, and 0.6 W/mK, respectively. Develop 
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a simple mathematical model for this process and calculate the water temperature after the flow 
has traversed 10 m of pipe.

SOLUTION

The problem can be simplified considerably by assuming steady-state conditions and lumped 
velocity and temperature conditions across any cross-section of the pipe. This approximation 
applies for turbulent flow in a pipe of relatively small diameter. In addition, interest lies in the 
average temperature at any given x, where x = 0 is the inlet and x is the distance along the pipe, as 
shown in Figure 3.14. The average velocity U in the flow is

 U
m

D
m s

/4 3600
0.1 /

2



( )=
ρ π

=

where D is the pipe diameter. The Reynolds number Re = UD/ν = (0.1)(0.02)/(5.5 × 10−7) = 3636. 
Turbulent flow arises in the pipe at this high value of the Reynolds number. The Peclet number 
Pe = UD/α = (0.1)(0.02)/(1.5 × 10−7) = 1.3 × 104. Therefore, convection dominates and axial diffu-
sion effects may be neglected; see Equation (3.20).

With the above approximations, the governing equation for the temperature T(x) is obtained 
from energy balance over a region of length Δx, as shown in Figure 3.14. The reduction in thermal 
energy transported in the pipe equals the convective loss to the ambient. This gives the decrease 
in temperature ΔT over an axial distance Δx as

 C UA T hP x T Tp a( )ρ ∆ = − ∆ −

Therefore, with Δx → 0, we obtain the differential equation

 C UA
dT
dx

hP T Tp a( )ρ − −

where A is the cross-sectional area (πD2/4) and P is the perimeter (πD). This gives the simple 
mathematical model for this problem. The inlet temperature is given as 75°C and the ambient 
temperature Ta = 15°C. This equation may be solved analytically to give

 hP
C UA

xo
p

expθ = θ −
ρ








where θ = T – Ta and θo is the temperature difference at the inlet, i.e., 60°C. Therefore, at x = 10 m,  
we have

 x60 exp ( 0.0476 ) 60 exp ( 0.476) 37.276θ = − = − =

FIGURE 3.14 Assumption of uniform flow and temperature across the pipe cross-section in Example 3.3.
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Therefore, the temperature at 10 m is 15 + 37.276 = 52.276°C. Clearly, the temperature drops 
very slowly due to the high mass flow rate and relatively small heat loss rate. This is a simple 
model and is easy to solve. Models very similar to this one are frequently used for analysis of flow 
and heat transfer in pipes and channels, for example, in the design of residential heating and cool-
ing systems and of car radiators.

The preceding three examples present relatively simple models of some commonly encoun-
tered thermal systems. These included thermodynamic systems like refrigeration and air condi-
tioning systems and flows through channels as in heat exchangers. Steady-state conditions could 
be assumed in these cases, along with lumping to further simplify the models. The resulting 
models yielded algebraic equations and first-order ordinary differential equations, which could be 
easily solved analytically to yield the desired results. However, many practical thermal systems 
are more involved than these and spatial and temporal variations have to be considered. Then the 
resulting equations are partial differential equations, which generally require numerical methods 
for the solution. In a few cases, the partial differential equations can be simplified or idealized 
to obtain ordinary differential equations, which may again be solved analytically. The follow-
ing two examples illustrate such problems that would generally need numerical methods for the 
solution and that may be idealized to obtain analytical results in some cases for validation of the 
numerical scheme.

Example 3.4

A large cylindrical gas furnace, 3 m in diameter and 5 m in height, is being simulated for design and 
optimization. Its outer wall is made of refractory material, covered on the outside with insulation, 
as shown in Figure 3.15. The wall is 20 cm thick and the insulation is 10 cm thick. The variations of 

FIGURE 3.15 The cylindrical furnace, with the wall and insulation, considered in Example 3.4.
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the thermal conductivity k, specific heat at constant pressure Cp, and density ρ of the wall material 
with temperature are represented by best fits to experimental data on properties as
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where ΔT is the temperature difference from a reference temperature of 300 K and all the values 
are in S.I. units. The temperature difference across the wall is not expected to exceed 200 K. The 
properties of the insulation may be taken as constant. Develop a mathematical model for the 
time-dependent temperature distribution in the wall and in the insulation. Solve the energy equa-
tions for the temperature distribution in the idealized steady-state circumstance, with the thermal 
conductivity of the insulation given as 1.0 W/mK, temperature (Tw)1 at the inner surface of the wall 
as 500 K, and temperature (Ti)2 at the outer surface of the insulation as 300 K.

SOLUTION

The ratio of the wall thickness to the furnace diameter is 0.2/3.0, which gives 0.067. Similarly, the 
ratio of the insulation thickness to the furnace diameter is 0.1/3, or 0.033. Because both of these 
ratios are much less than 1.0, the curvature effects can be neglected, i.e., the wall and insulation 
may be treated as flat surfaces.

The ratio of the furnace height to the wall thickness is 5.0/0.2, or 25, and that to the insulation 
thickness is 50. In addition, the circumference is much larger than these thicknesses. If there is 
good circulation of gases in the furnace, the thermal conditions on the inner surface of the wall 
can be assumed uniform. Then, the wall, as well as the insulation, may be modeled as one-
dimensional, with transient diffusion occurring across the thickness and uniform conditions in the 
other two directions.

The material properties are given as constant for the insulation. However, these vary with 
temperature for the wall material. Considering a maximum temperature difference of 200 K 
across the wall, the ratios Δk/ko, ΔCp  /(Cp)o, and Δρ/(ρ)o may be calculated as 0.3, 0.02, and 0.012, 
respectively, where Δk, ΔCp, and Δρ are the differences in these quantities due to the temperature 
difference. The reference values ko, (Cp)o, and ρo are used instead of the average values because 
the actual temperature levels are not known. From these calculations, it is evident that the varia-
tions of Cp and ρ with temperature may be neglected over the temperature range of interest. 
However, the variation of k is important and must be included.

The energy equations for the wall and the insulation are thus obtained as, respectively,
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where the corresponding temperatures and material properties are used, denoted by subscripts w 
and i for the wall and the insulation, respectively, and x is the coordinate distance normal to the 
surface, i.e., in the radial direction for the furnace; see Figure 3.16. Heat transfer conditions at the 
inner and outer surfaces of the wall-insulation assembly give the required boundary conditions for 
these equations. In addition, at the interface between the wall and the insulation, the following 
conditions apply

 T T k
T
x

k
T
x

w i w
w

i
iand= ∂

∂
= ∂

∂

Therefore, the governing equations for the wall and the insulation may be solved, with the 
appropriate boundary conditions, to yield the time-dependent temperature distributions in these 
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two parts of the thermal system. Because of the variation of kw with temperature, the two par-
tial differential equations, which are coupled through the boundary conditions, are nonlinear. 
Therefore, numerical modeling will generally be needed to solve these equations.

The simpler steady-state problem, with temperatures specified at the inner and outer surfaces 
of the wall-insulation combination, is an idealized circumstance and may be solved analytically. 
The equations that apply in the wall and the insulation for this case are
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These equations may be solved analytically to yield

 T
dT
dx

C T C x Cw
w

i2.2 1 0.0015 and1 2 3( )+ = = +

or

 T
T

C x Cw
w2.2 0.0033
2

2

1 4+ = +

All the temperatures may be taken as differences from the reference value of 300 K to simplify 
the analysis. The C’s are constants to be determined from the boundary conditions shown in 
Figure 3.16. At the interface, the heat flux and the temperature in the two regions match, as given 
previously. The temperature distribution in the insulation is linear, with 0 K temperature difference 
from the reference value at the outer surface. The temperature distribution in the wall is nonlinear, 

FIGURE 3.16 Boundary conditions and analytical solution obtained for the steady-state circumstance in 
Example 3.4.
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with 200 K difference from the reference at the inner surface. The temperature distributions, 
in terms of the temperature difference from the reference value and denoted by overbars, are 
obtained as

 2.2 0.0033
2

1152.7 160.19 and  1152.7
2

+ = + =T
T

x T xw
w

i

These equations give the interface excess temperature as 115.27 K. Therefore, the actual tem-
perature at the interface is 300 + 115.27 = 415.27 K. The heat flux is obtained as 1152.7 W/m2. The 
calculated temperature distribution is sketched in Figure 3.16.

Example 3.5

A hot water storage system consists of a vertical cylindrical tank with its height L to diameter D  
ratio given as 8, the diameter being 40 cm. The tank is made of 5-mm-thick stainless steel. 
Hot water from a solar energy collection system is discharged into the tank at the top and 
withdrawn at the bottom for recirculation through the collector system. The tank loses energy 
to the ambient air at temperature Ta with a convective heat transfer coefficient h at the outer 
surface of the tank wall. The temperature range in the system may be taken as 20°C to 90°C. 
Develop a mathematical model for the storage tank to determine the temperature distribution 
in the water. Also use nondimensionalization to obtain the main parameters. Then solve the 
steady-state problem.

SOLUTION

The temperature range being relatively small, the variation in material properties may be taken 
as negligible because parameters such as Δρ/ρavg, Δk/kavg, etc., where ρ is the density and k is the 
thermal conductivity, are much less than 1.0. Because of the thinness of the stainless steel wall 
and its high thermal conductivity compared to water, the ratio being 23.59, the energy storage and 
temperature drop in the wall may be neglected compared to those in water. This is justified from 
the ratio of the wall thickness, 5 mm, to the tank diameter, 40 cm.

A substantial simplification of the problem is obtained by assuming that the temperature 
distribution across any horizontal cross-section in the tank is uniform. This is based on axi-
symmetry, which reduces the original three-dimensional problem to a two-dimensional one 
and the effect of buoyancy forces that tend to make the temperature distribution horizontally 
uniform. Because hot water is discharged at the top, the water in the tank is stably stratified, 
with lighter warmer fluid lying above colder denser fluid. This curbs recirculating flow in the 
tank and promotes horizontal temperature uniformity. Therefore, the temperature T in the 
water is taken as a function only of the vertical location z, i.e., T(z). The vertical velocity in 
the tank is also taken as uniform across each cross-section, by employing the average value. 
This is obviously an approximation because the velocity at the walls is zero due to the no-slip 
condition. However, the problem is substantially simplified because the flow field is taken 
as a uniform vertical downward velocity, which can easily be obtained from the flow rate. 
Without this simplification, the convective flow has to be determined, making the problem 
far more involved.

The energy equation for thermal transport in the water tank may be written with the above 
simplifications as

 C A
T
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where ρ is the density of the fluid, Cp is its specific heat at constant pressure, τ is the physical 
time, w is the average vertical velocity in the tank, k is the fluid thermal conductivity, A is the 
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cross-sectional area, and P is the perimeter of the tank; see Figure 3.17. The problem is treated 
as transient because the time-dependent behavior is generally important in such energy storage 
systems. The initial and boundary conditions may be taken as

 
T z T

T
z

z T T z

a

o

At 0: ( )

For >0: 0 at L and at 0

τ = =

τ ∂
∂

= = = =

where To is the discharge temperature of hot water. Therefore, a one-dimensional, transient, math-
ematical model is obtained for the hot water storage system. The various assumptions made, 
particularly that of uniformity across each cross-section, may be relaxed later on for more accurate 
simulation. However, under the given conditions, this model is adequate for simulation and design 
of practical hot water storage systems.

The energy equation and the boundary conditions may be nondimensionalized by defining the 
dimensionless temperature θ, time τ′, and vertical distance Z as

 T T
T T L
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Then the dimensionless energy equation is obtained as
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where the two dimensionless parameters W and H are
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FIGURE 3.17 The hot water storage system considered in Example 3.5, along with the simplified model 
obtained.
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Here α is the thermal diffusivity of water. The initial and boundary conditions become
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The equation obtained is a parabolic partial differential equation, which may be solved 
numerically, as discussed in Chapter 4, to obtain the temperature distribution θ(τ′, Z).

Let us now consider the idealized steady-state circumstance obtained at large time and see 
if an analytical solution is possible. Such a solution will be valuable in validating the model and 
providing insight into the resulting temperature distributions. For steady-state conditions, the time 
dependence drops out and a second-order ordinary differential equation is obtained, which may 
be solved analytically or numerically to yield the temperature distribution θ(Z). The energy equa-
tion for this circumstance is

 W
d
dz

d
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2

θ = θ − θ

with the boundary conditions

 Z
d
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Z1 at 0 0 at 1θ = = θ = =

This second-order ordinary differential equation may be solved analytically to yield the solution

 a Z a Zexp exp1 1 2 2( ) ( )θ = α + α

Here, a1, a2, α1 and α2 are constants, given by the expressions
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If W = 0, α1 = H  and α2 = – H . If these values are substituted in the preceding expressions, 
the standard solution for conduction in a fin with an adiabatic end is obtained (Incropera and 
Dewitt, 2001). The solution for this case is
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Therefore, analytical solutions may be obtained in a few idealized circumstances. Numerical 
solutions are needed for most realistic and practical situations. However, these analytical results 
may be used for validating the numerical model. The preceding examples show some simple, as 
well as a few relatively complicated, thermal systems. The corresponding mathematical models 
are obtained and some characteristic results are given. Similar approaches are used for much 
more complex practical systems that may have many more components and subsystems. A few 
such practical systems are considered later in the book.
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3.3.2 FinAl moDel AnD vAliDAtion

The mathematical modeling of a thermal system generally involves modeling of the various com-
ponents and subsystems that constitute the system, followed by a coupling of all these models to 
obtain the final, complete model for the system. The general procedure outlined in the preceding 
may be applied to a component and the applicable equations derived based on various simplifica-
tions, approximations, and idealizations that may be appropriate for the circumstance under con-
sideration. These equations may be a combination of algebraic, differential, and integral equations. 
The differential equations may themselves be ordinary or partial differential equations. Though dif-
ferential equations are the most common outcome of mathematical modeling, algebraic equations 
are obtained for lumped, steady-state systems and from curve fitting of experimental or material 
property data. In the mathematical model of the overall system, one component may be modeled as 
lumped mass, another as one-dimensional transient, and still another as three-dimensional. Thus, 
different levels of simplifications arise in different circumstances.

As an example, let us consider the furnace shown in Figure 3.18. The walls, insulation, heaters, 
inert gas environment, and material undergoing thermal processing may all be considered as com-
ponents or constituents of the furnace. The general procedure for mathematical modeling may be 
applied to each of these components, using physical insight and estimates of the various transport 
mechanisms. Such an approach may indicate that the wall and the insulation can be modeled as one-
dimensional, the gases as fully mixed, and the heaters and the solid body undergoing heat treatment 
as lumped, with all the temperatures being time-dependent. Similarly, the importance of variable 
properties and of radiation versus convection in the interior of the furnace may be evaluated.

Once the final model of the thermal system is obtained, we proceed to obtain the solution of 
the mathematical equations and to study the behavior and characteristics of the system. This is the 
process of simulation of the system under a variety of operating and design conditions. However, 
before proceeding to simulation, we must validate the mathematical model and, if needed, improve 
it in order to represent the physical system more closely. Several approaches may be applied for 
validating the mathematical model and for determining if it provides an accurate representation of 
the given thermal system. Three commonly employed strategies for validation are:

1. Physical behavior of the system. In this approach, the operating, ambient, and other condi-
tions are varied and the effect on the system is investigated. It is ascertained that the behav-
ior is physically reasonable. For instance, if the energy input to the heater in the furnace of 

FIGURE 3.18 An electric furnace for heat treatment of materials.
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Figure 3.18 is increased, the temperature levels are expected to rise. Similarly, if the wall 
or insulation thickness is increased, the temperatures within the furnace must increase due 
to reduced energy losses. An increase in the convective cooling at the outer surface of the 
furnace should lower the temperatures. Thus, the results from the solution of the equations 
that constitute the mathematical model must indicate these trends if the model is a satisfac-
tory representation of the system.

2. Comparison with results for simpler systems. Usually experimental or numerical results 
are not available for the system under consideration. However, the mathematical model 
may be applied to simpler systems that may be studied analytically or experimentally to 
provide the relevant data for comparison. For instance, the model for a solar energy col-
lection system may be applied to a simpler, scaled-down version, which could then be 
fabricated for experimentation. Usually the geometrical complexities of a given system are 
avoided to obtain a simpler version for validation. A fluid or material, whose characteristics 
are well-known, may be substituted for the actual one. For instance, a viscous Newtonian 
fluid such as corn syrup may be substituted for a more complicated non-Newtonian plastic 
material, whose viscosity varies with the shear rate in the flow, in order to simplify the 
model for validation. A fewer number of components of the system may also be considered 
for a simpler arrangement. The experimental study is then directed at validation and spe-
cific, well-controlled experiments are carried out to obtain the required data. However, it 
must be borne in mind that such a simpler system or fluid may lack some of the important 
characteristics of the actual system, thus limiting the value of such a validation.

3. Comparison with data from full-scale systems. Whenever possible, comparisons between 
the results from the model and experimental data from full-scale systems are made in 
order to determine the validity and accuracy of the model. The system available may be an 
older version that is being improved through design and optimization or it may be a system 
similar to the one under consideration. In addition, a prototype of the given system is often 
developed before going into production and this can be effectively used for validation of 
the model. Generally, older versions and similar systems are used first and the prototype 
is used at the final stage to ensure that the model is valid and accurate. In addition to the 
validation approaches given above, it must be remembered that the mathematical model is 
closely coupled with the numerical scheme, the system simulation, and the design evalua-
tion and optimization. Therefore, the model provides important inputs for the subsequent 
processes and obtains feedback from them. This feedback indicates the accuracy of repre-
sentation of the physical system and is used to improve and fine-tune the model. Therefore, 
as we proceed with the simulation and design of the system, the mathematical model is 
also improved so that it very closely and accurately predicts the behavior of the given sys-
tem. Ultimately, a satisfactory mathematical model of the thermal system is obtained and 
this can be used for design, optimization, and control of the system, as well as for develop-
ing models for other similar systems in the future.

The following example illustrates the main aspects for the development of a complete math-
ematical model for a thermal system consisting of several parts or components.

Example 3.6

For the design of an electric heat treatment furnace, consider the system shown in Figure 3.18. For 
the walls and insulation, the thickness is much smaller than the corresponding height and width. 
The flow of gases, which provides an environment of inert gases and nitrogen, is driven by buoy-
ancy and a fan, giving rise to turbulent flow in the enclosed region. The heat source is a thin metal 
strip with imbedded electric heaters. The material being heat-treated is a metal block and is small 
compared to the dimensions of the furnace. This thermal system is initially at room temperature Tr  
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and the material is raised to a desired temperature level, followed by gradual cooling obtained by 
controlling the energy input to the heaters. Discuss and develop a simple mathematical model for 
this system.

SOLUTION

The given thermal system consists of several parts or constituents that are linked to each other 
through energy transport. These parts, with the subscripts used to represent them, are:

1. Metal block, m
2. Heater, h
3. Gases, g
4. Walls, w
5. Insulation, i

Let us first consider each of these components separately and obtain the corresponding conser-
vation equations and boundary conditions. Details are given to illustrate the basic considerations 
needed for model development.

Clearly, the time-dependent variation of the temperature in the material being heat-treated is of 
particular interest, making it necessary to retain the transient effects. Because this piece is made of 
metal and its size is given as small, the Biot number is expected to be small and it may be modeled 
as a lumped mass. If additional information is given, the Biot number may be estimated to check 
the validity of this assumption. Therefore, the energy equation for the metal block may be written, 
using simple radiation analysis, as

 CV
dT
d

h A T T A F T F T Tm
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m m g m m m mh h mw w m( ) ( ) 4 4 4( )ρ
τ

= − + ε σ + −

where ρ, C, V, A, and ε refer to the material density, specific heat, volume, surface area, and sur-
face emissivity, respectively, and hm is the convective heat transfer coefficient at its surface. Fmh 
and Fmw are geometrical view factors between the metal block and the heater and the metal block 
and the wall, respectively, and enclosure radiation analysis is used.

The wall and the heater are taken as black and the energy reflected at the block surface is 
assumed to be negligible, otherwise the absorption factor or radiosity method may be used (Jaluria 
and Torrance, 2003). The gases, being nitrogen and inert gases, are taken as nonparticipating. 
Only the initial condition is needed for this equation, this being written as Tm = Tr at τ = 0, where 
Tr is the room temperature. Depending on the temperatures, various terms in the preceding energy 
balance equation may dominate or may be negligible. For instance, the radiation from the material 
being heat treated may be small compared to that from the heater and may be neglected.

Similarly, the heater may be treated as a lumped mass because it is a thin metal strip. An 
equation similar to the one given previously for the metal block may be written, using the above 
assumptions, as
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where Q(τ) is the heat input into the heater, hh is the convective heat transfer coefficient at the 
heater surface, and the F’s are the view factors. Again, radiation from the heater may dominate 
over the other two radiation terms. The initial condition is Th = Tr at τ = 0, when the heat input 
Q(τ) is turned on.

The gases are driven by a fan and by buoyancy in an enclosed region. As such, a well-mixed 
condition is expected to arise. Therefore, if a uniform temperature is assumed in the gases, an 
energy balance gives
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where convective heat transfer occurs at the heater, the walls, and the metal block. The gases gain 
energy at the heater and may gain or lose energy at the other two, depending on the temperatures. 
The initial temperature is again Tr and the heat input is due to Q(τ).

Because the thickness of the walls is much smaller than the other two dimensions, the thermal trans-
port in the walls may be approximated as transient one-dimensional conduction, given by the equation
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where x is the coordinate distance normal to the wall surface, taken as positive toward the outside 
environment. The thermal conductivity k can often be taken as a constant for typical materials and 
temperature levels. If this is done, the term on the right-hand side becomes kw(∂2Tw/∂x2), further 
simplifying the model. A similar energy equation applies for the temperature Ti in the insulation.

The boundary and initial conditions needed for these equations are

 at 0:τ = = =T T Tw i r

 For 0 : ( ) at 0

and at

4

1

( )τ > − ∂
∂

= − + σ =

= =

k
T
x

h T T A F T x

T T x d

w
w

w g w h hw h

w i

 at and at1 2 1( )− ∂
∂

= − = + − ∂
∂

= − ∂
∂

=k
T
x

h T T x d d k
T
x

k
T
x

x di
i

e i e w
w

i
i

Here, x = 0 is the inner surface of the wall, d1 is the wall thickness, d2 is the insulation thickness, 
he is the heat transfer coefficient at the outer surface of the furnace, and Te is the outside environ-
mental temperature. Convection transport at the boundaries and continuity in temperature and 
heat flux at the interfaces is used to obtain these conditions. Similarly, the equations and boundary 
conditions may be derived for other similar thermal systems and processes.

The preceding system of equations, along with the corresponding boundary conditions, rep-
resents the mathematical model for the given thermal system. Many simplifications have been 
made, particularly with respect to the dimensions needed, radiative transport, and variable prop-
erties. These may be relaxed, if needed, for higher accuracy and more realistic representation of 
the system. In addition, the various convective heat transfer coefficients are assumed to be known. 
Heat transfer correlations available in the literature may be used for the purpose. In actual practice, 
these should be obtained by solving the convective flow in the gases for the given geometrical 
configuration. However, this is a far more involved problem and would require substantial effort 
with commercially available or personally developed computational software. The mathematical 
model derived is relatively simple, though several coupled differential equations are obtained. 
The model then provides the basis for a dynamic, or time-dependent, numerical simulation of the 
system. The equations can be solved to obtain the variation in the different components with time, 
as well as the temperature distribution in the wall and the insulation.

If all the components are taken as lumped, a system of ordinary differential equations is 
obtained instead of the partial differential equations derived here for a distributed model. This 
additional approximation considerably simplifies the model. Example 2.6 presented numerical 
results on a problem similar to this one when all the parts of the system are taken as lumped. The 
variation of the temperature with time was obtained in that example for the different components, 
indicating the fast response of the heater and the relatively slow response of the walls.

3.4 PHYSICAL MODELING AND DIMENSIONAL ANALYSIS

A physical model refers to a model that is similar to the actual system in shape, geometry, and 
other physical characteristics. Because experimentation on a full-size prototype is often impossible 
or very expensive, scale models that are smaller than the full-size system are of particular interest 
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in design. The model may also be a simplified version of the actual system or may focus on particu-
lar aspects of the system. Experiments are carried out on these models and the results obtained are 
employed to represent the behavior and characteristics of the given component or system. Therefore, 
the information obtained from physical modeling provides better physical understanding of the 
processes involved and inputs for the design process, as well as data for the validation of the math-
ematical model. Figure 3.19 shows a few scale models used for investigating the drag force and heat 
transfer from heated bodies of different shapes.

Physical modeling is of particular importance in the design of thermal systems because of the 
complexity of the transport processes that arise in typical practical systems. In many cases, it is not 
possible or convenient to simplify the problem adequately through mathematical modeling and to 
obtain an accurate solution that closely represents the physical system. In addition, the validity of 
some of the approximations may be questionable. Experimental data are then needed for a check 
on accuracy and validity. In some cases, the basic mechanisms are not easy to model. For example, 
turbulent, separated, and unstable flows are often difficult to model mathematically. Experimental 
inputs are then needed for a satisfactory representation of the problem. However, experimental work 
is time-consuming and expensive. Therefore, it is necessary to minimize the number of experiments 
needed for obtaining the desired information. This is achieved through dimensional analysis by deter-
mining the dimensionless parameters that characterize the given system. This approach is widely used 
in fluid mechanics and heat and mass transfer (White, 2015; Incropera and Dewitt, 2001; Pritchard 
and Mitchell, 2015). A brief discussion of dimensional analysis is given here for completeness and 
to explain its relevance to the design process. The following section may be skipped if the reader is 
already well-versed in this material. In addition, the references cited and other textbooks in these areas 
may be consulted for further details.

3.4.1 scAle up

An important consideration that arises in physical modeling is the relationship between the results 
obtained from the scale model and the characteristics of the actual system. Obviously, if the results 
from the model are to be useful with respect to the system, there must be known principles that 
link the two. These are usually known as scaling laws and are of considerable interest to industry 
because they allow the modeling of complicated systems in terms of simpler, scaled-down versions. 
Using these laws, the results from the models can be scaled up to larger systems. However, in many 
cases, different considerations lead to different scaling parameters and the appropriate model may 
not be uniquely defined. In such cases, similarity is achieved only for the few dominant aspects 
between the model and the system (Wellstead, 1979; Doebelin, 1980).

3.4.2 DimensionAl AnAlysis

Dimensional analysis refers to the procedure to obtain the dimensionless governing parameters 
that determine the behavior of a given system. This analysis is carried out largely to reduce the 

FIGURE 3.19 Scale models with geometric similarity for flow and heat transfer.
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number of independent variables in the problem and to generalize the results so that they may 
be used over wide ranges of conditions. A classic example of the value of dimensional analysis 
is provided by a study of the drag force F exerted on a sphere of diameter D in a uniform fluid 
flow at velocity V. If the fluid viscosity is denoted by μ and its density by ρ, the drag force F 
may be given in terms of the variables of the problem as F = f1(D, V, μ, ρ), where f1 represents 
the functional dependence. The use of dimensional analysis reduces this equation for F to  
the form
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V D
f

VD
2 2 2ρ
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µ






 (3.21)

Here, ρVD/μ is the well-known dimensionless parameter known as the Reynolds number Re. The 
functional dependence given by f2 has to be obtained experimentally. But only a few experiments 
are needed to determine the functional relationship between the dimensionless drag force F/(ρV 2D2) 
and the Reynolds number Re. Equation (3.21) also indicates the variation of the drag force F with 
the different physical variables in the problem such as D, V, μ, and ρ.

Clearly, considerable simplification and generalization has been obtained in representing this 
problem so that once the function f2 has been obtained through experiments, the results can be 
applied to spheres of different diameters, to different fluids, and to a range of fluid velocities V, 
as long as the flow characteristics remain unchanged, such as laminar or turbulent flow in this 
example. Similarly, heat transfer data in forced convection are correlated in terms of the Nusselt 
number Nu = hD/kf, where kf is the fluid thermal conductivity. The areas of fluid mechanics and heat 
transfer are replete with similar examples that demonstrate the importance and value of dimen-
sional analysis.

There are two main approaches for deriving the dimensionless parameters in a given problem. 
These are:

Combinations of variables. This method considers all the variables in the problem and the 
appropriate basic dimensions, such as length, mass, temperature, and time, associated with 
them. Then the dimensionless parameters are obtained by forming combinations of these 
variables to yield dimensionless groups. The Buckingham Pi theorem states that for n 
variables, (n – m) dimensionless ratios, or π parameters, can be derived, where m is usu-
ally, but not always, equal to the minimum number of independent dimensions that arise 
in all the variables. Thus, the number of important variables that characterize a given 
system must be determined on the basis of experience and physical interpretation of the 
problem. The primary dimensions are determined and combinations of the variables are 
formed to obtain dimensionless groups. If a particular group can be formed from oth-
ers through multiplication, division, raising to a power, etc., it is not independent. Thus, 
independent dimensionless groups may be obtained. However, all the important variables 
must be included and the method does not yield the physical significance of the various 
dimensionless parameters.

Characterizing equations. This approach is based on the nondimensionalization of the equa-
tions and boundary conditions that characterize the given system and that are obtained by 
mathematical modeling. The equations are first written in terms of the physical variables, 
such as time, spatial coordinates, temperature, and velocity. Characteristic quantities are 
then chosen based on experience and the physical nature of the system. These are used to 
nondimensionalize the variables that arise in the equations, which are thus transformed 
into dimensionless equations, with all the dimensionless groups appearing as coefficients 
in the equation. Similarly, the boundary conditions are nondimensionalized and these may 
yield additional dimensionless parameters.
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For steady-state, three-dimensional conduction in the solid bar shown in Figure 3.9, 
Equation (3.6) gave the nondimensional energy equation, with L2/H2 and L2/W2, or simply L/H and 
L/W, as the two dimensionless parameters that characterize the temperature distribution in the solid. 
For this problem, Equation (3.5) gave the transformation used for nondimensionalization, with L, H, 
and W as the characteristic length scales.

No additional parameters arise from the boundary conditions if the temperatures are specified as 
constant at the surfaces. But if a convective boundary condition of the form

 k
T

x
h T Ta( )− ∂

∂
= −  (3.22)

is given at, say, the surface x = L, this equation may be nondimensionalized, using Equation (3.5), 
to give
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Here, Ts is a reference temperature and could be taken as the specified temperature at x = 0. 
Therefore, hL/k arises as an additional dimensionless parameter from the boundary conditions. This 
parameter is referred to as the Biot number Bi, mentioned and defined earlier.

Similarly, the physical temperature T in an infinite rod moving at speed U along the x direc-
tion, which is taken along its axis, and losing energy by convection at the surface, as sketched in 
Figure 1.10(d) and Figure 3.6(a), is determined by the equation
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 = ∇  (3.24)

where ∇ 2 is the Laplacian, given by x y z/ / /2 2 2 2 2 2 2∇ = ∂ ∂ + ∂ ∂ + ∂ ∂ .
It can be easily confirmed that, using the nondimensional variables given earlier, the dimension-

less equation obtained from Equation (3.24) is Equation (3.20), where the Peclet number Pe was 
seen to arise as the only governing dimensionless parameter in the equation. Other parameters such 
as the Biot number Bi may arise from the boundary conditions. Similarly, other circumstances of 
interest in thermal systems may be considered to derive the governing parameters.

Both the approaches for dimensional analysis outlined here are useful for thermal processes and 
systems. However, the nondimensionalization of equations does not require the listing of all the 
important variables in the problem and also leads to a physical interpretation of the dimensionless 
groups, as discussed for the two examples given previously. Therefore, the nondimensionalization 
of the equations is the preferred approach. However, characteristic quantities are needed and may 
be difficult to obtain if no simple scales are evident in the problem or if several choices are pos-
sible. Therefore, both the approaches may be employed to derive the relevant parameters for a given 
thermal system.

Several different dimensionless groups have been used extensively in thermal sciences and engi-
neering, with a set of these characterizing a given system or process. Each group has a specific 
physical significance, often given in terms of the ratio of the orders of magnitude of two separate 
mechanisms or effects. Some of the important dimensionless parameters that arise in fluid mechan-
ics and in heat and mass transfer are listed in Table 3.1, along with the ratio of forces, transport 
mechanisms, etc., that they represent.

In this table, V, L, and ΔT are the characteristic velocity, length, and temperature difference; g 
is the magnitude of gravitational acceleration; β is the coefficient of thermal expansion; kf is the 
fluid thermal conductivity, as distinguished from the solid thermal conductivity k; DAB is the mass 
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TABLE 3.1 
Commonly Used Dimensionless Groups in Fluid  
Mechanics and Heat and Mass Transfer
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diffusivity; hm is the mass transfer coefficient; a is the speed of sound in the given medium; and σ is 
the surface tension. The other symbols have been defined earlier.

There are many more dimensionless parameters that arise in the analysis and design of thermal 
processes and systems. The ratio of different effects in a particular dimensionless parameter is 
largely qualitative and may be used for an interpretation of the physical significance of the dimen-
sionless group. For further details on the derivation of these dimensionless parameters and their use, 
textbooks in heat transfer and in fluid mechanics may be consulted.

Example 3.7

The electronic system shown in Figure 3.20 is cooled by the forced flow of ambient air driven 
by a fan through openings near the top of the enclosure. The dimension in the third direction is 
given as large and the problem may be treated as two-dimensional. The various dimensions in the 
system and the locations of three electronic components are indicated in the figure. The velocities 
are uniform over the inlet and outlet, with magnitudes vi and vo, respectively. The temperature at 
the inlet is Ti and developed conditions, i.e., ∂T/∂y = 0, may be assumed at the exit. The outer wall 
of the system loses energy to ambient air at temperature Ti with a given convective heat transfer 
coefficient h. Write down the equations and boundary conditions that determine the temperature 
distributions in the system. Nondimensionalize these to obtain the various dimensionless param-
eters in the problem. Assume laminar flow and constant properties.

SOLUTION

This is clearly a fairly complicated problem and involves combined conduction and convec-
tion. Because of spatial and temporal variations, partial differential equations will be obtained. 
However, this example serves to indicate some of the major complexities that arise when dealing 
with practical thermal systems.

For the given two-dimensional laminar flow problem, the equations for convection in the 
enclosure may be written, in terms of the coordinate system shown, as (Burmeister, 1993)

 0
∂
∂

+ ∂
∂

=u
x

v
y

FIGURE 3.20 The electronic system, with three electrical components as heat sources and forced air cool-
ing, considered in Example 3.7.
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The above equations are, respectively, the continuity, or mass conservation equation, the 
x-momentum, the y-momentum and the energy equation. These equations have to be solved 
to obtain the flow field and the temperature distribution, from which heat transfer rates may be 
calculated (Jaluria and Torrance, 2003).

Here, u and v are velocity components in x and y directions, respectively, p is the local pres-
sure, τ is time, g is the magnitude of gravitational acceleration, β is the coefficient of volumetric 
thermal expansion, ρ is density, Cp is the specific heat at constant pressure, k is the fluid thermal 
conductivity, and T is the local temperature. For the solid region, the energy equation is
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where the subscript s denotes solid material properties. The Boussinesq approximations, which 
neglect density variation in the continuity equation and assume density variation with tempera-
ture to be linear, have been used for the buoyancy term in the x-direction momentum equation. 
The pressure work and viscous dissipation terms have been neglected. The boundary conditions 
on velocity are the no-slip conditions, i.e., zero velocity at the solid boundaries. At the inlet and 
outlet, the given velocities apply.

For the temperature field, at the inner surface of the enclosure, continuity of the temperature 
and the heat flux gives
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where n is the coordinate normal to the surface. Also, at the left source, an energy balance gives
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where Qs is the energy dissipated by the source per unit width. Similar equations may be written 
for other sources. At the outer surface of the enclosure walls, the convective heat loss condition 
gives

 ( )− ∂
∂

= −k
T
n

h T Ts i

At the inlet, the temperature is uniform at Ti and at the outlet developed temperature condi-
tions, ∂T/∂y = 0, may be used.

Therefore, the equations and boundary conditions that characterize this coupled conduction-
convection problem are obtained. The main characteristic quantities in the problem are the condi-
tions at the inlet and the energy input at the sources. The energy input governs the heat transfer 
processes and the inlet conditions determine the forced airflow in the enclosure. Therefore, vi, 
Hi, Ti, and Qs are taken as the characteristic physical quantities. The various dimensions in the 
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problem are nondimensionalized by Hi and the velocity V by vi. Time τ is nondimensionalized 
by Hi /vi to give dimensionless time τ* = τ(vi/Hi). The nondimensional temperature θ is defined as

 , whereθ = −
∆

∆ =T T
T

T
Q
k

i s

Here ΔT is taken as the temperature scale based on the energy input by a given source. The 
energy input by other sources may be nondimensionalized by Qs. The pressure p is nondimension-
alized by 2ρvi , which comes from Bernoulli’s equation and is commonly used in fluid mechanics.

The governing equations and the boundary conditions may now be nondimensionalized to 
obtain the important dimensionless parameters in the problem. The dimensionless equations for 
the convective transport in this problem are obtained as
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The dimensionless energy equation for the solid is
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where the asterisk denotes dimensionless quantities. Therefore, the dimensionless parameters that 
arise are the Reynolds number Re, the Grashof number Gr, and the Prandtl number Pr, where 
these are defined as

 Re Gr= Pr
3

2=
ν
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ν

= ν
α

v H g H Ti i i

The Peclet number Pe, mentioned earlier, is given by Pe = Re Pr. In addition, the ratio of the ther-
mal diffusivities αs/α arises as a parameter. Here, ν = μ/ρ is the kinematic viscosity of the fluid. 
The Reynolds number determines the characteristics of the flow, particularly whether it is laminar 
or turbulent, the Grashof number determines the importance of buoyancy effects, and the Prandtl 
number gives the effect of momentum diffusion as compared to thermal diffusion and is fixed for 
a given fluid at a particular temperature.

Additional parameters arise from the boundary conditions. These are the ratio of the thermal 
conductivities ks /k and the Biot number Bi = hHi /k. A perfectly insulated condition at the outer 
surface is achieved for Bi = 0. In addition to these, several geometry parameters arise from the 
dimensions of the enclosure (see Figure 3.20), such as di /Hi, Ho /Hi, Ls /Hi, etc. Heat inputs at differ-
ent sources lead to parameters such as (Qs)2 /Qs, (Qs)3 /Qs, etc., where (Qs)2 and (Qs)3 are the heat 
inputs by different electronic components.

The preceding considerations yield the dimensionless equations and boundary conditions, 
along with all the dimensionless parameters that govern the thermal transport process. Clearly, a 
large number of parameters are obtained. However, if the geometry, fluid, and heat inputs at the 
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sources are fixed, the main governing parameters are Re, Gr, Bi, and the material property ratios 
αs/α and ks/k. These may be varied in the simulation of the given system to determine the effect 
of materials used and the operating conditions. Similarly, geometry parameters may be varied to 
determine the effect of these on the performance of the cooling system, particularly on the tem-
perature of the electronic components, whose performance is very temperature-sensitive.

Some typical results, obtained by the use of a finite-volume-based numerical scheme for solv-
ing the dimensionless equations, are shown in Figures 3.21 and 3.22 from a detailed numerical 
simulation carried out by Papanicolaou and Jaluria (1994). Two electronic components are taken, 
placing these on the left wall (L), the right wall (R), or the bottom (B). The flow field, in terms of 
streamlines, and the temperature field, in terms of isotherms, i.e., constant temperature contours, 
are shown for one, LR, configuration. Such results are used to indicate if there are any stagna-
tion regions or hot spots in the system. The configuration may be changed to improve the flow 
and temperature distributions to obtain greater uniformity and/or lower temperatures. Figure 3.22 

FIGURE 3.21 Calculated streamlines and isotherms for the steady solutions obtained in the LR configura-
tion for the problem considered in Example 3.7 at Re = 100 and Gr/Re2 values of (a) 0.1, (b) 1.0, and (c) 10.0. 
(Adapted from Papanicolaou and Jaluria, 1994.)
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shows the maximum temperatures of the electronic components for different configurations as 
functions of the parameter Gr/Re2. We can use these results to determine if the allowable tempera-
tures are exceeded in a particular case and also to vary the configuration and flow rate to obtain 
an acceptable design. Thus, the simulation results may be used to change the design variables over 
given ranges in order to obtain an acceptable or optimal design of the system.

This is clearly a fairly complicated problem because transient effects and spatial variations are 
included. However, steady-state operation of such systems is generally of interest and the transient 
effects need not be considered. Many practical systems involve complicated coupled system of 
equations and complex geometry. Finite-element methods are particularly well-suited for generat-
ing the numerical results needed for the design and optimization of the system. In this problem, 
we may be interested in finding the optimal location of the heat sources, appropriate dimensions, 
airflow rate, wall thickness, and materials for the given electronic circuitry. This example is given 
mainly to illustrate some of the complexities of practical thermal systems and the derivation of 
governing dimensionless parameters. The results indicate typical outputs obtained and their rele-
vance to system design. Cooling of electronic systems has been an important area for research and 
design over the past two to three decades. In many cases, commercially available software, such 
as Ansys, is used to simulate the system and obtain the results needed for design and optimization.

FIGURE 3.22 Calculated maximum temperature for different source locations in the configurations consid-
ered, at various values of Gr/Re2 for (a) left wall location, (b) bottom wall location, and (c) right wall location. 
(Adapted from Papanicolaou and Jaluria, 1994.)
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3.4.3 moDeling AnD similituDe

In order for a scale model to predict the behavior of the full-scale thermal system, there must 
be similarity between the model and the prototype. Scaling factors must be established between 
the two so that the results from the model can be applied to the system. These scaling laws and 
the conditions for similitude are obtained from dimensional analysis. As mentioned earlier, if the 
dimensionless parameters are the same for the model as well as for the prototype, the flow and 
transport regimes are the same and the dimensionless results are also the same. This can be seen 
easily in terms of the dimensionless equations that characterize the system, such as Equation (3.6) 
and Equation (3.20). These equations are the same for the model and the full-size system. If the 
nondimensional parameters for the two cases are the same, the results obtained, in dimensionless 
terms, will also be the same for the model and the system.

Several different mechanisms usually arise in typical thermal systems, and it may not be pos-
sible to satisfy all the parameters for complete similarity. However, each problem has its own spe-
cific requirements. These are used to determine the dominant parameters in the problem and thus 
establish similitude. Several common types of similarities may be mentioned here. These include 
geometric, kinematic, dynamic, thermal, and chemical similarity. It is important to select the appro-
priate parameters for a particular type of similarity (Schuring, 1977; Szucs, 1977).

3.4.3.1 Geometric Similarity
The model and the prototype are generally required to be geometrically similar. This requires 
identity of shape and a constant scale factor relating linear dimensions. Thus, if a model of a bar is 
used for heat transfer studies, the ratio of the model length to the corresponding prototype length 
must be the same, i.e.,
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where the subscripts p and m refer to the prototype and the model, respectively, and λ1 is the scaling 
factor. Similarly, other shapes and geometries may be considered, with the scale model representing 
a geometrically similar representation of the full-size system. This is the first type of similitude in 
physical modeling and is commonly required of the model. However, sometimes the model may 
represent only a portion of the full system. For example, a long drying oven may be studied with a 
relatively short model that is properly scaled in terms of the cross-section but is only a fraction of 
the oven length. Models of solar ponds often scale the height but not the large surface area of typical 
ponds. In these cases, the model is chosen to focus on the dominant aspects.

3.4.3.2 Kinematic Similarity
The model and the system are kinematically similar when the velocities at corresponding points 
are related by a constant scale factor. This implies that the velocities are in the same direction at 
corresponding points and the ratio of their magnitudes is a constant. The streamline patterns of 
two kinematically similar flows are related by a constant factor, and, therefore, they must also be 
geometrically similar. The flow regime, for instance, whether the flow is laminar or turbulent, must 
be the same for the model and the prototype. Thus, if u, v, and w represent the three components of 
velocity in a model of a system, kinematic similarity requires that
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where λ2 is the scale factor and the subscripts p and m again indicate the prototype and 
the model. For kinematic similarity, the model and the prototype must both have the same 
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length-scale ratio and the same time-scale ratio. Consequently, derived quantities such as accel-
eration and volume flow rate also have a constant scale factor. For a given value of the magni-
tude of the gravitational acceleration g, the Froude number Fr (Table 3.1) represents the scaling 
for velocity and length. Therefore, this kinematic parameter is used for scaling wave motion in 
water bodies.

3.4.3.3 Dynamic Similarity
This requires that the forces acting on the model and on the prototype are in the same direction at 
corresponding locations and the magnitudes are related by a constant scale factor. This is a more 
restrictive condition than the previous two and, in fact, requires that these similarity conditions also 
be met. All the important forces must be considered, such as viscous, surface tension, gravitational, 
and buoyancy forces. If dynamic similarity is obtained between the model and the prototype, the 
results from the model may be applied quantitatively to determine the prototype behavior. The vari-
ous dimensionless parameters that arise in the momentum equation or that are obtained through 
the Buckingham Pi theorem may be used to establish dynamic similarity. For instance, in the case 
of the drag on a sphere, given by Equation (3.21), if the Reynolds numbers for the model and the 
prototype are equal, the dimensionless drag forces, given by F/(ρV 2D2), are also equal. Then the 
results obtained from the model can be used to predict the drag force on the full-size component. 
Clearly, the tests could be carried out with different fluids, such as air and water, and over a conve-
nient velocity range, as long as the Reynolds numbers are matched. In fact, the model can be used 
in a wind or water tunnel to determine the functional dependence given by f2 in Equation (3.21). 
Then this equation can be used for predicting the drag for a wide range of diameters, velocities, and 
fluid properties. Figure 3.23 shows the sketches of a few examples of physical modeling of the flow 
to obtain similitude.

3.4.3.4 Thermal Similarity
This similarity is of particular relevance to thermal systems. Thermal similarity requires that the 
temperature profiles in the model and the prototype be geometrically similar at corresponding 
times. If convective motion arises, kinematic similarity is also a requirement. Thus, the tempera-
tures are related by a constant scale factor and the results from a model may be applied to obtain 
quantitative predictions on the temperatures in the prototype. The Nusselt number Nu characterizes 
the heat transfer in a convective process. Thus, in forced convection, if two flows are geometrically 
and kinematically similar and the flow regime, as determined by the Reynolds number Re, is the 
same, the Nusselt number is the same if the fluid Prandtl number Pr is the same. The Grashof num-
ber Gr arises as an additional parameter if buoyancy effects are significant. This relationship can 
be expressed as

 fNu (Re,  Gr,  Pr)3=  (3.27)

FIGURE 3.23 Experiments for physical modeling of thermal processes and systems.
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where f3 is obtained by analytical, numerical, or experimental methods. For conduction in a heated 
body with convective loss at the surface, the Biot number Bi arises as an additional dimensionless 
parameter from the boundary condition, as seen earlier in Equation (3.23).

Thus, thermal similarity is obtained if these parameters are the same between the model and the 
system. As mentioned earlier, the dimensionless applicable equations and corresponding boundary 
conditions indicate the dimensionless parameters that must be kept the same between the model and 
the system in order to apply the model-study results to the system. Experiments may be carried out 
to obtain the functional dependence, such as f3 in Equation (3.27).

Radiative transport is often difficult to model because of the T  4 dependence of heat transfer 
rate on temperature. Similarly, temperature-dependent material properties and thermal volumetric 
sources are difficult to model because of the often arbitrary, nonlinear variations with temperature 
that arise. Consequently, physical modeling of thermal systems is often complicated and involves 
approximations similar to those discussed with respect to mathematical modeling. Relatively small 
effects are neglected to obtain similarity.

3.4.3.5 Mass Transfer Similarity
This similarity requires that the species concentration profiles for the model and the system be 
geometrically similar at corresponding times. At small concentration levels, the analogy between 
heat and mass transfer may be used, resulting in expressions such as Equation (3.27), which may be 
written for mass transfer systems as

 f cSh (Re,  Gr ,  Sc)4=  (3.28)

where Sh is the Sherwood number, Sc is the Schmidt number (Table 3.1), and Grc is based on 
the concentration difference ΔC, instead of the temperature difference ΔT in Gr. Thus, the condi-
tions for mass transfer similarity are close to those for thermal similarity in this case. If chemical 
reactions occur, the reaction rates at corresponding locations must have a constant scale factor for 
similitude between the model and the prototype. Because reaction rates are strongly dependent on 
temperature and concentration, the models are usually studied under the same temperature and 
concentration conditions as the full-size system.

3.4.4 overAll physicAl moDel

Based on dimensional analysis, which indicates the main dimensionless groups that characterize a 
given system, and the appropriate similarity conditions, a physical model may be developed to rep-
resent a component, subsystem, or system. However, even though a substantial amount of work has 
been done on these considerations, particularly with respect to wind and water tunnel testing for 
aerodynamic and hydrodynamic applications, physical modeling of practical processes and systems 
is an involved process. This is mainly because different aspects may demand different conditions for 
similarity. For instance, if both the Reynolds and the Froude numbers are to be kept the same between 
the model and the prototype for the modeling of viscous and wave drag on a ship, the conditions of 
similarity cannot be achieved with practical fluids and dimensions. Then complete similarity is not 
possible and model testing is done with, say, only the Froude number matched. The data obtained are 
then combined with results from other studies on viscous drag. Sometimes, the flow is disturbed to 
induce an earlier onset of turbulence in order to approximate the turbulent flow at larger Re.

Similarly, thermal and mass transfer similarities may lead to conditions that are difficult to 
match. An attempt is generally made to match the temperature and concentration levels in order to 
satisfactorily model material property variations, reaction rates, thermal source, radiative transport, 
etc. However, this may not be possible because of experimental limitations. Then, the matching 
of the dimensionless groups, such as Pr, Re, and Gr, may be used to obtain similarity and hence 
the desired information. Again, the dominant effects are isolated and physical modeling involves 
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matching these between the system and the model. Because of the complexity of typical thermal 
systems, the physical model is rarely defined uniquely and approximate representations are gener-
ally used to provide the inputs needed for design. However, scale-up and scale-down are of particu-
lar interest in practical systems and processes. The preceding discussion provides the guidelines for 
achieving this accurately.

3.5 CURVE FITTING

An important and valuable technique that is used extensively to represent the characteristics and 
behavior of components, materials, and systems is curve fitting. Results are obtained at a finite 
number of discrete points by numerical computation and/or experimentation. If these data are rep-
resented by means of a smooth curve, which passes through or as close as possible to the points, 
the equation of the curve can be used to obtain values at intermediate points where data are not 
available and also to model the characteristics of the system. Physical reasoning may be used in 
the choice of the type of curve employed for curve fitting, but the effort is largely a data-processing 
operation, unlike mathematical modeling, which is based on physical insight and experience. The 
equation obtained as a result of curve fitting then represents the performance of a given equipment 
or system and may be used in system simulation and optimization. This equation may also be 
employed in the selection of equipment such as blowers, compressors, and pumps from items readily 
available from manufacturers. Curve fitting is particularly useful in representing calibration results 
and material property data, such as the thermodynamic properties of a substance, in terms of equa-
tions that form part of the mathematical model of the system.

There are two main approaches to curve fitting. The first one is known as an exact fit and deter-
mines a curve that passes through every given data point. This approach is particularly appropri-
ate for data that are very accurate, such as computational results, calibration results, and material 
property data, and if only a small number of data points are available. If a large amount of data is 
to be represented, and if the accuracy of the data is not very high, as is usually the case for experi-
mental results, the second approach, known as the best fit, which obtains a curve that does not pass 
through each data point but closely approximates the data, is more appropriate. The difference 
between the values given by the approximating curve and the given data is minimized to obtain the 
best fit. Sketches of curve fitting using these two methods were seen earlier in Figure 3.2. Both of 
these approaches are used extensively to represent results from numerical simulation and experi-
mental studies. The availability of correlating equations from curve fitting considerably facilitates 
the design and optimization process.

3.5.1 exAct Fit

This approach for curve fitting is somewhat limited in scope because the number of parameters in 
the approximating curve must be equal to the number of data points for an exact fit. If extensive data 
are available, the determination of the large number of parameters that arise becomes very involved. 
The curve obtained is not very convenient to use and may be ill-conditioned. In addition, unless the 
data are very accurate, there is no reason to ensure that the curve passes through each data point. 
However, there are several practical circumstances where a small number of very accurate data are 
available and an exact fit is both desirable and appropriate.

Many methods are available in the literature for obtaining an exact fit to a given set of data points 
(Jaluria, 2012). Some of the important ones are:

1. General form of a polynomial
2. Lagrange interpolation
3. Newton’s divided-difference polynomial
4. Splines
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A polynomial of degree n can be employed to exactly fit (n +1) data points. The general form of 
the polynomial may be taken as

 ( ) ...0 1 2
2

3
3= + + + + +f x a a x a x a x a xn

n  (3.29)

where y is the dependent variable, x is the independent variable, and the a’s are constants to be 
determined by curve fitting of the data. If (xi, yi), where i = 0, 1, 2,…, n, represent the (n + 1) data 
points, yi being the value of the dependent variable at x = xi, these values may be substituted in 
Equation (3.29) to obtain (n + 1) equations for the a’s. Thus,

 ... 0,1, 2, ...,0 1 2
2

3
3= + + + + + =y a a x a x a x a x for i ni i i i n i

n  (3.30)

Because xi and yi are known for the given data points, (n + 1) equations are obtained from 
Equation (3.30). These linear equations can be solved for the unknown constants in Equation (3.29). 
Thus, two data points yield a straight line, y = a0 + a1x, three points a second-order polynomial, 
y = a0 + a1x + a2x2, four points a third-order polynomial, and so on. The method is appropriate for 
small sets of very accurate data, with the number of data points typically less than ten. For larger 
data sets, higher-order polynomials are needed, which are often difficult to determine, inconvenient 
to use, and inaccurate because of the many small coefficients that arise for higher-order terms. A 
Matlab program for fitting an exact curve to given data, using the general form of the polynomial, 
is given in Appendix A.M.5.1.

Different forms of interpolating polynomials are used in other methods. In Lagrange interpola-
tion, the polynomial used is known as the Lagrange polynomial and the nth-order polynomial is 
written as
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The coefficients ai, where i varies from 0 to n, can be determined easily by substitution of the  
(n + 1) data points into Equation (3.31). Then the resulting interpolating polynomial is
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where the product sign Π denotes multiplication of the n factors obtained by varying j from 0 to n, 
excluding j = i, for the quantity within the parentheses. It is easy to see that this polynomial may be 
written in the general form of a polynomial, Equation (3.29), if needed. Lagrange interpolation is 
applicable to an arbitrary distribution of data points, and the determination of the coefficients of the 
polynomial does not require the solution of a system of equations, as was the case for the general 
polynomial. Because of the ease with which the method may be applied, Lagrange interpolation is 
extensively used for engineering applications.

In Newton’s divided-difference method, the nth-order interpolating polynomial is taken as
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A recursive formula is written to determine the coefficients. The higher-order coefficients 
are determined from the lower-order ones. Therefore, the coefficients are evaluated starting 
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with a0 and successively calculating a1, a2, a3, and so on, up to an. Once these coefficients are 
determined, the interpolating polynomial is obtained from Equation (3.33). Several simpli-
fied formulas can be derived if the data are given at equally spaced values of the independent 
variable x. These include the Newton-Gregory forward and backward interpolating polynomi-
als. This method is particularly well-suited for numerical computation and is frequently used 
for an exact fit in engineering problems (Carnahan, et al., 1969; Hornbeck, 1975; Gerald and 
Wheatley, 2003; Jaluria, 2012).

Splines approach the problem as a piecewise fit and, therefore, can be used for large amounts 
of accurate data, such as those obtained for the calibration of equipment and material properties. 
Spline functions consider small subsets of the data and fit them with lower-order polynomials, as 
sketched in Figure 3.24. The cubic spline is the most commonly used function in this exact fit, 
though polynomials of other orders may also be used. Spline interpolation is an important technique 
used in a wide range of applications of engineering interest. Measurements of material properties 
such as density, thermal conductivity, mass diffusivity, reflectivity, and specific heat, as well as the 
results from calibrations of equipment and sensors such as thermocouples, often give rise to large 
sets of very accurate data. All these interpolation techniques are conveniently available in many 
commercially available software products, such as Matlab, and can be used to obtain results at 

FIGURE 3.24 Interpolation with single polynomials over the entire range and with piecewise cubic splines 
for a step change in the dependent variable.
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intermediate points by interpolation or predict the trends beyond the given domain by extrapolation 
(Recktenwald, 2000; Jaluria, 2012; Chapra and Canale, 2014). However, extrapolation comes with 
considerable uncertainty.

Use of Matlab commands considerably simplifies interpolation and curve fitting. The interp1 
command is useful in obtaining interpolated values from the given data set, using a specified 
interpolating polynomial, such as linear, cubic, and spline. The interp2 command is used for two-
dimensional curve fitting and interp3 for three-dimensional. Therefore, the following commands 
would provide spline interpolation

                interp1(v,t,vp,'spline')

or simply

                yp = spline(v,t,vp)

where v and t are the two arrays of data for the independent and dependent variables, respectively 
and vp is the array of v values where interpolated results yp are desired, using spline interpolation. 
Also, ‘spline’ is replaced by ‘nearest’, ‘linear’, or ‘cubic’ to obtain the nearest-neighbor, linear, or 
cubic interpolation with polynomials of degree zero, one, and three respectively. A program to 
interpolate using this command is given in Appendix A.M.5.2.

Functions of more than one independent variable also arise in many problems of practical 
interest. An example of this circumstance is provided by thermodynamic properties such as 
density, internal energy and enthalpy, which vary with two independent variables, such as tem-
perature and pressure. Similarly, the pressure generated by a pump depends on both the speed 
and the flow rate. Again, a best fit is usually more useful because of the inaccuracies involved 
in obtaining the data. However, an exact fit may also be obtained. Curve fitting with the chosen 
order of polynomials is applied twice, first at different fixed values of one variable to obtain 
the curve fit for the other variable. Then the coefficients obtained are curve fitted to reflect 
the dependence on the first variable. As shown in Figure 3.25, nine data points are needed for 
second-order polynomials. For third-order polynomials, 16 points are needed, and for fourth-
order polynomials, 25 points are needed. The resulting general equation for the curve fit shown 
in Figure 3.25 is

 y a a x a x b b x b x x c c x c x x0 1 2 2 2
2

0 1 2 3 2
2

1 0 1 2 2 2
2

1
2( ) ( ) ( )= + + + + + + + +  (3.34)

FIGURE 3.25 A function f(x1, x2) of two independent variables x1 and x2, showing the nine data points 
needed for an exact fit with second-order polynomials.
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3.5.2 best Fit

The data obtained in many engineering applications have a significant amount of associated error. 
Experimental data, for instance, would generally have some scatter due to error whose magnitude 
depends on the instrumentation and the arrangement employed for the measurements. In such 
cases, requiring the interpolating curve to pass through each data point is not appropriate. In 
addition, large data sets are often generated and a single curve for an exact fit leads to high-order 
polynomials that are again not satisfactory. A better approach is to derive a curve that provides 
a best fit to the given data by somehow minimizing the difference between the given values of 
the dependent variable and those obtained from the approximating curve. Figure 3.26 shows a 
few circumstances where a best fit is much more satisfactory than an exact fit. The curve from a 
best fit represents the general trend of the data, without necessarily passing through every given 
point. It is particularly useful in deriving correlating equations to quantitatively describe the 

FIGURE 3.26 Data distributions for which a best fit is more appropriate than an exact fit.
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thermal system or process under consideration. For instance, correlating equations derived from 
experimental data on heat and mass transfer from bodies of different shapes are frequently used 
instead of solving the relevant convection problem. Similarly, correlating equations representing 
the behavior of an internal combustion engine under various fuel-air mixtures are useful in the 
analysis and design of engines.

Several criteria can be used to derive the curve that best fits the data. If the approximating curve 
is denoted by f(x) and the given data by (xi, yi), as before, the error ei is given by ei = yi − f(xi). Then, 
one method for obtaining a best fit to the data is to minimize the sum of these individual errors; that 
is, minimize Σei. Because errors tend to cancel out in this case, being positive or negative, the sum 
of absolute values of the error, Σ|ei|, may be minimized instead. Another approach is to minimize 
the largest error. However, all these approaches may not yield a unique curve. The most commonly 
used approach for a best fit is the method of least squares, in which the sum S of the squares of the 
errors is minimized. The expression for S, considering n data points, is
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This approach generally yields a unique curve that provides a good representation of the given 
data, if the approximating curve is properly chosen. The physical characteristics of the given prob-
lem may be used to choose the form of the approximating function. For instance, a sinusoidal 
function may be used for periodic processes such as the variation of the average daily ambient 
temperature at a given location over the year.

3.5.2.1 Linear Regression
The procedure of obtaining a best fit to a given data set is often known as regression. Let us first 
consider fitting a straight line to a data set. This curve fitting is known as linear regression and is 
important in a wide variety of engineering applications because linear approximations are often 
desirable and also because many nonlinear variations such as exponential and power-law forms can 
be reduced to a linear best fit, as seen later. Let us take the equation of the straight line for curve 
fitting as

 f x a bx( ) = +  (3.36)

where a and b are the coefficients to be determined from the given data. For a best fit, the sum S is 
to be minimized, where
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The minimum occurs when the partial derivatives of S with respect to a and b are both zero. 
This gives
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These equations may be simplified and expressed as

 y a bx y x ax bxi i i i i i0 and 02∑∑ ∑ ∑∑ ∑− − = − − =

These equations may be written for the unknowns a and b as

 na b x yi i∑ ∑+ =  (3.39)

 a x b x x yi i i i
2∑ ∑ ∑+ =  (3.40)

Here, all the summations are over the n data points, from i = 1 to i = n. These two simul-
taneous linear equations may be solved to obtain the coefficients a and b. The resulting equa-
tion f(x) = a + bx then provides a best fit to the given data by a straight line, as sketched in 
Figure 3.26(a).

The spread of the data before regression is applied is given by the sum Sm where

 S y ym
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yavg being the average, or mean, of the dependent variable in the given data. Then the extent of 
improvement due to curve fitting by a straight line is indicated by the reduction in the spread of the 
data, given by the expression
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 (3.41)

Here, r is known as the correlation coefficient. A good correlation for linear regression is indi-
cated by a high value of r, the maximum of which is 1.0. The given data may also be plotted along 
with the regression curve in order to demonstrate how good a representation of the data is provided 
by the best fit, as seen in Figure 3.26.

3.5.2.2 Polynomial Best Fit
In general, an mth-order polynomial may also be used to fit the data. Then m  = 1 refers to the linear 
regression presented in the preceding section. Let us consider a polynomial given as

 f x c c x c x c xm
m( ) ......0 1 2

2= + + + +  (3.42)

Then the sum S of the squares of the differences between the data points and the corresponding 
values from the approximating polynomial is given by
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The coefficients c0, c1, …, cm are determined by extending the procedure outlined earlier for lin-
ear regression. Therefore, S is differentiated with respect to each of the coefficients and the partial 
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derivatives are set equal to zero in order to minimize S. The following system of (m + 1) equations 
is then obtained for the unknown coefficients:
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where all the summations in the preceding equations are carried out over all the n data points, 
i = 1 to i = n.

A solution to these equations yields the desired polynomial for a best fit, as given by 
Equation (3.42). For most practical problems, m is restricted to a small number, generally from 
1 to 4, in order to simplify the calculations and to obtain simple correlating curves that approximate 
the data. The correlation coefficient r is again defined by Equation (3.41) and is calculated to deter-
mine how good a fit to the given data is obtained by the resulting polynomial. Appendix A.M.5.3 
gives a Matlab program for best fit of given data, using different polynomials.

3.5.2.3 Nonpolynomial Forms and Linearization
The method of least squares is not restricted to polynomials for curve fitting and may easily be 
extended to various other forms in which the constants of the function appear as coefficients. This 
substantially expands the applicability and usefulness of a best fit. Important examples of such 
nonpolynomial forms are provided by periodic processes, which are of particular interest in envi-
ronmental processes and systems. For instance, the following function may be used for curve fitting 
of data in a periodic process, with ω as the frequency in radians/s:

 f x A x B x( ) sin( ) cos( )= ω + ω  (3.45)

The sum S is defined and then differentiated with respect to the coefficients A and B, setting 
these derivatives equal to zero. This gives rise to two linear equations that are solved for A and B. 
Similarly, other nonpolynomial forms may be employed, their choice being guided by the expected 
physical behavior of the process.

Several important nonpolynomial forms of the function for curve fitting can be linearized so that 
linear regression can be applied. Among these, the most common forms are exponential and power-
law variations, which may be defined as

 f x Ae f x Bxax b( ) ( )= =  (3.46)

The corresponding linearized forms are given by, respectively,

 f x A ax f x B b xln[ ( )] ln( ) ln[ ( )] ln( ) ln( )= + = +  (3.47)

Here, ln(x) represents the natural logarithm of x. In these two cases, if a dependent variable Y is 
defined as Y = ln[ f(x)] and an independent variable X as X = x in the first case and X = ln(x) in the 
second, then the two equations become linear in terms of X and Y. These equations may be written 
as Y = C + DX and linear regression may be applied with the new variables X and Y to obtain the 
intercept C, which is ln(A) or ln(B), and the slope D, which is a or b for the two cases. Then, A or B 
is given by exp(C) and a or b by D. Therefore, from this linear fit, the constants A, a, B, and b can 
be determined.
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Similarly, other nonpolynomial forms such as
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by substituting Y for f(x) in the second case and for 1/f(x) in the first and third cases. X is substituted 
for 1/x in the first and second cases and for x in the last case. Linear regression may be applied to 
these equations to obtain the coefficients a and b.

Many problems of interest in the design of thermal systems are governed by exponential, power-
law, and other forms (such as those just given), and linear regression may be employed to obtain the 
best fit to such data. For instance, many heat transfer correlations can be taken as power-law varia-
tions in terms of parameters such as Reynolds, Prandtl, and Grashof numbers. Such curve fitting is 
of considerable value because the resulting expressions can be easily employed in design as well as 
in optimization, as will be seen in later chapters.

3.5.2.4 More than One Independent Variable
Multiple linear regression may be developed in a very similar manner to that outlined earlier for a 
single independent variable. Consider, for instance, the dependent variable y as a linear function of 
independent variables x1 and x2, given by

 y f x x c c x c x( , )1 2 0 1 1 2 2= = + +  (3.50)

where c0, c1, and c2 are constants to be determined to obtain the best fit. We can define the sum S 
as before and differentiate it with respect to these coefficients, setting the derivatives equal to zero. 
This gives rise to the following equations for the coefficients:

 nc c x c x yi i i0 1 1, 2 2,∑ ∑ ∑+ + =  (3.51)

 c x c x c x x x yi i i i i i( )0 1, 1 1,
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 c x c x x c x x yi i i i i i( )0 2, 1 1, 2, 2 2,
2

2,∑ ∑ ∑ ∑+ + =  (3.53)

These simultaneous linear equations may be solved for c0, c1, and c2 to obtain the best fit. 
A regression plane is obtained instead of a line because y varies with two independent vari-
ables x1 and x2. The procedure can be extended to multiple linear regression with more than  
two independent variables. Similarly, multiple polynomial regression can also be derived for 
a best fit.
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Linearization of nonlinear functions such as exponential and power-law variations can also be 
carried out for multiple independent variables in many cases, following the procedure outlined for 
a single independent variable. Thus, if y is assumed to be of the general form

 y c x x x xc c c
m
cm.......0 1 2 3

1 2 3=  (3.54)

the equation may be transformed into a linear one by taking its natural logarithm to give

 y c c x c x xm mln( ) ln( ) ln( ) ln( ) c ln( )0 1 1 2 2= + + + …+  (3.55)

Multiple linear regression may now be applied to obtain the coefficients for a best fit to the given 
data.

3.3.2.5 Concluding Remarks
Curve fitting is important in the design and optimization of thermal systems because it allows data 
obtained from experiments and from numerical simulations to be cast in useful forms from which 
the desired information can be extracted with ease. Equations representing material properties, heat 
transfer data, characteristics of equipment such as pumps and compressors, results from computa-
tional runs, cost and pricing information, etc., are all valuable in the design process as well as in 
formulating and solving the optimization problem. Though an exact fit of the data is used in some 
cases, particularly spline functions for material property representations, the best fit is much more 
frequently used because of the errors associated with the data and large sets of data that are often 
of interest. The following examples illustrate the use of the preceding analysis to obtain appropriate 
functions for best fit.

Example 3.8

The temperature T of a small copper sphere cooling in air is measured as a function of time τ to 
yield the following data:

τ (s) 0.2 0.6 1.0 1.8 2.0 3.0 5.0 6.0 8.0

T (°C) 146.0 129.5 114.8 90.3 85.1 63.0 34.6 25.6 14.1

An exponential decrease in temperature is expected from lumped mass modeling. Obtain a best 
fit to represent these data.

SOLUTION

The given temperature-time data are to be best fitted using an exponential variation, as obtained 
earlier for a lumped mass in convective cooling. Let us take the equation for the best fit to be

 = − τT Ae a

where A and a are constants to be determined.
Taking natural logarithms of this equation, we obtain

 ln( ) ln( )= − τT A a

This equation may be written as

 1 2= +Y C C X
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where Y = ln(T), C1 = ln(A), C2 = –a, and X = τ. Therefore, linear regression may be applied to the 
given data by employing the variables Y and X. The two equations for C1 and C2 are obtained as
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Here, n is the number of data points, being nine here, and the summation is over all the data 
points. Therefore, these summations are obtained, using ln(T) and τ as the variables, and C1 and 
C2 are calculated from these equations as
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These two equations may be solved analytically or a simple computer program may be writ-
ten to carry out these computations. A numerical scheme provides flexibility and versatility 
so that different data sets can easily be considered for best fit. The resulting values of C1 and 
C2 are

 5.0431 and 0.29981 2= = −C C

Therefore, A = exp(5.0431) = 154.948 and a = 0.2998. This gives the equation for the best fit to 
the given data as

 154.948exp( 0.2998 )= − τT

This may be approximated as T = 154.95 exp(–0.3τ) to simplify the calculations. The given data 
may be compared with the values obtained from this equation. The nine values of T from this 
equation are calculated as 145.93, 129.44, 114.81, 90.33, 85.07, 63.03, 34.61, 25.64, and 14.08. 
Therefore, the given data are closely represented by this equation.

As mentioned previously, a computer program may be developed to calculate the summations 
needed for generating the two algebraic equations for C1 and C2, using programming languages 
like Fortran90 and C++. However, Matlab is particularly well-suited for such problems because 
the command polyfit yields the best fit to a chosen order of the polynomial for curve fitting (see 
Appendix A.M.5.4). For instance, the following program may be used:

%Input Data
 tau=[0.2 0.6 1.0 1.8 2.0 3.0 5.0 6.0 8.0];
 t0=[146.0 129.5 114.8 90.3 85.1 63.0 34.6 25.6 14.1];
 t=log(t0);
% Curve Fit
 t1=polyfit(tau,t,1);
 a=t1(1)
 A=exp(t1(2))

Here the input data are entered and the chosen exponential function is linearized by the 
use of the natural logarithm. Then the polyfit command is used with the two variables and the 
order of the polynomial given as 1, or linear. Matlab specifies polynomials in descending order 
of the independent variable, so the polyfit command yields the two constants in the order C2 and 
C1, i.e., the slope first and then the intercept. These are given by t1(1) and t1(2) in the program. 
Then a is simply t1(1) and A is the exponential of t1(2). The program yields the same results for 
a and A as given above. Further details on such algorithms in Matlab may be obtained from 
Recktenwald (2000), Mathews and Fink (2004), and Jaluria (2012).
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Example 3.9

The flow rate Q in circular pipes is measured as a function of the diameter D and the pressure 
difference Δp. The data obtained for the flow rate in m3/s are

D(m) 0.3 0.5 1.0 1.4

Δp (atm)
0.5 0.13 0.43 2.1 4.55
0.9 0.25 0.81 4.0 8.69
1.2 0.34 1.12 5.5 11.92
1.8 0.54 1.74 8.59 18.63

Obtain a best fit to these data, assuming a power-law dependence of Q on the two indepen-
dent variables D and Δp.

SOLUTION

The variation of Q with D and Δp may be written for a power-law variation as

 ( )= ∆Q BD pa b

Taking the natural logarithm of this equation, we obtain

 Q B a D pln( ) ln( ) ln( ) b ln( )= + + ∆

This equation may be written as

 1 2 1 3 2= + +Y C C X C X

where Y = ln(Q), C1 = ln(B), C2 = a, C3 = b, X1 = ln(D), and X2 = ln(Δp). Therefore, multiple 
linear regression, as presented in the text, may be applied with ln(Q) taken as the dependent 
variable Y and ln(D) and ln(Δp) taken as the two independent variables X1 and X2. A com-
puter program may be written to enter the data and calculate the summations over the given 
16 data points.

The resulting equations for the constants C1, C2, and C3 are obtained as

 
16 6.243 0.114 9.555

6.243 8.173 0.044 9.490
0.114 0.044 3.481 3.762

1 2 3

1 2 3

1 2 3

− − =
− + + =
− + + =

C C C
C C C
C C C

These equations are solved to yield the three constants as

 1.5039 2.3039 1.10051 2 3= = =C C C

Therefore, B = exp(C1) = 4.4991, a = C2 = 2.3039, and b = C3 = 1.1005. Rounding these off to 
the second place of decimal, the best fit to the given data is given by the equation

 4.5 ( )2.3 1.1= ∆Q D p

It can be easily shown that the best fit is a close representation of the data by comparing the 
values obtained from this equation with the given data.
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3.6 SUMMARY

This chapter discusses the modeling of thermal systems, this being a crucial element in the design 
and optimization process. Because of the complexity of typical thermal systems, it is necessary to 
simplify the analysis so that the inputs needed for design can be obtained with the desired accuracy 
and without spending exorbitant time and effort on computations or experiments. The model also 
allows one to minimize the number of parameters that describe a given system or process and to 
generalize the results so that these may be used for a wide range of conditions.

Several types of models are considered, such as analog, mathematical, physical, and numerical. 
Analog models are of limited value because these models themselves have to be ultimately solved 
by mathematical and numerical modeling. This chapter considers mathematical and physical mod-
eling in detail, leaving numerical modeling, in which the applicable equations are solved by digi-
tal computation, for the next chapter, which also presents numerical simulation. In mathematical 
modeling, both theoretical models, derived on the basis of physical insight, and empirical models, 
which simply curve fit available data, are considered because both of these lead to mathematical 
equations that characterize the behavior of a given system. Curve fitting is discussed in detail fol-
lowing physical modeling because it is used to develop equations from experimental data as well as 
from numerical results.

Mathematical modeling is at the very core of modeling of thermal systems because it brings out 
the basic considerations with respect to the given system, focusing on the dominant mechanisms 
and neglecting smaller aspects. It simplifies the problem by using approximations and idealizations. 
Conservation laws are used to derive the applicable equations, which may be algebraic equations, 
integral equations, ordinary differential equations, partial differential equations, or combinations 
of these. These equations can frequently be simplified further by neglecting terms that are rela-
tively small, often employing nondimensionalization of the equations to determine which terms are 
negligible.

Physical modeling refers to the process of developing a model that is similar in shape and geom-
etry to the given component or system. The given system is often represented by a scaled-down ver-
sion on which experiments are performed to provide information that is not easily available through 
mathematical modeling. Dimensional analysis is employed to determine the important dimension-
less groups that determine the behavior of the given system to reduce the experimental effort. These 
parameters are also used to establish similitude between the model and the actual system or proto-
type. Various kinds of similarity are outlined, including geometric, kinematic, dynamic, thermal, 
and mass transfer. The conditions needed for these types of similarity are presented.

The results from experiments and mathematical modeling are often obtained at discrete values 
of the variables. These data can be obtained in a more useful form by curve fitting, which yields 
mathematical equations that represent the data. In an exact fit, the curve passes through each data 
point, yielding the exact value at these points. It is particularly well-suited for relatively small but 
very accurate data sets. A best fit provides a close approximation to the given data without requiring 
the curve to pass through each data point. Thus, a best fit is appropriate for large data sets with sig-
nificant error in the results. The method of least squares, which minimizes the sum of the squares of 
the differences between the data and the predicted values from the curve fit, is the most commonly 
used approach. A polynomial best fit, including linear regression, is extensively used for engineer-
ing systems. Nonpolynomial forms such as exponential and power-law variations are linearized and 
the curve fit is obtained by linear regression. Multiple linear regression is used for functions of more 
than one independent variable.

With the help of a suitable model, the behavior of the system may be studied under a variety of 
operating and design conditions, making it possible to consider and evaluate different designs. The 
model may be improved by employing the results from simulation and design. A relatively simple 
model may be used at the beginning; subsequently, the assumptions made can be relaxed and the 
model can be gradually transformed into a more sophisticated and accurate one.
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PROBLEMS

Note: In all problems dealing with model development, list the assumptions, approximations, 
and idealizations employed; give the resulting equations; and, whenever possible, give the ana-
lytical solution. Symbols may be used for the appropriate physical quantities. Matlab com-
mands such as polyfit and interp1 may be used to check on the results obtained from numerical 
calculations.

 3.1 An energy storage system consists of concentric cylinders, the inner being of radius R1, the 
outer of radius R2 and both being of length L, as shown in Figure P3.1. The inner cylinder is 
heated electrically and supplies a constant heat flux q to the material in the outer cylinder, 
as shown. The annulus is packed with high-conductivity metal pieces. Assuming that the 
system is well-insulated from the environment and that the annular region containing the 
metal pieces may be taken as isothermal,
a. Obtain a mathematical model for the system.
b. If the maximum temperature is given as Tmax, obtain the time for which heating may 

be allowed to occur, employing the usual symbols for properties
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 3.2 Solid plastic cylinders of diameter 1 cm and length 30 cm are heat treated by moving them 
at constant speed U through an electric oven of length L, as shown in Figure P3.2. The 
temperature at the oven walls is Ts and the air in the oven is at temperature Ta. The con-
vective heat transfer coefficient at the plastic surface is given as h and the surface emis-
sivity as ε. The cylinders are placed perpendicular to the direction of motion and are 
rotated as they move across the oven. Develop a simple mathematical model for obtain-
ing the temperature in the plastic cylinders as a function of the temperatures Ts and Ta, h, 
L, and U, for design of the system. Clearly indicate the assumptions and approximations 
made.

 3.3 A chemical industry needs hot water at temperature Tc ± ΔTc for a chemical process. For this 
purpose, a storage tank of volume V and surface area A is employed. Whenever hot water 
is withdrawn from the tank, cold water at temperature Ta, where Ta is the ambient tempera-
ture, flows into the tank. A heater supplying energy at the rate of Q turns on whenever the 
temperature reaches Tc – ΔTc and turns off when it reaches Tc + ΔTc. The heater is submerged 
in the water contained in the tank. Assuming uniform temperature in the tank and a con-
vective loss to the environment at the surface, with a heat transfer coefficient h, obtain a 
mathematical model for this system. Sketch the expected temperature T of water in the tank 
as a function of time for a given flow rate m  of hot water and also for the case when there is 
no outflow, m  = 0.

 3.4 Consider a cylindrical rod of diameter D undergoing thermal processing and moving at a 
speed U as shown in Figure P3.4. The rod may be assumed to be infinite in the direction 
of motion. Energy transfer occurs at the outer surface, with a constant heat flux input 
q and convective loss to the ambient at temperature Ta and heat transfer coefficient h. 
Assuming one-dimensional (uniform temperature over any cross-section), steady trans-
port, obtain the energy equation and the relevant boundary conditions. By nondimension-
alization, determine the main dimensionless parameters. Finally, obtain T(x) for (a) h = 0 
and (b) q = 0.

FIGURE P3.1 

FIGURE P3.2 
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 3.5 Give the energy equation and boundary conditions for the steady-state, two-dimensional 
(axisymmetric) case for the preceding physical problem. Derive the dimensionless param-
eters that arise using the nondimensionalization of the energy equation and the boundary 
conditions.

 3.6 During the heat treatment of steel bolts, the bolts are placed on a conveyor belt that passes 
through a long furnace at speed U as shown in Figure P3.6. In the first section, the bolts 
are heated at a constant heat flux q. In the second and third sections, they lose energy by 
convection to the air at temperature Ta at convective heat transfer coefficients h1 and h2 in 
the two sections, respectively.
a. Assuming lumped mass analysis is valid, obtain the governing equations for the 

three sections and outline the mathematical model thus obtained.
b. Sketch the temperature variation qualitatively as a function of distance x from the 

entrance.

 3.7 In a manufacturing process, a metal block of surface area A and volume V is melted in a 
furnace. The initial temperature of the block is Ti, the melting point is Tm, and the final tem-
perature is Tf, where Tf > Tm > Ti. The block is exposed to a constant heat flux input q due to 
radiation and also loses energy by convection to the surrounding air at Ta with a convective 
heat transfer coefficient h. Employing the usual symbols for the properties and assuming no 
temperature variation in the block:
a. Obtain a suitable mathematical model for the process.
b. Qualitatively sketch the temperature variation with time.
c. If the temperatures Ti, Tm, and Tf are given, what are the variables for operation and 

design?
 3.8 A water cooler is to be designed to supply cold drinking water with a given time-dependent 

mass flow rate m . Assume a cubical tank of cold water enclosed in an insulation of uniform 
thickness. Water at the ambient temperature flows into the tank to make up the cold water 
outflow. The refrigeration unit turns on if the water temperature reaches a value Tmax and 
turns off when it drops to Tmin, thus maintaining the temperature between these two values. 
Develop a simple mathematical model for this system.

 3.9 It is necessary to model and simulate a hot water distribution system consisting of a tank, 
pump, and pipes. The heat input Q to the tank is given and the ambient temperature is Ta, 

FIGURE P3.4 

FIGURE P3.6 
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with h as the heat transfer coefficient for heat loss. Develop a simple mathematical model 
for this system.

 3.10 We wish to model a vapor compression cooling system, such as the one shown in 
Figure 1.8(a). For a simple model based on the thermodynamic cycle, list the main approxima-
tions and idealizations you would employ to obtain the model. Justify these in a few sentences.

 3.11 A mathematical model is to be developed to simulate a power plant, such as the one shown in 
Figure 2.17. For a simple model based on the thermodynamic cycle, list the approximations and 
idealizations you would employ to obtain the model. Briefly justify these in a few sentences.

 3.12 In the hot water storage system considered in Example 3.5, if the ambient temperature is 
20°C and the heat transfer coefficient is 20 W/m2K, sketch the temperature distribution in 
the steady-state case. What are the important parameters in this problem? How does the 
solution vary with these parameters?

 3.13 In a heat treatment furnace, a thin metallic sheet of thickness d, height L, and width W is 
employed as a shield. On one side of the sheet, hot flue gases at temperature Tf (x) exchange 
energy with an overall heat transfer coefficient hf . On the other side, inert gases at tempera-
ture Tg(x) have a heat transfer coefficient hg, as shown in Figure P3.13. The sheet also loses 
energy by radiation. If L ≫ d and W ≫ d, obtain a mathematical model for calculating the 
temperature T in the sheet. Assume that Tf and Tg are known functions of height x. Also, 
take hf and hg as known constants. Give the resulting energy equation and its solution, if 
easily obtainable analytically.

 3.14 For the following systems, consider and briefly discuss the various approximations and ide-
alizations that can be made to simplify the mathematical model. When are these approxi-
mations valid and how would you relax them? Outline the nature and type of the equations 
that you expect to obtain for the different systems.
a. Food-freezing plant to chill vegetables to –10°C by circulating chilled air past the 

vegetables.
b. A shell and tube heat exchanger, with hot and cold water as the two fluids.
c. A system consisting of pumps and pipe network to transport water from ground level 

to a tank 100 m high.
d. A vapor compression system for cooling a cold storage room.
e. Flow equipment such as compressors, fans, pumps, and turbines.

 3.15 In the electronic system considered in Example 3.7, if the geometry and heat inputs are 
fixed, what are the design variables in terms of dimensionless parameters? If the maximum 
temperature in the electronic components is to be restricted for an acceptable design, what 
physical quantities may be adjusted to reach an acceptable design?

FIGURE P3.13 
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 3.16 In a counterflow heat exchanger, the heat loss to the environment is to be included in the 
mathematical model. Considering the case of the hot fluid on the outside and the colder fluid 
on the inside, as shown in Figure P3.16, sketch qualitatively the change that the inclusion of 
this consideration will have on the temperature distribution in the heat exchanger. Also, give 
the energy equation taking this loss into account.

 3.17 Scale-up from a laboratory system to a full-size version is an important consideration in 
industry. For the problems considered in Example 3.5 and Example 3.6, determine the 
important parameters that may be used for scale-up and whether it is possible to achieve the 
desired similarity.

 3.18 A scaled-down version of a shell and tube heat exchanger is to be used to simulate the actual 
physical system to be used in a chemical plant. Determine the dimensionless parameters 
that must be kept the same in order to ensure similarity between the full-size and scaled-
down systems.

 3.19 Obtain the dimensionless parameters that govern the scale-down and scale-up of a vapor 
compression refrigeration system.

 3.20 Consider the condensation soldering system discussed in Chapter 2 (Figure 2.4 and 
Figure 2.6), with boiling liquid at the bottom of a chamber and water-cooled condensing 
coils at the top, generating a condensing vapor region in the tank. A large electronic circuit 
board that may be approximated as a thick flat plate at room temperature is immersed in the 
chamber at time zero. Develop a simple mathematical model to compute the temperature 
distribution in the plate, giving the relevant equation(s) and boundary and initial conditions. 
Also, write down the global energy balance equation to determine the energy input into the 
liquid needed before and after immersion of the board. Make suitable simplifications and 
assumptions, indicating these in your answer.

 3.21 A flat steel (ρ = 10,000 kg/m3, C = 500 J/kg⋅K, k = 100 W/m⋅K) sheet emerges from a 
furnace at 10 cm/s and 800°C. At distances of 10 m each, there are three rolling dies; see 
Figure 1.10(d). The initial thickness of the sheet is 2 cm and at each die, a reduction of 20% 
in thickness occurs. In addition, a temperature rise of 50°C occurs due to friction at each 
rolling die. The sheet loses energy to the environment, at 20°C, at an overall heat transfer 
coefficient of 120 W/m2⋅K. It is necessary to maintain the temperature of the material higher 
than 700°C. Using a simple mathematical model of the process, determine the level of heat-
ing, or cooling, needed between the rolling stations.

 3.22 The average daily temperature in New Brunswick, New Jersey, is obtained by taking data 
over several years. The results are given as 365 data points, with each point corresponding 
to a day during the year. A curve fit to these data is to be obtained for the design of air con-
ditioning systems. Will an exact or a best fit be more appropriate? Suggest a suitable form 
of the function for curve fitting.

 3.23 The average daily air temperature at a location is available for each day of 2005. We wish 
to obtain a best fit to these data and use the equation obtained in a computer model 
for an environmental thermal system. Choose an appropriate form of the equation that 
may be employed to curve fit the data and outline the reasons for your choice. Outline 

FIGURE P3.16 
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the mathematical procedure to determine the constants of the equation chosen for the  
curve fit.

 3.24 A steel sphere at initial temperature To is immersed in a cold fluid at temperature Ta and 
allowed to cool rapidly for hardening. At 20 time intervals τi, the corresponding tem-
perature Ti in the sphere is measured, where i = 1, 2, 3, …, 20. The temperature variation 
across the sphere may be taken as negligible. We wish to obtain the best fit to the data 
collected. What function f(τ), where T = f(τ), will you employ for the purpose? Justify your 
answer.

 3.25 In a heat treatment process, a metal cube of side 2 cm, density 6000 kg/m3, and specific heat 
300 J/kg⋅K is heated by convection from a hot fluid at temperature Tf = 220°C. The initial 
temperature of the cube is Ti = 20°C. If the temperature T within the cube may be taken 
as uniform, write down the equation that governs the temperature as a function of time τ. 
Obtain the general form of the solution. The measured temperature values at different times 
are given as

τ (min) 0 0.5 1.0 2.0 3.0 6.0

T T

T T
f

i f

−
−

1.0 0.85 0.72 0.5 0.4 0.14

Obtain a best fit to these data using information from the analytical solution for T(τ). Sketch 
the resulting curve and plot the original data to indicate how good a representation of the 
data is obtained by this curve. From the results obtained, compute the heat transfer coef-
ficient h.

 3.26 Obtain a linear best fit to the data given below from a chemical reactor by using the method 
of least squares:

Concentration (g/m3) 0.1 0.2 0.5 1.0 1.2

Reaction Rate (g/s) 1.75 1.91 2.07 2.32 2.4

Is a linear fit satisfactory in this case?
 3.27 The temperature variation with height in the large oil fires in Kuwait several years ago was 

an important consideration. Measurements of the temperature T versus the height H were 
taken and presented in dimensionless terms as

H: 1.0 2.0 3.0 4.0 5.0

T: 10.0 7.9 6.9 6.3 5.9

It is given that T varies as T = A(H)a. Using linear regression methods, as applied to 
such equations, obtain the values of A and a from these data. How accurate is your 
correlation?

 3.28 Experimental runs are performed on a compressor to determine the relationship between 
the volume flow rate Q and the pressure difference P. It is expected that Q will vary as Pb, 
where b is a constant. The measurements yield the mass flow rate Q for different pressure 
differences P as

P (atm) 5.0 10.0 15.0 20.0 25.0 30.0

Q (m3/h) 7.4 13.3 16.5 19.0 20.6 24.3

It is known that there is some error in the data. Will you use a best or an exact fit?  
Use the appropriate fit to these data and determine the coefficients. Is your equation a 
good fit?
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 3.29 Tests are performed on a nuclear power system to ensure safe shutdown in case of an acci-
dent. The measurements yield the power output P versus time τ in hours as

τ (hours) 1 3 5 9 10 12

P (MW) 13.0 7.0 5.4 4.7 4.5 4.2

From theoretical considerations, the power is expected to vary as a + b/τ, where a and b are 
constants. It is also known that there is experimental error in the data. Will you use a best or 
an exact fit? Use an appropriate fit to these data points and determine the relevant constants. 
Is it a good curve fit? Briefly explain your answer.

 3.30 Experiments are carried out on a plastic extrusion die to determine the relationship between 
the mass flow rate m  and the pressure difference P. We expect the relationship to be of the 
form m  = APn, where A and n are constants. The measurements yield the mass flow rate m  
for different pressure differences P as

m(kg/h) 12.8 15.5 17.5 19.8 22.0

P (atm) 10.0 15.0 20.0 25.0 30.0

Obtain a best fit to these data and determine the coefficients A and n. Is this a good best fit, 
or should we consider other functional relationships?

 3.31 Use polyfit in MATLAB to get the best fit to the following data, considering first-, second-, 
and third-order polynomials. Then plot the data as well as the three best-fit curves obtained. 
Which is the best fit?

x: 0 0.1 0.2 0.3 0.4 0.5 0.6 0.8 1.0 1.2

y: 0 0.87 1.82 2.86 4.0 5.26 6.65 9.88 13.8 18.52

 3.32 The flow rate F is given at various values of the pressure P as

P 0.025 0.05 0.1 0.2 0.3 0.4 0.5

F 1.41 2.54 4.2 5.9 6.9 7.6 7.8

Use the last five points to get an exact fit. Use extrapolation with this fit to obtain  
values at 0.025 and 0.05. Compare with the given data at these points. Comment on the 
results.

 3.33 Obtain the first-, second-, and third-order best fits to the preceding data. Plot the three 
curves and the data to determine the best curve to use.

 3.34 In a chemical reaction, the effect of the concentration C of a catalyst on the reaction rate is 
investigated and the experimental results are tabulated as

C (g/m3) 0.1 0.2 0.5 1.0 1.2 1.8 2.0 2.6 3.5 4.0

R (g/s) 1.75 1.91 2.07 2.32 2.40 2.54 2.56 2.53 2.03 1.24

Using the method of least squares and considering polynomials up to the fifth order, obtain 
a best fit to these data. Which curve provides the best approximation to the given data? Also, 
compare the results with those obtained in Problem 3.26.

 3.35 A small heated metal block cools in air. Its temperature T is measured as a function of time 
τ and the results are given as

τ (s) 1 2 5 10 15 20 25 30

T (°C) 109.5 99.25 73.78 45.15 26.78 17.24 9.85 6.97
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From the physical considerations of this problem, the temperature is expected to decay 
exponentially, as sketched in Figure P3.35. Obtain a best fit to the given data and determine 
the two constants A and a.

 3.36 The displacement x of a particle in a flow is measured as a function of time τ. The data 
obtained are

τ (sec): 0.0 1.0 2.0 3.0 4.0 5.0

x (m): 0.0 2.0 8.0 20.0 40.0 62.0

Obtain a linear best fit to these data. From this fit calculate the values at τ = 2.0 and 4.0. 
Compare these with the given data and comment on the difference. How would you improve 
the accuracy of the curve fit?

 3.37 In an experiment, the signal from a sensor is measured over the velocity range of 0 − 3 m/s. 
If the signal E is measured as 2, 9, 24, and 47 volts at the velocity V of 0, 1, 2, and 3 m/s, 
respectively:
a. What is the highest-order polynomial E(V) that exactly fits the given data?
b. Obtain the best linear fit, employing the method of least squares.
c. Determine the value of E at V = 5 as calculated from the two curves obtained above 

and comment on the difference between the two results.
 3.38 A thermocouple is being calibrated for temperature measurements by measuring its voltage 

output V in millivolts and the corresponding fluid temperature T in °C, using a calibration 
device. For voltage values of 0, 0.1, 0.2, and 0.3 millivolts, the temperature is measured as 
15°C, 18.5°C, 24°C, and 31.5°C. Determine the highest-order polynomial that exactly fits the 
data and give the result as T = F(V). Also, obtain a linear best fit to these data using the method 
of least squares. Compare the two expressions obtained and comment on the difference.

 3.39 In a heat transfer experiment, the heat flux q is measured at four values of the flow velocity, 
which is related to the fluid flow rate. The velocity V is measured as 0, 1, 2, 3, and 4 m/s and 
the corresponding heat flux as 1, 2, 9, 29, and 65 W/m2. It is desired to fit a polynomial to 
these points so that q may be expressed as q = f(V). What is the highest-order polynomial 
that may be obtained from these data? Also determine a linear best fit to the given data.

 3.40 The volume flow rate Q in m3/s of water in an open channel with a slight downward slope S 
and a hydraulic radius R is measured to yield the following data:

R (m) 0.5 1.0 1.5 2.0

S

1.5 × 10−3 1.91 3.10 4.11 5.03

5 × 10−3 3.48 6.66 7.51 9.19

9 × 10−3 4.67 7.59 10.08 12.33

FIGURE P3.35 
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It is expected from theoretical considerations that Q varies with R and S as ARbSc, 
where A, b, and c are constants. Obtain a best fit to the given data and determine these 
constants.

 3.41 Repeat Example 3.9 if the values of the pipe diameter D were given as 0.5, 0.8, 1.4, and 
1.9, instead, with all the remaining values unchanged. Similarly, solve the problem again if 
the pressure difference Δp values were given as 0.7, 1.2, 1.5, and 2.1, instead, with all other 
values unchanged.

 3.42 The kinematic viscosity ν of a fluid is measured as 20.92, 32.39, 38.79, 45.57, and 
62.21 m2/s, with each value multiplied by 10−6, at temperatures 350, 450, 500, 550, and 
650 K, respectively. Using the interp1 command in Matlab, obtain the interpolated values 
at 400 and 600 K. Compare these with values given in the literature as 26.41 × 10−6 and  
52.69 × 10−6 m2/s.

 3.43 The calibration table given below for a copper-constantan thermocouple, which is employed 
for temperature measurements, gives the temperature T in oC for different values of the 
output voltage V in millivolts (mV). Using the interp1 command in Matlab for splines, cal-
culate the interpolated values at 0.9 and 1.75 mV.

T (°C) 10 20 30 40 50 60 70 80

V (mV) 0.391 0.789 1.196 1.611 2.035 2.467 2,908 3.357
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4 Numerical Modeling 
and Simulation

In the preceding chapter, the modeling of thermal systems was presented, and different types of 
models were discussed. The main focus was on mathematical modeling, which employs approxima-
tions, simplifications, and idealizations to obtain a set of mathematical equations that describe a 
given component, subsystem, or the overall system. Mathematical modeling also brings out the dom-
inant mechanisms and determines the important dimensionless parameters that may be varied in an 
experimental or analytical study to characterize the behavior of the given thermal system. Physical 
modeling, which involves experimentation on a scale model of the system, is used as a means to 
obtain results that are not easily extracted from mathematical modeling. Curve fitting is often used 
to derive algebraic equations to represent experimental or numerical results, as well as data on mate-
rial properties, environmental conditions, financial trends, and equipment characteristics.

As a consequence of mathematical and physical modeling, along with curve fitting, mathemati-
cal equations that describe the behavior of the thermal system are obtained. These equations are 
generally linked to each other through material properties, boundary conditions, flow of material 
and energy, and interaction between the various components of the system. Interest lies in obtaining 
solutions to this coupled set of equations to determine the behavior and characteristics of the system 
for wide ranges of design variables and operating conditions. Because of the coupled nature of these 
equations and because nonlinear algebraic and differential equations, including both ordinary and 
partial differential equations, commonly arise in thermal systems, analytical solutions are rarely 
possible and numerical techniques are employed to obtain the desired results.

A numerical model of the thermal system refers to a computational or numerical representation 
of the system on a computer, which may be used to approximate the behavior and characteristics of 
the system. It consists of a numerical scheme or procedure that would yield a solution to the appli-
cable mathematical equations, with numerically imposed boundary and initial conditions, relevant 
property data, component characteristics, and other inputs needed for representing the entire sys-
tem. The numerical algorithm, as well as its implementation on a computer, constitutes the numeri-
cal model. Once the model is confirmed to be a valid and accurate representation of the system, 
the model is subjected to changes in the design variables and operating conditions. This process of 
studying the behavior of the system by means of a model, rather than by fabricating a prototype, is 
known as simulation. The results obtained allow us to consider many different design possibilities 
as well as a variety of operating conditions. Different designs may thus be evaluated to choose an 
acceptable design and safe levels may be established for the operating conditions. These results 
are also used for optimization of the system design as well as optimizing the operating conditions. 
Therefore, the success of the design and optimization process is strongly dependent on the numeri-
cal modeling and simulation of the system. The basic considerations in the development of a numer-
ical model are first presented in this chapter, followed by a discussion on numerical simulation.

4.1 NUMERICAL MODELING

The numerical solution of mathematical equations that are commonly encountered in engineer-
ing applications is covered in a variety of courses dealing with numerical analysis. A large num-
ber of books available in this area discuss various methods for different types of equations, along 
with important aspects such as accuracy, convergence, and stability of these methods (Smith, 1965; 
Hornbeck, 1975; Atkinson, 1989; Gerald and Wheatley, 2003; Ferziger, 1998). A few others are 
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concerned with problems of engineering interest and discuss the implementation of the algorithm 
on the computer (Carnahan et al., 1969; James et al., 1985; Jaluria, 1996). There has also been a 
substantial increase in interest in the solution of the relevant mathematical problems by the use of 
Matlab, as presented by Recktenwald (2000), Mathews and Fink (2004), Chapra (2017), Jaluria (2012), 
and others. This chapter presents a brief discussion of numerical modeling in order to indicate the 
main concerns with respect to thermal systems and the commonly used techniques. For further 
details, the aforementioned books and others available on this subject may be consulted.

4.1.1 generAl FeAtures

The main purpose of numerical modeling is to develop a computational code, implemented on a 
digital computer, which provides a physically valid and accurate representation of the real system 
and allows the behavior of the system to be determined under different conditions. Thus, a one-
to-one correspondence is established between the physical thermal system and the numerical 
model so that the desired information on system characteristics and behavior can be obtained by 
subjecting the numerical model to different conditions. As shown schematically in Figure 4.1, the 
inputs into the physical system, arising due to changes in the design variables or in the operating 
conditions, are given as corresponding mathematical inputs to the numerical model. The outputs 
from the model then indicate the expected outputs from the actual physical system, if such a sys-
tem were to be fabricated and tested.

Numerical modeling starts with the solution of individual equations. The numerical schemes for 
different equations are then assembled to yield the solution procedure for the set of equations that 
represent a given part, subsystem, or the complete system. The main steps that may be followed in 
the numerical modeling of a system are:

1. Determination of the nature and characteristics of each equation to be solved
2. Selection of a numerical scheme for solving each equation
3. Development of numerical code for the solution of each equation
4. Assembly of solution procedures for different coupled equations to model a component or 

part of the system
5. Validation and estimation of accuracy of numerical model for each system component
6. Compilation of numerical models for system parts to model complete system
7. Check on accuracy of overall system model and its validation

Therefore, a systematic approach is used to obtain a satisfactory numerical model for the com-
plete thermal system. A numerical model is built up for each part, component, or subsystem of the 
system. Individual models for the different parts or subsystems are finally assembled and the overall 
numerical model for the system is obtained and validated.

An example. Consider a shell and tube heat exchanger, as shown in Figure 1.5(e). Even if the shell 
and the tubes are taken as the only parts of the system, the equations that represent different portions 
or sections of these two may be different. The ends of the shell, the regions near the inlet and outlet, 
the flow within the shell, and the baffles may all be modeled separately to focus on the dominant 
transport mechanisms in these regions and to take advantage of possible approximations. Similarly, 

FIGURE 4.1 Representation of an actual physical system by a numerical model.
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different portions on the tube side, with single or multiple passes, may be modeled. Depending on 
the level of sophistication and accuracy needed for predicting the temperature distributions and 
the heat transfer rates in the heat exchanger, different mathematical and numerical models may be 
developed for this problem. The coupled equations are solved to obtain the flow and the associated 
temperature distributions, from which the heat transfer rates may be determined.

The preceding example represents a complicated numerical modeling problem. However, it may 
be considerably simplified if inputs from experimental results are employed to circumvent analysis. 
For instance, the transport processes can be modeled easily if the overall heat transfer coefficient U is 
taken as known, even though it is a function of the flow, which, in turn, depends on the geometry, 
dimensions, fluids, and flow rates (Incropera and Dewitt, 2001). But, experimental results and sim-
plified analysis are often used to avoid solving the full convective heat transfer equations because 
of the complexity of the resulting problem. In addition, there are additional phenomena that may 
be very hard to model. Fouling of heat exchangers, resulting from deposition of a film or scale on 
the heat transfer surfaces, is one such consideration that often needs inputs from experimental data.

4.1.1.1 Accuracy and Validity of the Model
The most important concern in numerical modeling is how closely the model represents the real 
system. This consideration refers to the physical behavior of the system, as predicted by the model, 
as well as to the accuracy of the results obtained from the model. It is critical to ensure that the 
model is a valid and accurate representation of the system. Therefore, the results obtained should 
be independent of the numerical scheme and its implementation. If arbitrary numerical parameters, 
such as grid size, time step, convergence criterion, and starting conditions, are introduced in order 
to obtain a solution, the results must not be significantly affected by the values chosen. This is 
sometimes referred to as verification of the numerical scheme. An important check on the validity 
of the model is also provided by the physical characteristics of the outputs, which must follow trends 
expected for the actual system. Comparisons of the results with experimental data, whenever pos-
sible, are employed to further validate the model and estimate the accuracy of the outputs derived 
from the model (Roache, 2009).

As a result of the various considerations and steps just outlined, a numerical model that accu-
rately represents a given thermal system is obtained. Several useful software features that have been 
developed in the last three decades may be built into the computer code for added convenience. For 
instance, the outputs from the numerical model are commonly displayed in graphical form. Inputs, 
representing design variables and operating conditions, may also be entered graphically. Interactive 
use of the computer is frequently employed. Menu-driven selection of different solution methods, 
whose algorithms are stored in the system, and of other standard software may be employed. For 
example, Matlab, Comsol Multiphysics, Maple, Mathcad, and other software are commercially 
available to solve different types of mathematical equations. Information storage and retrieval may 
be used to access material property data, empirical heat transfer correlations, and data on the char-
acteristics of selected components, such as pumps and compressors. These features make it easy to 
use the model for studying different conditions.

4.1.2 Development oF A numericAl moDel

Numerical models are first developed for each part, component, or subsystem of the given thermal 
system. It is assumed that the mathematical model has been obtained, resulting in the relevant equa-
tions that must be solved to predict the behavior. These equations may be algebraic, differential, or 
integral and may be linear or nonlinear. Different solution procedures are needed for different types 
of equations. All these procedures are linked to each other to solve the coupled system of equations.

The numerical methods available for a given problem depend on the nature and type of equa-
tion involved. The implementation on the computer requires selection of a computer system, along 
with an operating system, an appropriate programming language, and any available software or 
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programs that are to be used. Unix and Linux are popular choices for the operating system because 
of their versatility. Though Fortran remains a popular programming language for engineers, par-
ticularly in its recent versions of Fortran 2003, 2008, and 2018, the use of C has increased rapidly 
because of its advantageous features in flow control and data structures (Kernighan and Ritchie, 
1988). Variations in C, such as C++, have become very popular (Stroustrup, 2013). Python and Java 
are additional languages that have grown in popularity in recent years for different applications. 
Symbolic languages, such as Lisp and Prolog, are needed for knowledge-based design, as discussed 
in Chapter 11.

Though many of the current programs are written for a single central processing unit 
(CPU), parallel machines in which several processors are employed simultaneously have also 
grown in popularity because of the large computational speeds obtained at relatively small 
cost (Boyle et al., 1987; Kirk and Hwu, 2016). Due to substantial recent advancements in 
computer software, implementation on the computer has been considerably simplified through 
the use of efficient operating systems, editors, and standard programs, for example, those on 
graphics, interpolation, and matrix algebra.

Numerical errors include round-off errors, which arise due to the finite precision of the com-
puter system, and truncation errors, which result from the approximations used in the numeri-
cal scheme, such as those that replace differential changes with finite ones. The convergence of 
an iterative scheme, which starts with an initial, guessed value and progresses toward a solu-
tion, depends on the equations, the starting point, the convergence criterion, and the numerical 
scheme. The instability of the scheme implies an unbounded growth of numerical errors as 
computation proceeds. The conditions under which the scheme becomes unstable or divergent 
must be determined and avoided. In order to obtain useful results from the numerical model, it is 
necessary to obtain a convergent, stable, and accurate numerical solution to a given mathemati-
cal equation.

4.1.3 AvAilAble soFtwAre

It is not necessary to develop the numerical scheme for each aspect of the given design problem 
because extensive libraries of computational software are usually available and may be used to sim-
plify the model development process. The computer programming would obviously be considerably 
simplified if such available programs were used. In engineering practice, the use of such available 
software is quite prevalent because interest often lies in obtaining the desired results as quickly as 
possible. If a particular computer program has been successfully employed in the past, it is a good 
idea to use it for future applications. However, it is necessary to understand the algorithm adopted 
by the available software so that modifications, if needed, can be made and the inputs/outputs 
adjusted for the problem under consideration. It is also important to be aware of the limitations of 
the program and the expected accuracy of the numerical results.

Many computer programs are available in the public domain and may simply be adapted to the 
computer system and the overall numerical model. Such programs include methods for matrix inver-
sion, curve fitting, numerical integration, and for solving ordinary differential equations and sets 
of linear algebraic equations. These programs are usually well-tested and may be used effectively 
in the development of the numerical model. Some free software is also available for certain fields. 
For instance, OpenFoam is a useful free open source software for computational fluid dynamics. 
Commercially available software comes with instructions on how to use it, but frequently without 
adequate details on the numerical procedures employed. Although such programs appear attractive 
because of the often exaggerated claims made in terms of their applicability, one must judge each 
program very carefully on the basis of accuracy, flexibility, efficiency, ease with which modifica-
tions may be made, algorithm used, and, of course, cost. General-purpose codes such as Fidap, 
Fluent, Ansys, and Phoenics are widely used in industrial applications. Special-purpose software 
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directed at specific applications such as thermal management of electronics, air conditioning, injec-
tion molding, and combustion are also available. These are often expensive but, nevertheless, are 
used extensively by industry to model practical processes and systems.

A particular popular software is Matlab, which is discussed in some detail in Appendix A and 
which is used extensively to solve various mathematical equations. Matlab provides an interactive 
computational environment that can be used effectively to solve a wide range of mathematical equa-
tions. Several applications of Matlab are discussed in this book in order to obtain the inputs needed 
for design and optimization.

4.2 SOLUTION PROCEDURES

As seen in the preceding chapter, the mathematical modeling of thermal systems leads to different 
types of appropriate equations. Among the most common ones are

1. Set of linear algebraic equations
2. Single nonlinear algebraic equation
3. Set of nonlinear algebraic equations
4. Ordinary differential equations
5. Partial differential equations
6. Integral equations

In addition to the solution procedures for these types of equations, numerical methods are needed 
for differentiation and integration, and for curve fitting. The analytical and numerical methods for 
curve fitting of data were discussed in the preceding chapter. Some of the commonly used numeri-
cal procedures for solving the various equations just listed are presented here. This brief discussion 
will serve to present the nature and characteristics of the different types of equations as well as the 
relevant solution techniques for individual and sets of equations. Many of these methods and ideas 
will be referred to in later chapters. For further information on these methods, the references given 
earlier may be consulted.

The main purpose of discussing the solution procedures is to present the wide range of options 
available to an engineer or designer to solve the equations that describe a given thermal process or 
system and thus obtain the information and inputs needed for design and optimization. The options 
range from developing the code, modifying and/or using software available as open access, using 
computational environments such as Matlab or employing commercially available codes for par-
ticular topics and applications.

4.2.1 lineAr AlgebrAic systems

The solution of simultaneous linear algebraic equations is extremely important in the numerical 
modeling of thermal systems because the solution procedures for nonlinear algebraic equations and 
for differential equations often end up requiring the solution of sets of linear algebraic equations. 
In addition, many applications, such as those concerned with fluid flow circuits, chemical reactions, 
steady conduction heat transfer, and data analysis, are often governed by linear systems. A system 
of n linear equations may be written in the general form
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Here, the a’s represent the n2 coefficients, the x’s represent the n unknowns, and the b’s represent 
the n constants on the right-hand side of the equations. The system may also be written more con-
cisely in matrix notation as

 A X B( )( ) ( )=  (4.2)

where (A) is an n × n square matrix of the coefficients, (X) is a column matrix of the n unknowns, 
and (B) is a column matrix of the constants that appear on the right-hand side of the n equations. 
Thus, aij represents an element of matrix (A), xj an unknown element in (X), and bi an element of 
vector (B). Two main approaches, direct and iterative, may be adopted for solving this set of linear 
algebraic equations.

4.2.1.1 Direct Methods
These methods solve the equations exactly, except for the round-off error, in a finite number of opera-
tions. Some of the methods are based on matrix inversion, because the solution of Equation (4.2) may 
be written as

 X A B( ) ( )= −( )1  (4.3)

where (A−1) is the inverse of matrix (A). The determinant of (A) must not be zero for this inverse 
to exist. If the determinant is zero, matrix (A) is said to be singular and nontrivial solutions can be 
obtained only if the column vector (B) is also zero, i.e., the equations are homogeneous. A common 
example of this circumstance is the eigenvalue problem, which is of particular interest in vibrations 
and in the stability of systems and flows. Many of the direct methods are based on elimination and 
reduction of variables, so that the given set of equations is reduced to a form that is amenable to a 
solution by simple algebraic analysis. The important direct methods available in the literature are:

1. Gaussian elimination
2. Gauss-Jordan elimination
3. Matrix decomposition methods
4. Matrix inversion methods

Gaussian elimination is used in a wide variety of engineering problems. The method reduces 
the matrix (A) to an upper triangular matrix so that the bottom row has only one element, as shown 
in Figure 4.2(a). Then the equation corresponding to this bottom row is a linear equation with 

FIGURE 4.2 Special types of matrices that are of interest in the solution of sets of linear algebraic equations.
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only one unknown, which is easily determined. The remaining unknowns are obtained by back-
substitution, going from the bottom row to the top while considering each row in turn, so that each 
has only one unknown. For the numerical solution, an augmented matrix is formed by placing the 
column vector (B) at the end of matrix (A). The first step involves eliminating the element in the 
first column of all the rows below the first row, which is termed the pivot row and the element in 
the first column the pivot element. In the second step, the second row becomes the pivot row and 
the element in the second column the pivot element. Again, all the elements in the second column 
for rows below the second row are eliminated. The process is repeated until the matrix (A) is 
replaced by an upper triangular matrix.

The preceding elimination procedure may be written mathematically as

 = −   + ≤ ≤ ≤ ≤ +( )
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( )
( )( ) −
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−
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where the superscripts within parentheses indicate the elimination step and r represents the pivot 
row, which thus varies from 1 to n – 1. Once the reduced matrix is obtained, the unknown xn is 
obtained from
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where the subscript (n + 1) refers to the last or augmented column in the matrix and thus to the 
modified constants on the right-hand side of the given set of equations. The other unknowns are then 
obtained by back-substitution, considering first the row above the bottom one to calculate xn − 1, then 
the row above it, and so on. Thus,
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Therefore, by applying the generalized procedure just given, the set of linear equations, 
Equation (4.1), is solved to yield the unknowns xi, where i varies from 1 to n.

Problems arise if the pivot element is zero because this leads to division by zero in the preceding 
process. In addition, if it is a relatively small number, inaccurate results may be obtained. To avoid 
such problems, partial pivoting, in which the rows below and including the pivot row are inter-
changed at each step to employ the one with the largest pivot element as the pivot row, is commonly 
used. Complete pivoting, in which both rows and columns are interchanged to use the largest pivot 
element at each step, is also employed, though it is more involved than partial pivoting.

In several engineering problems, particularly in the numerical solution of partial differential 
equations (PDEs), the coefficient matrix (A) is tridiagonal, or banded, as shown in Figure 4.2(b). 
In this case, only the diagonal elements bi and those on either side of it, ai being on the left and ci 
on the right side of the diagonal, are nonzero. Only two elements exist in the top and bottom rows of 
the matrix. Gaussian elimination becomes particularly simple for this case and requires very few 
mathematical operations. The corresponding scheme is known as the Thomas algorithm or tridi-
agonal matrix algorithm (TDMA) and is extensively used in engineering. The number of arithmetic 
operations needed to solve a tridiagonal system is on the order of n, i.e., O(n), as compared to O(n3/3) 
for Gaussian elimination applied to an arbitrary system. Therefore, much smaller CPU times and 
much smaller round-off errors arise in the solution of tridiagonal systems. Effort is often made to 
cast the algebraic equations in tridiagonal form so that the solution may be obtained efficiently and 
accurately by this method.
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Several other direct methods are available for solving sets of linear algebraic equations. In 
the Gauss-Jordan elimination method, which is a variation of the Gaussian elimination pro-
cedure, the coefficient matrix (A) is reduced to an identity matrix (I), with the only nonzero 
elements being unity along the diagonal. Then the unknown vector (X) is simply given by the 
modified constant vector (B′), because (I)(X) = (B′) yields (X) = (B′). No back-substitution is 
needed. At each step in the elimination process, the unknown is eliminated from both above 
and below the pivot equation and the pivot equation is normalized by dividing it by the pivot ele-
ment, yielding an identity matrix at the end of the process. The number of arithmetic operations 
needed is O(n3/2). Therefore, this method is somewhat less efficient than Gaussian elimination. 
Nevertheless, it is particularly well-suited for matrix inversion methods based on Equation (4.3), 
since the inverse (A−1) is obtained directly without back-substitution if (B) is taken as an identity 
matrix because (A)(A−1) = (I).

Matrix inversion is often used because of available software to invert a matrix, because inter-
est lies in the inverse itself in order to study the behavior of the system, or because solutions for 
different values of (B) with the same coefficient matrix (A) are to be obtained. However, this 
approach is much less efficient than Gaussian elimination, requiring O(4n3/3) arithmetic opera-
tions. Similarly, several efficient methods based on matrix decomposition into upper (U) and 
lower (L) triangular matrices (see Figure 4.2) are available. This is known as LU decomposition 
and various numerical procedures, such as Crout’s and Cholesky’s methods, may be employed 
for the purpose.

4.2.1.2 Iterative Methods
In engineering systems, particularly in the solution of differential equations by finite-difference and 
finite-element methods, we frequently encounter large sets of linear equations that are generally 
sparse, with only a few nonzero elements in each equation. Iterative methods use this sparseness 
advantageously because only the nonzero terms are considered. In addition, the round-off error 
after each iteration simply gives a less accurate input for the next iteration and the error in the solu-
tion is only what arises in the final iteration. There is no accumulation of round-off error as is the 
case in direct methods. The solution is not exact but is obtained to an arbitrary, specified, conver-
gence criterion.

The iterative scheme may be obtained from Equation (4.1) by solving for the unknowns, starting 
with x1 and successively obtaining x2, x3, …, xi, …, xn. A commonly used scheme is the Gauss-Seidel 
method, which is given as
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The iteration starts with initially guessed values of the unknowns, denoted by ( )xi
0 , and subse-

quent iterative values, denoted by the superscript in the preceding equation, are calculated. Only 
the latest values of the unknowns are stored and used in subsequent calculations. The iteration is 
terminated when a convergence criterion such as
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is satisfied. Here, ε is a convergence parameter chosen such that, if it is reduced further, the results 
are essentially unaffected. The second criterion considers the normalized change in xi and is appro-
priate if none of the unknowns is expected to be close to zero. The rate of convergence depends 
on the initial guess and the scheme is guaranteed to converge if the magnitude of each diagonal 
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element aii of the coefficient matrix is larger than the sum of the magnitudes of the other elements in 
the row. This implies that this iterative scheme would converge for linear systems if

 ∑>
= ≠

a aii

j j i

n

ij

1,

 (4.8)

The system is then said to be diagonally dominant. However, convergence is generally obtained 
with much weaker diagonal dominance. Therefore, the equations must be arranged in order to 
have the unknown with the largest coefficient at the diagonal in order to achieve convergence. This 
implies solving each equation for the unknown with the largest coefficient in magnitude.

The convergence characteristics of the Gauss-Seidel method can often be significantly improved 
by the use of point relaxation, given by

 ( )= ω   + − ω( ) ( ) ( )+ +x x xi
l

i
l

GS
i
l11 1  (4.9)

where ω is a constant in the range 0 < ω < 2 and xi
l

GS[ ]( 1)+  is the value of xi obtained for the (l + 1)th 
iteration by using the Gauss-Seidel iteration. If 0 < ω < 1, the scheme is known as successive under-
relaxation (SUR), and if 1 < ω < 2, it is known as successive over-relaxation (SOR). For linear equa-
tions, an optimum value ωopt of the relaxation factor can be found at which the convergence is much 
faster than that for the Gauss-Seidel method, ω = 1. Figure 4.3 shows the typical dependence of the 
number of iterations to convergence on the relaxation factor ω and an optimum value ωopt at which 
convergence is fastest. Therefore, SOR is widely used for solving linear systems. SUR is generally 
used for nonlinear equations.

Both direct and iterative methods are used in the numerical modeling of thermal systems. Large 
sets of equations that arise in the finite-difference and finite-element solutions of PDEs are gener-
ally solved by iterative methods, unless they can be obtained in the form of a tridiagonal system. For 
smaller sets of linear equations, direct methods are more efficient and accurate. However, thermal 
systems usually lead to nonlinear equations that have to be solved by iteration.

FIGURE 4.3 Typical variation of the number of iterations needed for convergence of a linear system with 
the relaxation factor ω.
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Example 4.1

An industrial organization produces four items x1, x2, x3, and x4. A portion of the amount produced 
for each is used in the manufacture of other items, and the net product is sold. The balance 
between the output and the production rate, resulting from various inputs, gives rise to the follow-
ing four linear equations:

 

+ + =
+ =

+ + =
+ =

x x x
x x

x x x
x x

2 6 64
5 2 37

7 2 2 66
8 9 104

1 2 4

1 2

2 3 4

3 4

Solve this set of equations by the Gauss-Jordan elimination method.

SOLUTION

The given equations are linear and the Gauss-Jordan method may be used to convert the coef-
ficient matrix to an identity matrix so that the constants on the right-hand side of the equations 
are transformed into the desired solution, as discussed earlier. Partial pivoting should be used in 
the scheme because several coefficients are zero. This will also lead to higher accuracy in the 
solution.

The given set of equations may be written as (A)(X) = (B) and the Gauss-Jordan method applied 
to the augmented matrix, which is

2.0 1.0 0.0 6.0 64.0

5.0 2.0 0.0 0.0 37.0

0.0 7.0 2.0 2.0 66.0

0.0 0.0 8.0 9.0 104.0

The Gauss-Jordan elimination method uses normalization of the pivot row and elimination of 
elements above and below the pivot element, in a series of steps, to yield an identity matrix (I) 
in the first four columns. As discussed earlier, rows are multiplied by appropriate constants and 
added to eliminate coefficients. Partial pivoting is used, i.e., at each step, the row with the largest 
pivot element, among the rows that have not been employed thus far as pivot row, is chosen as 
the pivot row. Ultimately, in the 4 × 4 matrix on the left-hand side of the augmented matrix, the 
diagonal elements become 1.0 and the other elements become zero, yielding the solution in the 
last column. The augmented matrix obtained numerically after the application of the Gauss-Jordan 
elimination scheme is

1.0 0.0 0.0 0.0 5.0

0.0 1.0 0.0 0.0 6.0

0.0 0.0 1.0 0.0 4.0

0.0 0.0 0.0 1.0 8.0

Therefore, the solution to the given set of equations is

 = = = =x x x x5.0; 6.0; 4.0; 8.01 2 3 4

The Gauss-Jordan elimination method is used extensively for solving sets of linear algebraic equa-
tions and for matrix inversion because the solution is obtained directly, without back-substitution, 
which is needed for Gaussian elimination.

This problem and other similar sets of linear equations with a larger number of unknowns can 
be solved very easily by using a computer program, as discussed in Appendix A. A few typical 
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programs based on the methods discussed here are also given. Matlab is particularly well-suited 
to matrix algebra and available commands may be used in a Matlab environment to obtain the 
solution. In this problem, for instance, the matrices (A) and (B) are entered in Matlab as

 a = [2 1 0 6; 5 2 0 0; 0 7 2 2; 0 0 8 9];
 b = [64; 37; 66; 104];

Then the solution (X) is obtained simply by using Equation (4.3) as

 x = inv(a)*b

or as

 x = a\b

which uses the internal logic of the \ operator in Matlab to indicate multiplication on the left by 
the inverse of A. The solution can also be obtained by LU decomposition by the commands

 [l,u,p] = lu(a);
 y = l\(p*b);
 x = u\y

where p is the permutation matrix that stores the information on row exchanges for partial pivot-
ing. When any of these approaches is used, the solution vector is obtained as [5; 6; 4; 8]. The cor-
responding Matlab program for the preceding solution is given in Appendix A.M.4.1. The program 
for solving the same problem by the Gauss-Seidel method is given in Appendix A.M.4.2.

4.2.2 nonlineAr AlgebrAic systems

The mathematical modeling of thermal systems frequently leads to nonlinear algebraic and differ-
ential equations. This is because of nonlinear transport mechanisms such as radiative heat transfer 
and variable material properties. The solution of nonlinear equations is much more involved than 
of linear equations. In addition, multiple solutions may be obtained, requiring additional inputs, 
particularly from the physical nature of the problem, to choose the right solution. Except for a few 
special cases such as the quadratic equation, direct solution of the equations is not possible and 
iterative methods are needed. In fact, the nonlinear problem is generally linearized to obtain a 
linear problem, which is used in the iteration process to yield the solution. Let us first consider the 
solution of a single nonlinear algebraic equation and then extend the solution strategy to a system 
of nonlinear equations.

4.2.2.1 Single Nonlinear Algebraic Equation
This is the problem of finding the solution or roots of a single nonlinear equation such as f(x) = 0. We 
need to determine the values of x that would satisfy the given equation, which may be a polynomial 
equation of the form

 ( ) = + + + …+ + =− −
−f x x a x a x a x an n n

n n 01
1

2
2

1  (4.10)

where n is the degree of the polynomial and the a’s are real coefficients. This equation has n 
roots, which may be real or complex. The equation may also be a transcendental one, such as 
x tan x – 1 = 0 or 2ex + 3x – 5 = 0, involving exponential, logarithmic, trigonometric, and other 
such functions. Though real, single-valued roots are generally of interest in thermal systems, 
complex roots and those with multiple values are also sometimes sought. Generally, the nature of 
the root and the approximate range in which it lies is known from the physical background of the 
problem under consideration. For instance, if an algebraic equation governing the heat balance 
at the surface of a body is being solved to obtain the temperature, the maximum and minimum 
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temperatures in the system may be known, yielding the range in which the surface temperature, 
which must be a real root, lies.

Several methods are available for finding the roots of an algebraic equation. Many of these, 
known as bracketing methods, are based on the change in the sign of f (x) as it crosses the x-axis 
at the root, as shown in Figure 4.4. A change in the sign of f (x) as x is incremented by Δx indi-
cates the presence of a real root within the interval Δx. This interval is gradually reduced by 
subdividing it into smaller divisions and again finding the interval in which the root lies. The 
process is continued until the root is obtained to the desired level of accuracy, as given by the 
final interval containing the root. This method is known as the search method and is guaranteed 
to converge if a real root is present and if the function f (x) changes sign. It does not apply to 
complex roots or to multiple roots resulting from the graph of f (x) versus x being tangent to the 
x-axis. This method, along with a few others that bracket the root and are based on a sign change 
of f (x), are listed as:

1. Search method
2. Bisection method
3. Regula falsi, or false position, method

In the bisection method, an approximation to the root x3 is obtained by taking an average of 
the two end points, x1 and x2, of the interval in which the root lies, i.e., x3 = (x1 + x2)/2. At each 
iteration, the new, reduced interval in which the root lies is determined and a new approximation 
to the root computed. In the regula falsi method, interpolation is used, employing the end points of 
the interval at a given iteration, to approximate the root as x3 = [x1 f (x2) – x2 f (x1)]/[ f (x2) – f (x1)]. 
Sign change between x3 and x1 or between x3 and x2 is used to choose the interval containing the 
root. The iterative process is continued, reducing the interval at each step, until the change in the 
approximation to the root from one iteration to the next is less than a chosen convergence criterion, 
as given by

 x x
x x

x
l l

l l

lor( 1) ( )
( 1) ( )

( )− ≤ ε − ≤ ε+
+

 (4.11)

where x(l+1) and x(l) represent approximations to the root after the (l + 1)th and (l)th iterations, respec-
tively, and ε is the chosen convergence parameter.

FIGURE 4.4 Plot of a function f(x) versus x, indicating three roots a1, a2, and a3 of the equation f(x) = 0, at 
which the function changes sign.
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Probably the most important and widely used method for root solving is the Newton-Raphson 
method, in which the iterative approximation to the root xi is used to calculate the next iterative 
approximation to the root xi + 1 as

 
( )
( )= −

′+x x
f x

f x
i i

i

i
1  (4.12)

where f ′(xi) is the derivative of f (x) at x = xi. This equation gives an iterative process for finding the 
root, starting with an initial guess x1. The process is terminated when the convergence criterion, 
given by Equation (4.11), is satisfied.

The Newton-Raphson method can be used for real as well as complex roots, employing complex 
algebra for the functions, for their derivatives, and for x. It can also be used for multiple roots where 
the graph of f (x) versus x is tangent to the x-axis, with no sign change in f (x). When the scheme con-
verges, it converges very rapidly to the root. It can be shown that it has a second-order convergence, 
implying that the error in each iteration varies as the square of the error in the previous iteration 
and thus reduces very rapidly. However, the iteration process may diverge, depending on the initial 
guess and nature of the equation. Figure 4.5 shows graphically the iterative process in a convergent 
case. The tangent to the curve at a given approximation is used to obtain the next approximation to 
the root. Figure 4.6 shows a few cases in which the method diverges. If the scheme diverges, a new 
starting point is chosen and the process repeated.

FIGURE 4.5 The Newton-Raphson iterative method for solving an algebraic equation f (x) = 0.

FIGURE 4.6 A few cases in which the Newton-Raphson method might not converge.
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A method similar to the Newton-Raphson method is the secant method, which uses interpolation 
and extrapolation to approximate the root in each iteration, employing the last two iterative values in 
the approximation. No derivatives are to be determined, as was the case for Newton’s method. The 
iterative scheme is given by the equation

 
( ) ( )

( ) ( )= −
−+

− −

−
x

x f x x f x

f x f x
i

i i i i

i i
1

1 1

1

 (4.13)

where the subscripts indicate the order of the iteration, starting with x1 and x2 as the first two approx-
imations to the root. The iterative process is continued until Equation (4.11) is satisfied. Again, the 
iterative scheme may diverge, depending on function f(x) and the starting values. If the method 
diverges, new starting values are taken and the process is repeated.

A particularly simple method for root solving is the successive substitution method, in 
which the given equation f(x) = 0 is rewritten as x = g(x). At the root, α = g(α), where α is the 
root of the original equation and thus f(α) = 0. The modified equation yields an iterative scheme 
given by

 =+x g xi i( )1  (4.14)

Therefore, the iteration starts with an initial approximation to the root x1, which is substituted 
on the right-hand side of this equation to yield the next approximation, x2. Then x2 is substituted in 
the equation to obtain x3, and so on. The process is continued until Equation (4.11) is satisfied. The 
scheme is a very simple one and is based on the successive substitution of the approximations to the 
root to obtain more accurate values. However, convergence is not assured and depends on the initial 
guess as well as on the choice of the function g(x), which can be formulated in many ways and is 
not unique. It can be shown that if |g′(α)| < 1, the method converges to the root in a region close to 
the root. Here, g′(α) is the derivative of g(x) at the root and is known as the asymptotic convergence 
factor. The convergence characteristics of the method may be improved by employing the recursion 
formula

 = − β + β+x x g xi i i(1 ) ( )1  (4.15)

where β is a constant. A value of β less than 1.0 reduces the change in each iteration and helps in the 
convergence of the scheme. This is similar to the SUR method. The choices for g(x) and β depend 
on the function f (x).

Several computer programs, particularly in Matlab, are given in Appendix A.M.3 to demonstrate 
the application of these methods on a computer. The basic logic, input, output, the mathematical 
calculations, and other relevant commands are demonstrated. These programs can easily be modi-
fied for different root solving problems.

Example 4.2

In a manufacturing process, a spherical piece of metal is subjected to radiative and convective 
heat transfer, resulting in the energy balance equation

 ( )× × × − = × −− T T0.6 5.67 10 [ 850 ] 40 ( 350)8 4 4

Here, the surface emissivity of the metal is 0.6, the temperature of the radiating source is 850 K, 
5.67 × 10−8 W/(m2·K4) is the Stefan-Boltzmann constant, 350 K is the ambient fluid temperature, 
and 40 W/(m2·K) is the convective heat transfer coefficient. Find the temperature T using the 
secant method.
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SOLUTION

This problem involves determining the root of the given nonlinear algebraic equation, which may 
be rewritten as

 = × × × − − × − =−f T T T( ) 0.6 5.67 10 [(850) ] 40 ( 350) 08 4 4

in order to apply the root solving methods given earlier. Here, the highest temperature in the heat 
transfer problem considered is 850 K and the lowest is 350 K. Therefore, the desired root lies 
between these two values and should be positive and real. The recursion formula for the secant 
method may be written as

 ( ) ( )
( ) ( )=

−
−+

− −

−
T

T f T T f T
f T f T

i
i i i i

i i
1

1 1

1

where the subscripts i – 1, i, and i + 1 represent the values for three consecutive iterations. The 
starting values are taken as Ti–1 = T1 = 350 and Ti = T2 = 850. The equation just given is used to cal-
culate Ti+1 = T3. Then T2 and T3 are used to calculate T4, and so on. The iteration is terminated when

 − ≤ ε+T T
T

i i

i

1

where ε is a chosen small quantity. Generally, ε should be varied to ensure that the results do not 
depend on the value chosen. For the preceding equation, a value of around 10−3 or lower would 
typically be adequate. Thus, the relative change in T from one iteration to the next is used for the 
convergence criterion. The numerical results obtained from the secant method are shown below, 
indicating a few steps in the convergence to the desired root.

T = 581.5302 f (T ) = 4606.784180

T = 631.7920 f (T ) = 1066.578125

T = 646.9347 f (T ) = –77.774414

T = 645.9056 f (T ) = 1.222656

T = 645.9215 f (T ) = 0.005859

T = 645.9216 f (T ) = −0.004883

Therefore, the temperature T is obtained as 645.92 K, rounding off the numerical result to two 
decimal places. A fast convergence to the root is observed. The convergence parameter ε is taken 
as 10−5 here, and it was confirmed that the result was negligibly affected if a still smaller value of 
ε was employed. A significant change in the root was obtained if ε was increased to much larger 
values.

Though computer programs may be written in Fortran, C++, or other programming languages 
to solve this root-solving problem, as given in Appendix A, the Matlab environment provides a 
particularly simple solution scheme on the basis of the internal logic of the software. By rearrang-
ing f(T), the corresponding polynomial p is given in terms of the coefficients a, b, c, d, and e, in 
descending powers of T, i.e., T4, T3, T2 and T, as:

 a = 0.6*5.67*10^-8;
 b = 0;
 c = 0;
 d=40.0;
 e=-40.0*350.0-0.6*5.67*(10^-8)*(850^4);
 p=[a b c d e];

Then the roots are obtained by using the command

 r=roots(p)
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This yields four roots because a fourth-order polynomial is being considered. It turns out 
that, when the above scheme is used, one negative and two complex roots are obtained in 
addition to one real root at 645.92, which lies in the appropriate range and is the correct 
solution.

4.2.2.2 System of Nonlinear Algebraic Equations
The mathematical modeling of thermal systems frequently leads to sets of nonlinear equations. The 
solution of these equations generally involves iteration and combines the strategies for root solving 
and those for linear systems. Two important approaches for solving a system of nonlinear algebraic 
equations are based on Newton’s method and on the successive substitution method. If x1, x2, …, xn 
are the unknowns and f1(x1, x2, …, xn) = 0, f2 (x1, x2, …, xn) = 0, …, fn(x1, x2, …, xn) = 0 are the non-
linear equations, Newton’s method gives the solution as
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where the superscripts (l) and (l + 1) represent the values after l and l + 1 iterations. Extending 
Newton’s method given by Equation (4.12) for a single equation to a system of nonlinear equations, 
the increments Δxi are obtained from the following system of equations:
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(4.17)

These equations are linear because the functions and their derivatives are known for given xi and 
the unknowns are the increments.

The iterative scheme starts with an initial guess of the values of the unknowns, ( )xi
1 . From 

these values, the functions ( )fi
1  and their derivatives needed for Equation (4.17) are calculated. 

Then the linear system given by Equation (4.17) is solved for the increments ∆ ( )xi
1 , which are 

employed in Equation (4.16) to obtain the next iteration, ( )xi
2 . This process is continued until the 

unknowns do not change from one iteration to the next, within a specified convergence criterion, 
such as that given by Equation (4.7).

Clearly, this scheme is much more involved than that for a system of linear equations. In 
fact, a system of linear equations has to be solved for each iteration to update the values of 
the unknowns. In addition, the derivatives of the functions have to be determined at each step. 
Therefore, the method is appropriate for relatively small sets of nonlinear equations, typically 
less than ten, and for cases where the derivatives are continuous, well-behaved, and easy to 
compute. The scheme may diverge if the initial guess is too far from the exact solution. Usually, 
the physical nature of the problem and earlier solutions are employed to guide the selection of 
the initial guess.
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The system of nonlinear equations may also be solved using the successive substitution approach 
given by Equation (4.14) or (4.15) for a single nonlinear equation. Each unknown is computed in 
turn and the value obtained is substituted into the corresponding equations to generate an iterative 
scheme. Therefore, if the system of equations is rewritten by solving for the unknowns, we obtain

 [ , , , , , , ] for 1,  2, ,1 2 3x G x x x x x i ni i i n= … … = …  (4.18)

The unknown xi is also retained on the right-hand side in this case, because these are nonlinear 
equations and xi may appear as a product with other unknowns or as a nonlinear function. Again, 
the function Gi can be formulated from the given equation fi = 0 in many different ways. An iterative 
scheme similar to the Gauss-Seidel method may be developed as

 x G x x x x x i ni
l

i
l l

i
l

i
l

n
l, , , , , , for 1, 2, ,1

1
1
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1

1
1= … …  = …( ) ( ) ( ) ( ) ( ) ( )+ + +

−
+  (4.19)

Here, the unknowns are calculated for increasing i, starting with x1. The most recently calculated 
values of the unknowns are used in calculating the function Gi.

This scheme is often also known as the modified Gauss-Seidel method. It is similar to the suc-
cessive substitution method for linear equations and is much simpler to implement than Newton’s 
method because no derivatives are needed. The approach is particularly suitable for large sets of 
equations. However, Newton’s method generally has better convergence characteristics than the 
successive substitution, or modified Gauss-Seidel, method. SUR is often used to improve the con-
vergence characteristics of this method. Convergence of the iterative scheme for nonlinear equa-
tions is often difficult to predict because a general theory for convergence is not available as in the 
case of linear equations. Several trials, with different starting values and different formulations, 
are frequently needed to solve these equations. Newton’s method and the successive substitution 
method also represent two different approaches to simulation, namely simultaneous and sequential, 
and are discussed later, along with a few solved examples.

4.2.3 orDinAry DiFFerentiAl equAtions

Ordinary differential equations (ODEs), which involve functions of a single independent variable 
and their derivatives, are encountered in the modeling of many thermal systems, particularly for 
transient lumped modeling. A general nth-order ODE may be written as
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Here, x is the independent variable and y(x) is the dependent variable. This equation requires n 
independent boundary conditions for a solution. If all these conditions are specified at one value of 
x, the problem is referred to as an initial-value problem. If the conditions are given at two or more 
values of x, it is referred to as a boundary-value problem. We shall first consider initial-value prob-
lems, followed by boundary-value problems.

4.2.3.1 Initial-Value Problems
The preceding equation can be reduced to a system of n first-order equations by defining new inde-
pendent variables Yi, where i varies from 1 to (n – 1), as
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Therefore, the system of n first-order equations becomes

 . . . ( , , , , , . . . )1
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The n boundary conditions are given in terms of y and its derivatives, all these being specified at 
one value of x for an initial-value problem. The given nth-order ordinary differential equation may 
be linear or nonlinear. Linear equations can frequently be solved by analytical methods available in 
the literature. However, numerical methods are usually needed for nonlinear equations.

It is clear from the foregoing discussion that if we can solve a first-order ODE, we can extend 
the solution to higher-order equations and to systems of ODEs. Therefore, the numerical solution 
procedures are directed at the simple first-order equation written as

 ( )=dy

dx
F x y,  (4.21)

with the boundary condition

 =y x y( )0 0 (4.22)

where y0 is the value of y(x) at a given value of the independent variable, x = x0. A numerical solu-
tion of this differential equation involves obtaining the value of the function y(x) at discrete values 
of x, given as

 x x i x ii where 1,  2,  3,0= + ∆ = … (4.23)

Therefore, the numerical scheme must provide the means for determining the values y1, y2, y3, y4, … 
for the dependent variable y corresponding to these discrete values of x. If the solution is sought for 
x < x0, then xi is taken as xi = x0 – iΔx and a similar procedure is employed as for increasing x.

Several methods are available for the solution of a first-order ODE. Two main classes of 
methods are

1. Runge-Kutta methods
2. Predictor-corrector methods

In the Runge-Kutta methods, the derivative of the function y, as given by F(x,y), is evaluated at 
different points within the interval xi to xi+1 = xi + Δx. A weighted mean of these values is obtained 
and used to calculate yi+1, the value of the dependent variable at xi+1. The simplest formula in these 
classes of methods is that of Euler’s method, which has a cumulative truncation error of O(Δx) up to 
a given xi. Because the error varies as the first power of Δx, this is known as a first-order method. It is 
seldom used due to the large error in the solution. The computational formula for Euler’s method is

 y y xF x y ii i i i, with 0,  1,  2,  3,1 ( )= + ∆ = …+  (4.24)

Therefore, the solution can be obtained for increasing x, starting with x = x0. Figure 4.7 shows this 
method graphically, indicating the accumulation of error with increasing x.

The most widely used method is the fourth-order Runge-Kutta method given by the computa-
tional formula

 = + + + +
+ y

K K K K
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2 2
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1
1 2 3 4  (4.25a)
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where

 ( )= ∆K xF x yi i,1  (4.25b)
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FIGURE 4.7 Graphical interpretation of Euler’s method. (a) Numerical solution and error after the first step; 
(b) accumulation of error with increasing value of the independent variable x.
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Therefore, four evaluations of the derivative function F(x, y) are made within the interval xi ≤ 
x ≤ xi+1, and a suitable weighted average is employed for the computation of yi + 1. It is a fourth-order 
scheme because the total error up to a given value of xi varies as (Δx)4. The Runge-Kutta methods 
are self-starting, stable, and simple to use. As such, they are very popular and most computers have 
the corresponding software available for solving ODEs. Similarly, second-order schemes, such as 
Heun’s method, which involves two derivative function evaluations in each step, and third-order 
schemes, which involve three function evaluations, may be derived.

For higher-order equations, a system of first-order equations is solved, as mentioned earlier. The 
computations are carried out in sequence to obtain the values of all the unknowns at the next step. 
All the conditions, in terms of y and its derivatives, must be known at the starting point to use this 
method. Therefore, the scheme, as given here, applies to initial-value problems.

Predictor-corrector methods use an explicit formula to predict the first estimate of the solution, 
followed by the use of an implicit formula as the corrector to obtain an improved approximation to 
the solution. Previously obtained values of the dependent variable y are extrapolated to obtain the 
predicted value, and the corrector equation is solved by iteration, though only one or two steps are 
generally needed for it to converge because the predicted value is close to the solution. These meth-
ods are not self-starting because the first few values are needed to start the predictor, and a method 
such as Runge-Kutta is used to obtain the initial points. Therefore, programming is more involved 
than Runge-Kutta methods, which are self-starting. However, the predictor-corrector methods are 
generally more efficient, resulting in smaller CPU time, and have a better estimate of the error at 
each step. Several predictor-corrector methods are available with different accuracy levels.

A few relevant Matlab computer programs for solving ordinary differential equations by dif-
ferent methods are given in Appendix A. Matlab is particularly well-suited to solving initial-value 
problems, as seen in the following.

Example 4.3

The motion of a stone thrown vertically at velocity V from the ground at x = 0 and at time τ = 0 is 
determined by the differential equation

 
τ

= − −
τ







d x
d

g
dx
d

0.1
2

2

2

where g is the magnitude of gravitational acceleration, given as 9.8 m/s2, and the velocity is dx/dτ, 
also denoted by V. Solve this second-order equation for x, as well as the first-order equation for 
V, to obtain the displacement x and velocity V as functions of time. Take the initial velocity V as 
25 m/s.

SOLUTION

The second-order equation in terms of the displacement x is given above, with the initial conditions

 τ = =
τ

=x
dx
d

0: 0 and 25

The corresponding differential equation in terms of the velocity V is given by

 
τ

= − −dV
d

g V0.1 2

with the initial condition

 τ = =V0 : 25
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Both these cases are initial-value problems because all the necessary conditions are given at 
the initial time, τ = 0. Computer codes may be written for the two cases using high-level program-
ming languages such as Fortran and C++ or a computational environment like Matlab or Comsol 
Multiphysics. However, Matlab can be used very easily for these problems by using the ode23 and 
ode45 built-in functions. Both are based on Runge-Kutta methods and use adaptive step sizes. Two 
solutions are obtained at each step, allowing the algorithm to monitor the accuracy and adjust the 
step size according to a given or default tolerance. The first method, ode23, uses second- and third-
order Runge-Kutta formulas and the second one, ode45, uses fourth- and fifth-order formulas.

Considering the equation for the velocity, the following Matlab statements yield the solution 
in terms of V:

 dvdt=inline('(-9.8-.1*v.^2)','t','v');
 v0=25;
 [t,v]=ode45(dvdt,1.4,v0)

The first command defines the first-order differential equation, the second defines the boundary 
condition, and the third allows time and velocity to be obtained. These can then be plotted, using 
Matlab plotting routines, as shown in Figure 4.8. The velocity decreases from 25 m/s to 0 with 
time. After the velocity becomes zero, the drag reverses direction and the differential equation 
changes, so the solution is valid only until V = 0.

Similarly, the equation for x may be solved. However, this is a second-order equation, which is 
first reduced to two first-order equations as

 τ
=

τ
= − −

dx
d

V

dV
d

g V0.1 2

First, the right-hand sides of these two equations are defined as

 function dydt=rhs(t,y)
 dydt=[y(2);-9.8-0.1*y(2)^2];

Thus, y is taken as a vector with the distance and velocity as the two components. Then the 
Matlab commands are given as

 y0=[0;25];
 [t,v]=ode45('rhs',1.4,y0)

FIGURE 4.8 Velocity variation with time, as calculated by Matlab in Example 4.3.
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Again, the initial conditions are given by the first line and the solution is given by the second. The 
results are obtained in terms of distance and velocity, which may be plotted, as shown in Figure 4.9. 
The calculated distance x and the velocity V are plotted against time. Clearly, the results in terms of 
the velocity V are the same by the two approaches. Thus, Matlab may be used effectively for solving 
initial-value problems, considering single equations as well as multiple and higher-order equations. 
The example considered here is from dynamics, but similar equations arise in thermal processes, 
as seen later. Further details on the use of Matlab for such mathematical problems are given in 
Appendix A.M.6.

4.2.3.2 Boundary-Value Problems
In the simulation of thermal systems, we are frequently concerned with problems in which the 
boundary conditions are given at two or more different values of the independent variable. Such 
problems are known as boundary-value problems. Because the number of boundary conditions 
needed equals the order of the ODE, the equation must at least be of second order to give rise to a 
boundary-value problem where the two conditions are specified at two different values of the inde-
pendent variable. As an example, consider the following second-order equation:

 = 





d y

dx
F x y

dy

dx
, ,

2

2  (4.26a)

with the boundary conditions

 = = = =y A x a y B x b,  at   ,  at  (4.26b)

Therefore, the two conditions are given at two different values of x. We cannot start at either of the 
two locations and find the solution for varying x, as was done earlier for an initial-value problem, 
because the derivative dy/dx is not known there.

There are two main approaches for obtaining the solution to such boundary-value problems. 
The first approach reduces the problem to an initial-value problem by employing the first boundary 
condition and assuming a guessed value of the derivative at, say, x = a for the preceding problem. 
Iteration is used to correct this derivative so that the given boundary condition at x = b is also 
satisfied. Root solving techniques such as Newton-Raphson and secant methods may be used for 
the correction scheme. Solution procedures based on this approach are known as shooting meth-
ods because the adjustment of initial conditions to satisfy the conditions at the other location is 

FIGURE 4.9 Variation of velocity v and distance x with time τ, as calculated by Matlab in Example 4.3.
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similar to shooting at a target. Figure 4.10 shows a sketch of the shooting method. Thus, all of the 
methods discussed earlier for initial-value problems may be used, along with a correction scheme. 
The approach may easily be extended to higher-order equations and to different types of boundary 
conditions. The Matlab solution methods for initial-value problems, given earlier, can also be used 
along with an appropriate correction scheme.

The second approach is based on obtaining the finite-difference or finite-element approxima-
tion to the differential equation. In the former approach, the derivatives are replaced by their 
finite-difference approximations. This leads to a system of algebraic equations, which are solved 
to obtain the dependent variable at discrete values of the independent variable, as illustrated in 
the following example. These approaches are considered in greater detail for PDEs in the next 
section.

Example 4.4

The steady-state temperature θ(x) due to conduction in a bar, with convection at the surface and 
the assumption of uniform temperature across any cross-section, is given by the equation

 θ − θ =d
dx

G 0
2

2

where G is a constant and is given as 50.41 m−2. Here, θ is the temperature difference from the 
ambient medium, which is at 20°C. The bar, which is 30 cm long, is discretized, as shown in 
Figure 4.11, using Δx = 1 cm and x = iΔx, where i = 0, 1, 2, …, 30. It is given that the temperatures 
at the two ends, θ0 and θ30, are 100°C. Calculate the temperatures at the other grid points using 

FIGURE 4.10 Iterations to the converged solution, employing a shooting method for solving a boundary-
value ordinary differential equation.

FIGURE 4.11 Physical problem considered in Example 4.4, along with the discretization.
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the finite-difference method, along with the Gaussian elimination and SOR methods for solving 
the resulting algebraic equations.

SOLUTION

The given ODE may be written in finite-difference form by replacing the second-order derivative 
by the second central difference as

 
x

G ii i i
i

2
0 for 1, 2, 3, , 291 1

2( )
θ − θ + θ

∆
− θ = = …+ −

Then the system of equations to be solved by Gaussian elimination is

 G x ii i i[2 ( ) ] 0 for 1,  2,  3, ,  291
2

1θ − + ∆ θ + θ = = …+ −

The equations for i = 1 and 29 are, respectively,

 S 0 and S 02 1 0 30 29 28θ − θ + θ = θ − θ + θ =

which give

 S 100 and S 1001 2 28 29θ − θ = − θ + θ =

where S = 2 + G(Δx)2 and θ0 = θ30 = 100. This system of equations may be written as
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This is a tridiagonal system of linear equations and may be solved conveniently by Gaussian 
elimination, as outlined earlier. Computer programs in Fortran and Matlab are also given 
in Appendix A in order to present the algorithm. The same logic can be used to develop a 
program in other programming languages. Further details are given in Appendix A. The three 
nonzero elements in each row are denoted by A(I), B(I), and C(I). B(I) is the diagonal ele-
ment and A(I), C(I) are elements on the left and right of the diagonal, respectively. Only two 
nonzero elements appear in the top and bottom rows. The constants on the right-hand side 
of the equations are denoted by R(I). Gaussian elimination is used to eliminate the left-most 
element in each row in one traverse from the top to the bottom row. Then the last row leads 
to an equation with only one unknown, which is calculated as R(29)/B(29), where both R and 
B are the new values after reduction. The other temperature differences are calculated by 
back-substitution, going up from the bottom to the top row. Figure 4.12 shows the computer 
output, in terms of the temperatures Ti, where Ti = θ + 20, because the ambient temperature 
is given as 20°C. Clearly, the temperature distribution is symmetric about the midpoint. 
This numerical scheme, known as the Thomas algorithm, is extremely efficient, requiring 
O(n) arithmetic operations for n equations. See Appendix A.M.6.5 for the Matlab program, 
which uses the tridiagonal matrix algorithm for the solution of the finite-difference equations 
obtained in this problem.

The set of linear algebraic equations obtained from the finite-difference approximation may 
also be solved by the SOR method. The equations are rewritten for this method as

 


S
ii

i i for  1, 2, 3, , 291 1θ = θ + θ =+ −
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with θ0 = θ30 = 100. Therefore, these equations may be solved for θi, varying i as i = 1, 2, 3,…, 29. 
The SOR method may be written from Equation (4.9) as

 ii
l

i
l

GS
i
l1 for 1, 2, 3, , 291 1 ( )θ = ω θ



 + − ω θ = …( ) ( ) ( )+ +

where

 
S

ii
l

GS

i
l

i
l

for 1, 2, 3, , 291 1 1
1

θ



 = θ + θ = …( )

( ) ( )
+ + −

+

The initial guess is taken as θi = 0 and the temperature differences for the next iteration 
are calculated using the preceding equations. This iterative process is continued, comparing 
the values after each iteration with those from the previous iteration. Appendix A gives a sample 
program in Fortran for the Gauss-Seidel method, ω = 1. Again, other programming languages 
or the Matlab environment may similarly be employed. The corresponding program in Matlab 
is given in Appendix A.M.4.3. The iteration is terminated if the following convergence criterion 
is satisfied:

 θ − θ ≤ ε( ) ( )+
i
l

i
l1

FIGURE 4.12 Numerical results obtained in terms of the temperatures at the grid points by using the Thomas 
algorithm for the resulting tridiagonal set of equations in Example 4.4.
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where ε is a chosen small quantity. A value of 10−4 was found to be adequate. The relaxation factor 
ω was varied from 1.0 to 2.0 and the number of iterations needed for convergence determined. 
Figure 4.13 shows the results obtained for two values of ε and the optimum value of the relax-
ation factor ωopt. The calculated numerical results for the temperature Ti are shown in Figure 4.14. 
Therefore, the results agree closely with the earlier ones from the tridiagonal matrix algorithm 
(TDMA). Both of these approaches are used extensively for solving differential equations, with the 
TDMA method being the preferred one for tridiagonal sets of equations.

4.2.4 pArtiAl DiFFerentiAl equAtions

A common circumstance in the numerical modeling of thermal systems is one in which the tem-
perature, velocity, pressure, etc., are functions of the location and, possibly, of time as well. If the 
dependent variable is a function of two or more independent variables, the differential equations 
that represent such problems involve partial derivatives and are known as partial differential equa-
tions (PDEs). Two common PDEs that arise in thermal systems are given for a Cartesian coordinate 
system as

 
∂
∂τ

= ∂
∂a

T T

x

1 2

2  (4.27)

and

 ( )∂
∂

+ ∂
∂

= ′′′T

x

T

y
q x y,

2

2

2

2  (4.28)

Here, T is the temperature, x and y are the coordinate axes, τ is the time, ′′′q  is a volumetric heat 
source, and α is the thermal diffusivity of the material. These equations, along with several others 
that are often encountered in thermal systems, have been given in earlier chapters. 

FIGURE 4.13 Variation of the number of iterations needed for convergence, in the solution of Example 4.4 
by the SOR method, with the relaxation factor ω at two values of the convergence criterion ε.
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The corresponding equations for other coordinate systems may similarly be written. We will 
consider only these two relatively simple equations to outline the numerical modeling of PDEs. The 
first equation is a parabolic equation, which can be solved by marching in time τ. Thus, the solution 
depends only on the results for previous time and not on those for the future time. It requires two 
boundary conditions in x and an initial condition in time. The second equation is an elliptic equa-
tion, which requires conditions on the entire boundary of the domain to be well-posed. The solu-
tion thus depends on all the conditions imposed at the boundaries. Several specialized books, such 
as those by Patankar (1980), Anderson et al. (2011), and Jaluria and Torrance (2003), are available 
on the numerical solution of PDEs that arise in fluid flow and heat transfer and may be consulted for 
details. Only a brief outline of the two main approaches, the finite-difference and the finite-element 
methods, is presented here.

4.2.4.1 Finite-Difference Method
In this approach, a grid is imposed on the computational domain so that a finite number of grid 
points is obtained, as seen in Figure 4.15. The partial derivatives in the given PDE are written in 
terms of the values at these grid points. Generally, Taylor series expansions are employed to derive 
the discretized forms of the various derivatives. These lead to finite-difference equations that are 
written for each grid point to yield a system of algebraic equations. Linear PDEs result in linear 
algebraic equations and nonlinear ones in nonlinear equations. The resulting system of algebraic 
equations is solved by the various methods mentioned earlier to obtain the dependent variables at 
the grid points. Iterative methods for solving algebraic equations are particularly useful because 
PDEs generally lead to large sets of equations with sparse coefficient matrices.

FIGURE 4.14 Computer output for the solution of Example 4.4 by the SOR method for two values of ε (EPS).
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Equation (4.27) may be written in finite-difference form as

 
( )

−
∆τ

= α
− +
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+ + −T T T T T

x
i j i j i j i j i j2 ]1, , , 1 , , 1

2  (4.29)

where the subscript (i + 1) denotes the values at time (t + Δt) and i those at time τ. The spatial loca-
tion is given by j. Here, x = jΔx and τ = iΔτ. The truncation error, which represents the error due 
to terms that are neglected in the Taylor series for this approximation, is of order Δτ in time and 
(Δx)2 in space. The second derivative is approximated as a central difference at time τ and a forward 
difference is taken for the first derivative in time. The resulting finite-difference equation may be 
derived from Equation (4.29) as

 ( )( ) ( )
= − α∆

∆






+ α∆τ
∆

++ + −T
t

x
T

x
T Ti j i j i j i j1 21, 2 , 2 , 1 , 1  (4.30)

This equation gives the temperature distribution at time (τ + Δτ) at the grid point whose spatial 
coordinate is x = jΔ x, in terms of temperatures at time τ at the grid points with coordinates (x – Δx), 
x, and (x + Δx). If the initial temperature distribution is given and the conditions at the boundaries, 
say, x = 0 and x = a, are given, the temperature distribution may be computed for increasing val-
ues of time τ. This is the explicit method, often known as the forward time central space (FTCS) 
method. However, the stability of the numerical scheme is assured only if F = [αΔτ/Δx)2] ≤ 1/2, 
where F is known as the grid Fourier number. This constraint on F ensures that the coefficients in 
Equation (4.30) are all positive, which has been found to result in stability of the scheme. Therefore, 
the method is conditionally stable.

In view of the constraint on Δτ due to stability in the explicit scheme, several implicit methods 
have been developed in which the spatial second derivative is evaluated at a different time, between 
τ and τ + Δτ. If it is evaluated midway between the two times, the scheme obtained is the popular 

FIGURE 4.15 A two-dimensional computational region with a superimposed finite-difference grid.
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Crank-Nicolson method, which has a second-order truncation error, O[(Δτ)2], in time as well and 
is more accurate than the FTCS method. If the derivative is evaluated at time (τ + Δτ), the fully 
implicit method or Laasonen method is obtained. These methods do not have a restriction on Δτ due 
to stability considerations for linear equations, such as Equation (4.27), for a chosen value of Δx. The 
resulting finite-difference equation is

 ( )( ) ( )
−

∆τ
= α γ

− +
∆

+ − γ
− +

∆










+ + + + + − + −T T T T T

x

T T T
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2
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2  (4.31)

where γ is a constant, being 0 for the FTCS explicit, 1/2 for the Crank-Nicolson, and 1.0 for the fully 
implicit methods. Corresponding Matlab computer programs are given in Appendix A.M.7.

Multidimensional problems commonly arise in thermal systems. For instance, two-dimensional, 
unsteady conduction at constant properties is given by the following equation:
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The methods for the one-dimensional problem may be extended to this problem. Stability consider-
ations again pose a limitation of the form [αΔτ/Δx)2] ≤ 1/4, if Δx =Δy. A particularly popular method 
is the alternating direction implicit (ADI) method, which splits the time step into two halves, keep-
ing one direction as implicit in each half-step and alternating the directions, giving rise to tridiago-
nal systems in the two cases.

For the elliptic problem, such as the one given by Equation (4.28), the computational domain 
is discretized with x = iΔx and y = jΔy. Then the mathematical equation may be written in finite-
difference form as
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If this finite-difference equation is written out for all the grid points in the computational domain, 
where the temperatures are unknown, a system of linear algebraic equations is obtained. At the 
boundaries, the conditions are given, which may specify the temperature (Dirichlet conditions), the 
temperature derivative (Neumann conditions), or give a relationship between the temperature and 
its derivative (mixed conditions). Thus, special equations are obtained for temperature at the bound-
aries. The overall system of equations is generally a large set, particularly for three-dimensional 
problems, because of the usually large number of grid points employed. The coefficient matrix is 
also sparse, making iterative schemes such as SOR appropriate for the solution. Many specialized 
and efficient methods have been developed to solve specific elliptic equations such as the one con-
sidered here, which is a Poisson equation. For ′′′q  = 0, it is known as the Laplace equation. If the 
given PDE is nonlinear, the resulting algebraic equations are also nonlinear. These are solved by 
the methods outlined earlier for sets of nonlinear algebraic equations. Obviously, the solution in this 
case is considerably more involved than that for linear equations.

4.2.4.2 Finite-Element Method
Finite-element methods are extensively used in engineering because of their versatility in the solution 
of a wide range of practical problems. Finite-difference methods are generally easier to understand 
and apply, as compared to finite-element methods; they also have smaller memory and compu-
tational time requirements. Thus, these are easier to develop and to program. However, practical 
problems generally involve complicated geometries, complex boundary conditions, material prop-
erty variations, and coupling between different domains. Finite-element methods are particularly 
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well-suited for such circumstances because they have the flexibility to handle arbitrary variations in 
boundaries and properties. Consequently, much of the software developed for engineering systems 
and processes in the last two decades has been based on the finite-element method (Huebner and 
Thornton, 2001; Reddy, 2018). Available software is used extensively in finite-element solutions of 
engineering problems because of the tremendous effort generally needed for the development of the 
computer program. Finite-difference methods continue to be popular for simpler geometries and 
boundary conditions. Also, a wide range of grids and discretization methods has been developed to 
apply the finite-difference method to more complex geometries and boundary conditions.

The finite-element method is based on the integral formulation of the conservation principles. 
The computational domain is divided into a number of finite-elements, several types and forms 
of which are available for different geometries and applicable equations. Linear elements for one-
dimensional cases, triangular elements for two-dimensional problems, and tetrahedral elements for 
three-dimensional problems are commonly used (see Figure 4.16). The variation of the dependent 
variable is generally taken as a polynomial and frequently as linear within the elements. Integral 
equations that apply for each element are derived and the conservation principles are satisfied by 
minimization of the integrals or by reducing their residuals to zero. A method of weighted residuals 
that is very commonly used for thermal processes and systems is the Galerkin method (Jaluria and 
Torrance, 2003).

The ultimate result of applying the finite-element method to the computational domain and the 
given PDE is a system of algebraic equations. The overall set of equations, known as global equa-
tions, is formed by assembling the contributions from each element. Interior nodes are removed 
from the assembled system by a process called condensation. A solution of the set of equations 
then leads to the values at the nodes from which values in the entire domain are obtained by using 
the interpolation functions. The method is capable of handling complicated geometries by a proper 
choice and placement of finite elements. Arbitrary boundary conditions and material property vari-
ations can be easily incorporated. The same scheme can be used for different problems, making the 
method very versatile. Because of all these advantages, finite-element methods, largely in the form 
of available computer codes, are widely used in the simulation and analysis of engineering systems. 
In simpler cases, finite-difference methods may be used advantageously.

FIGURE 4.16 Finite-element discretization of a two-dimensional region, employing triangular elements.
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4.2.4.3 Other Methods
Several other methods have been developed for solving PDEs. These include finite volume, bound-
ary element, and spectral methods. In finite volume methods, the integral formulation is used with 
simple approximations for the values within the volume and at the boundaries. Therefore, this is a 
particular case of the finite-element method and is consequently not as versatile, though the pro-
gramming is much simpler and is similar to that for finite-difference methods. It is quite a popular 
method, which combines the simplicity of the finite-difference method and the versatility of the 
finite-element method. Many common programs, such as the Simpler code of Patankar (1980) and 
commercial software, such as Ansys, are based on the finite-volume method.

In boundary element methods, the volume integral from the conservation postulate is converted 
into a surface integral using mathematical identities. This leads to discretization of the surface 
for obtaining the desired solution in the region. It is particularly useful for complicated geom-
etries and complex boundary conditions (Brebbia et al., 2013). In spectral methods, the solution is 
approximated by a series of functions, such as sinusoidal functions. For particular equations such 
as the Poisson equation, geometries such as cylindrical and spherical cases, and certain boundary 
conditions, very efficient spectral schemes have been developed and are used advantageously. Very 
accurate results can often be obtained with a relatively small amount of effort for many heat transfer 
and fluid flow problems.

Example 4.5

The dimensionless temperature θ in a flat plate is determined by the PDE

 ∂ θ
∂

= ∂θ
∂τX

2

2

The initial and boundary conditions are given as

 θ = θ τ = ∂θ
∂

τ =X
X

( , 0) 0 (0, ) 1 (1, ) 0

where X and τ are the dimensionless coordinate distance and time, respectively. Solve this prob-
lem by the Crank-Nicolson method to obtain θ(X, τ).

SOLUTION

The given PDE is a parabolic equation and can be solved by marching in time τ, starting with the 
initial conditions. The coordinate distance X varies from 0 to 1, with the temperature given as 1 at 
X = 0 and the adiabatic condition, X/ 0∂θ ∂ = , applied at X = 1. The finite-difference equation for 
the Crank-Nicolson method is

 − θ + + θ − θ = θ + − θ + θ+ + + + − + −F F F F F Fi j i j i j i j i j i j2(1 ) 2(1 )1, 1 1, 1, 1 , 1 , , 1 (a)

where F = Δτ/(ΔX)2, i represents the time step, and j represents the spatial grid location. Therefore, 
τ = iΔτ and X = jΔX, where i starts with 0 and increases to represent increasing time and j varies 
from 0 to n, with n = 1/ΔX.

The finite-difference equation may be rewritten as

 θ + θ + θ =− +A B C Dj j j1 1  (b)

where the θ values are at the (i + 1)th time step and D is the expression on the right-hand side of 
Equation (a). Therefore, D is a function of the known θ values at the ith time step. The constants 
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A, B, and C are the coefficients on the left-hand side of Equation (a) and depend on the value 
of the grid Fourier number F. No constraints arise on Δτ due to stability considerations, though 
oscillations may arise in some cases at large F. It is evident from Equation (b) that the resulting 
set of algebraic equations is tridiagonal and can be solved conveniently by the Thomas algorithm 
discussed earlier and employed in Example 4.4.

The boundary condition at X = 1 is a gradient, or Neumann condition. One-sided second-order 
differences may be used to approximate it, giving an error of O[(ΔX)2], as

 ∂θ
∂







=
θ − θ + θ

∆
− −

X Xi j

i j i j i j4 3
2,

, 2 , 1 ,  (c)

where j is replaced by n for the boundary at X = 1. Other approximations are also available 
(Jaluria and Torrance, 2003). A more accurate formulation is based on the energy balance for the 
finite volume represented by the grid point at the surface. The problem is solved by marching in 
time, with a time step Δτ. At each time step, the tridiagonal set, represented by Equation (b), is 
solved to obtain the temperature distribution.

Because this problem has a steady state, the marching in time is carried out until a convergence 
criterion of the following form is satisfied for all j:

 θ − θ ≤ ε+i j i j| |1, ,  (d)

where ε is a chosen small quantity. It must be ensured that the results are not significantly affected 
by changes in the grid size ΔX, time step Δτ, and convergence parameter ε.

The numerical results obtained are shown in Figure 4.17 and Figure 4.18. The former shows 
the temperature distribution as a function of time, indicating the approach to steady-state condi-
tions, which require the temperature distribution to become uniform at θ = 1. Figure 4.18 shows 
the variation of the temperature at several locations in the plate with time τ. Again, the approach 
to steady state at large time is clearly seen. The Crank-Nicolson method is a very popular choice 
for such one-dimensional problems because of the second-order accuracy in time and space. 
Tridiagonal sets of equations are generated for one-dimensional problems, and these may be 
solved conveniently and accurately by the Thomas algorithm to yield the desired solution. See 
Appendix A for programs in Fortran and in Matlab for solving PDEs.

FIGURE 4.17 Computed temperature distribution at various time intervals for Example 4.5, using Δτ = 0.05 
and ΔX = 0.1.
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4.3 NUMERICAL MODEL FOR A SYSTEM

We now come to the numerical model for the overall system, which may comprise several parts, 
constituents, or subsystems. The model may be relatively simple, as is the case for systems with 
a small number of components such as a refrigerator, or may be very involved, as is the case for 
a major enterprise such as a power plant. The numerical model may be developed by the users 
themselves or it may be based on a commercially available general-purpose code such as Fidap, 
Ansys, Phoenics, Simpler, or Fluent. Specialized programs for specific applications are also avail-
able. Because the development of computer codes for large thermal systems is an elaborate and 
time-consuming process, it is often more convenient and efficient to use a commercially available 
program. Consequently, such codes are employed extensively in industry and form the basis for the 
numerical simulation and design of a variety of thermal systems, ranging from electronic packages 
to air conditioning and energy systems. However, it is important to be conversant with the algo-
rithms used in the software and to be aware of their applicability, accuracy, limitations, and ease 
with which inputs may be given to simulate different circumstances.

Even if the numerical model is being developed indigenously, software available on the com-
puter or in the public domain may be employed effectively. This is particularly the case for graph-
ics programs and standard programs, such as matrix methods for solving sets of linear algebraic 
equations and the Runge-Kutta method for the solution of ODEs. Again, we must be familiar with 
the numerical approach used in the software and must have information on its accuracy and pos-
sible limitations. It is rarely necessary to develop the numerical code for graphics, because a wide 
variety of programs, such as Tecplot and Matlab graphics, are conveniently available and easy to 
use for different needs, ranging from line graphs to contour plotting. Similarly, programs for curve 
fitting are widely used for the analysis of experimental or numerical data and for the derivation of 
appropriate correlations.

In summary, the numerical model for the complete thermal system may contain programs that 
have been developed by the user, those in the public domain, standard programs available on the 
computer, and even commercially available general-purpose programs, with all of these linked to 
each other to simulate different aspects or components of the system. In addition to these programs, 
the numerical model may be linked with available information on material properties, character-
istics of some of the devices or components in the system, heat transfer correlations, and other 

FIGURE 4.18 Variation of the temperature at several locations in the plate with dimensionless time τ for 
Example 4.5.
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relevant information. The range of applicability of the complete numerical model and the expected 
accuracy of the results are determined through validation studies.

4.3.1 moDeling oF inDiviDuAl components

4.3.1.1 Isolating System Parts
The first step in the mathematical and numerical modeling of a thermal system is to focus on the 
various parts or components that make up the system. In many cases, the choice of individual com-
ponents is obvious. For instance, in a vapor compression refrigeration system, the compressor, the 
condenser, the evaporator, and the throttling value may be taken as the components of the system 
(see Figure 4.19). Each component here may be considered as a separate entity, in terms of the ther-
modynamic process undergone by the refrigerant and geometry, design, and location of the compo-
nent. Similar subdivisions are employed in many thermodynamic systems such as those in energy 
generation, heating, cooling, and transportation. The components are chosen so that these are rela-
tively self-contained and independent in order to facilitate the modeling. However, all such compo-
nents must ultimately be linked to each other through energy, material, and momentum transport. 
For instance, in a refrigeration system, the refrigerant flows from one component to the other, con-
veying the energy stored in the fluid, as shown in Figure 1.8. In each component, energy exchanges 
occur, leading to the resulting thermodynamic state of the fluid at the exit of the component.

In many cases, the choice of the individual components is not so obvious. However, differences 
in geometry, material, function, thermodynamic state, location, and other such characteristics may 
be used to separate the components. For instance, the walls and the outside insulation in a furnace 
may be treated as different components because of the difference in material. The main thing to 
remember is that the component must be substantially separate or different from the others and must 
be amenable to modeling as an individual item.

The given system may also be broken down into subsystems, each with its own components. 
Then each subsystem is treated as a system for model development, with all the individual models 
being brought together at the end. For instance, the cooling system in an automobile, the boiler in 
a power plant, and the cooling arrangement in an electronic system may be considered as subsys-
tems for modeling and design. Frequently, the subsystems are designed separately and the results 
obtained are employed in the design of the overall system, treating the subsystem simply as a com-
ponent whose characteristics are known.

4.3.1.2 Mathematical Modeling
Once the individual components have been isolated, we can proceed to the development of the 
mathematical model for each. For this purpose, each component is treated separately, replacing its 
interaction with other components by known conditions that eliminate the coupling. For instance, 
for modeling a wall losing energy by convection to air in a room, as shown in Figure 4.20, the actual 

FIGURE 4.19 Isolating system parts or components for modeling.
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thermal coupling between the air flow and conduction in the wall may be replaced by a heat trans-
fer coefficient h at the wall surface. This decouples the solutions for the two heat transfer regions 
because the conditions at the boundary
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which require a solution for the flow and heat transfer in air, are replaced by
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Here, n is in the direction normal to the surface and Tair is a specified temperature. Similarly, the 
air is modeled separately for heat transfer with a specified wall temperature. Then, the two regions 
are modeled as separate entities without linking the two. Similarly, the condenser in a home air con-
ditioning system may be modeled using given, fixed inflow conditions of the refrigerant to decouple 
it from the compressor that provides the input to the condenser in an actual system. Then each 
component can be subjected to mathematical modeling procedures and the resulting mathematical 
equations derived.

Different simplifications and idealizations may apply for different components, resulting in dif-
ferent types of applicable equations. For example, one component may be modeled as lumped mass, 
giving rise to an ODE for the temperature as a function of time, while another component may be 
modeled as a one-dimensional transient problem, represented by Equation (4.27). A single nonlinear 
algebraic equation may arise from an energy balance for determining the temperature at the surface 
of a body. The continuity, momentum, and energy equations may be needed for modeling the flow.

The different mathematical models obtained for the various system parts are based on simplifica-
tions, approximations, and idealizations that are, in turn, based on the material, geometry, transport 
processes, boundary conditions, and estimates of the contributions of the various transport mecha-
nisms, as discussed in Chapter 3. However, the mathematical models derived are not unique and 
further improvements may be needed, depending on the numerical results from simulation and on 
comparisons with experimental data. It is important to maintain the link between mathematical and 
numerical models and to be prepared to improve both as the need arises. It is generally best to start 
with the simplest possible mathematical and numerical models and to improve these gradually by 
including effects that may have been neglected earlier.

4.3.1.3 Numerical Modeling
The mathematical equations that represent each component must be solved to study its behavior. 
Numerical algorithms applicable to the different types of equations that arise are employed to solve 
these equations, as discussed earlier. Thus, a numerical model, which is decoupled from the others, 

FIGURE 4.20 Decoupling a wall and enclosed air for modeling thermal transport in a room.
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is obtained for each component. The results from this model indicate the basic characteristics of 
the component under the idealized or approximated boundary conditions used. The behavior of the 
component, as some of these conditions or related parameters are varied, may be studied in order 
to ensure that the individual model is physically realistic. For instance, the flow rate of the colder 
fluid in a heat exchanger may be increased, keeping the other variables fixed. It is expected that the 
temperature rise of this fluid in the heat exchanger will decrease because a larger amount of fluid is 
to be heated. The results from the numerical model must show this trend if the model is physically 
valid. Grid refinement is also done to ensure the accuracy of the results. Some simple cases may 
be considered to obtain analytical solutions and thus provide a method of validating the individual 
numerical models.

4.3.2 merging oF DiFFerent moDels

Once all the individual numerical models for the various components or parts of the given thermal 
system have been obtained and tested on the basis of physical reasoning and analytical results, these 
must be merged to obtain the model for the overall system. Such a merging of the models requires 
bringing back the coupling between the different parts that had been neglected in the development 
of individual models.

For instance, if two parts A and B of the system exchange energy by radiation, their temperatures 
TA and TB are coupled through a boundary condition of the form
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where Q is the radiative energy lost by A and gained by B, εA and εB are the emissivities, AA and 
AB are the two surface areas, and σ is the Stefan-Boltzmann constant. This equation applies for A 
completely surrounded by B, with no radiation from A falling directly on itself. For developing the 
numerical model for, say, part A, this radiative heat transfer may be idealized as a constant heat 
flux q at the surface of A or as a constant temperature environment in radiation exchange with the 
surface. Thus, the temperature of part B is eliminated from the model for part A, which may then 
be modeled separately. Similarly, such approximations with constant or known parameters in the 
boundary conditions may be used for modeling part B. In the process of merging the two models, 
these approximations must be replaced by the actual boundary condition, Equation (4.35), which 
couples the temperatures of the two parts.

Similarly, the approximation made in Equation (4.34b) is removed by replacing the convective 
condition given by a specified heat transfer coefficient h by the correct boundary conditions given 
by Equation (4.34a). This couples the transport in the wall with that in the air. For the air condi-
tioning system considered earlier, the temperature and pressure at the inlet of the condenser are set 
equal to the corresponding values at the exit of the compressor to link these two parts of the sys-
tem. Proceeding in this way, other parts are also coupled through the boundary and inflow/outflow 
conditions.

This approach of modeling individual parts and then coupling them may appear to be an unnec-
essarily complicated way of deriving the numerical model for the entire system. Indeed, for rela-
tively simple systems consisting of a small number of parts, it is often more convenient and efficient 
to develop the numerical model for the system without considering individual parts separately. 
However, if the system has a large number of parts, it is preferable to develop individual numerical 
models and to test and validate them separately before merging them to obtain the model for the sys-
tem. This allows a complicated problem to be broken down into simpler ones that may be individu-
ally treated and tested before the final assembly. This approach is used extensively in industry to 
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model complex systems. A direct modeling of the entire system has little chance of success because 
many coupled equations are involved. Figure 4.21 shows a schematic of the process described here 
for a general thermal system.

4.3.3 AccurAcy AnD vAliDAtion

We discussed the validation of the mathematical model and the numerical scheme earlier. Numerical 
models for individual parts of the system are similarly tested and validated before merging them to 
yield the overall numerical model of the thermal system under consideration. The validation of this 
complete model, therefore, is based largely on the testing and validation employed at various steps 
along the process. The main considerations that form the basis for validation of the numerical model 
of the entire system are, as before,

1. Results should be independent of arbitrary numerical parameters
2. Demonstrates expected physical behavior
3. Comparison with analytical and experimental results
4. Comparisons with prototype results

The arbitrary numerical parameters refer to the grid, time step, and other quantities chosen to 
obtain a numerical solution. It is important to ensure that the results from the model are essentially 
independent of these parameters, as was done earlier for the numerical solution of individual equa-
tions and components. The physical behavior now refers to the thermal system, so that the results 
from the complete model are considered in terms of the expected physical trends to ascertain that 
the model does indeed yield physically realistic characteristics. The numerical model is subjected to 
a range of operating conditions and the results obtained examined for physical consistency.

Analytical and experimental results are rarely available for validation. However, as discussed ear-
lier, analytical results may be obtained for a few highly idealized situations. Similarly, experimental 
data may be obtained or may be available for a few simple geometries and conditions. Such analytical 
results and experimental data are used for validating mathematical and numerical models for indi-
vidual parts of the system. For the overall system, experimental data may be available from existing 
systems. For instance, existing cooling and heating systems may be numerically modeled in order to 
compare the results against data available on these systems. Before going into production, a prototype 
may be developed to test the model and the design. This provides the best information for the quantita-
tive validation of the model and a check on the accuracy of the results obtained from the model.

FIGURE 4.21 Schematic of the general approach of developing an overall model for a thermal system.
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4.4 SYSTEM SIMULATION

System simulation refers to the process of obtaining quantitative information on the behavior 
and characteristics of the real system by analyzing, studying, or examining a model of the sys-
tem. The model may be a physical, scaled-down version of the given system, derived on the 
basis of the similarity principles outlined in Chapter 3. Such a model is subjected to a variety 
of operating and environmental conditions and the performance of the system is determined 
in terms of variables such as pressure, flow rate, temperature, energy input/output, and mass 
transfer rate that are of particular interest in thermal systems. The results from such a simulation 
may be expressed in terms of correlating equations derived by curve-fitting techniques. Physical 
modeling and testing of full-size components such as compressors, pumps, and heat exchangers 
are often used to derive the performance characteristics of these components. This approach is 
rarely used for the entire system because of the typically high cost and effort involved in fabrica-
tion and experimentation.

Sometimes the given physical system may be simulated by investigating another system that is 
represented by the same equations and that may be easier to fabricate or assemble. Such a model, 
called an analog model in the preceding chapter, also has a limited range of applicability, and, 
therefore, this simulation is not often used in the design of thermal systems. Electrical circuits used 
to simulate fluid flow systems, consisting of pipes, fittings, valves, and pumps, and conduction heat 
transfer through a multilayered wall are examples of analog simulation.

In the remaining portion of this chapter, we will consider only system simulation based on math-
ematical and numerical modeling. Therefore, the equations obtained from the mathematical model 
are solved by analytical or numerical methods to yield the system behavior under a variety of oper-
ating conditions as well as for different design variables, in order to provide the quantitative inputs 
needed for achieving acceptable designs and for optimization. Analytical solutions are obtained 
in only a few, often highly idealized, circumstances, and numerical modeling is generally needed 
to obtain the desired results for practical problems. Performance characteristics of components, 
as obtained from separate physical modeling and tests, as well as material properties, form part 
of the overall model and are assumed to be known. These may be available in the form of data 
or as correlating equations. The system may be represented by algebraic equations, ordinary or 
partial-differential equations, integral equations, or a combination of these. A numerical model is 
developed to solve the resulting simultaneous equations, many of which are typically nonlinear for 
thermal systems. Simulation of the system is carried out by means of this model.

4.4.1 importAnce oF simulAtion

System simulation is one of the most important elements in the design and optimization of thermal 
systems. Because experimentation on a prototype of the actual thermal system is generally very 
expensive and time consuming, we usually have to depend on simulation based on a model of the 
given system to obtain the desired information on the system behavior under different conditions. 
A one-to-one correspondence is established between the model and the physical system by valida-
tion of the model, as discussed earlier. Then the results obtained from a simulation of the model are 
indicative of the behavior of the actual system.

There are several reasons for simulating the system. Simulation can be used to

1. Evaluate different designs for selection of an acceptable design
2. Study system behavior under off-design conditions
3. Determine safety limits for the system
4. Determine effects of different design variables for optimization
5. Improve or modify existing systems
6. Investigate sensitivity of the design to different variables
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4.4.1.1 Evaluation of Design
Evaluation of different designs is an extremely important use of simulation because several designs 
are typically generated for a given application. If each of these were to be fabricated and tested for 
acceptability, the cost would be prohibitive. System simulation is employed effectively to investigate 
each design and to determine if the given requirements and constraints are satisfied, thus yield-
ing an acceptable or workable design. For instance, several different designs, employing different 
geometry, materials, and dimensions, may be developed for a heat exchanger involving given fluids 
and given requirements on the temperatures or the heat transfer rates. Instead of fabricating each of 
these heat exchanger designs, mathematical and numerical modeling may be employed to obtain a 
satisfactory and accurate model. This model is then used for simulating the actual system in order to 
obtain the desired outputs in terms of heat transfer rates and temperatures. Operating conditions for 
which the system is designed are considered first to determine if the design meets the given require-
ments and constraints. These conditions are often termed design conditions because they form the 
basis for the design. Even if only one design has been developed for a given application, it must be 
evaluated to ensure that it is acceptable.

4.4.1.2 Off-Design Performance and Safety Limits
Predicting the behavior of the system under off-design conditions, i.e., values beyond those used for 
the design, is another important use of system simulation. Such a study provides valuable informa-
tion on the operation of the system and how it would perform if the conditions under which it oper-
ates were to be altered, as under overload or fractional-load circumstances. Systems seldom operate 
at the design conditions and it is important to determine the range of operating conditions over 
which they would deliver acceptable performance. The deviation from design conditions may 
occur due to many reasons, such as variations in energy input, differences in raw materials fed into 
the system, changes in the characteristics of the components with time, changes in environmental 
conditions, and shifts in energy load on the system. The results obtained from simulation under 
off-design conditions would indicate the versatility and robustness of the system. It is obviously 
desirable to have a wide range of off-design conditions for which the system performance is satisfac-
tory. A narrow range of acceptability is generally not suitable for consumer products because large 
variations in the operating conditions are often expected to arise. For instance, a residential hot 
water system designed for a particular demand and given inlet temperature must be able to perform 
satisfactorily if either of these were to vary substantially. In manufacturing processes, it is common 
to encounter variations in the shape, dimensions, and material properties of the items undergoing 
thermal processing.

These outputs also indicate the safety limits of the system. It is important to determine the maxi-
mum thermal load an air conditioner can take, the maximum power input to a furnace that can be 
given, and so on, without damage to the system or the user. Safety features can then be built into 
the system, such as mandatory shutdown of the system if the safety levels are exceeded or warn-
ing lights to indicate possible damage to the system. We are all familiar with such features in cars, 
lawn mowers, and other systems in daily use. Some of these aspects were also considered earlier in 
Section 2.3.6.

4.4.1.3 Optimization
System simulation plays an important role in the optimization of the system. As will be seen in later 
chapters, the outputs from the system must be obtained for a range of design variables in order to 
select the optimum design. The optimization of the system may involve minimization of objective 
functions such as cost per item, weight, and energy consumption per unit output or maximization 
of quantities such as output, return on investment, and rate of energy removal. Whatever the cri-
terion for optimization, it is essential to change the variables over the design domain, determined 
by physical limitations and constraints, and to study the system behavior. Then, using the various 
techniques for optimization presented later, the optimal design is determined. The results obtained 
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from simulation may sometimes be curve fitted to yield algebraic equations, which greatly facilitate 
the optimization process. For instance, if the cooling system for some electronic equipment using a 
fan has been simulated, different locations, flow rates, and dimensions of the fan may be considered 
to derive algebraic equations to represent the dependence of the heat removal rate on these vari-
ables. Then, an optimal configuration that delivers the most effective cooling per unit cost may be 
obtained easily.

4.4.1.4 Modifications in Existing Systems
The use of simulation for correcting a problem in an existing system or for modifying the system for 
improving its performance is also an important application. Rather than changing a particular com-
ponent in order to correct the problem or improve the system, simulation is first used to determine 
the effect of such a change. Because the simulation closely represents the actual physical system, the 
usefulness of the proposed change can be determined without actually carrying out the change. For 
instance, if a flow system is unable to deliver the expected flow rates, the problem may lie with vari-
ous sections of the piping, pipe fittings, valves, or pumps. Instead of proceeding to change a given 
valve or pump, simulation may be used to determine if indeed the problem is caused by a particular 
item and if an improved version of the item will be worthwhile. It may be shown by the simulation 
that the lack of flow at a given point is due to some other cause, such as blockage in a particular sec-
tion of the piping. Clearly, considerable savings may be obtained by using simulation in this manner.

4.4.1.5 Sensitivity
A question that arises frequently in design is the effect of a given variable or component on the sys-
tem performance. For instance, if the dimensions of the channels or of the collectors in a solar col-
lection system were varied, what would be the overall effect on the system? Similarly, if the capacity 
of the fan or blower in a cooling system were varied, how would it affect the heat removal rate? Such 
questions relate to the sensitivity of the system performance to the design variables and are impor-
tant from a practical viewpoint. A substantial reduction in the cost of the system may be obtained by 
slight changes in the design in order to use standard items available in the market. Pipes and tubings 
are usually available at fixed dimensions and if these could be employed in the system, rather than 
the exact custom-made dimensions, substantial savings may result. Similarly, fluid flow components 
such as blowers, pumps, and fans are often cheaply and easily available for given specifications. At 
different values, these may have to be fabricated individually, raising the price substantially. System 
simulation is used to determine the sensitivity of the system performance to such variables and to 
decide if slight alterations can be made in the interest of reducing the cost without significant sac-
rifice in system characteristics.

4.4.2 DiFFerent clAsses

Several types of simulation are used for thermal systems. We have already mentioned analog and 
physical simulations, which are based on the corresponding form of modeling, as discussed in 
Chapter 3. In this chapter, we have focused on numerical modeling and numerical simulation, which 
are based on the mathematical modeling of the thermal system. Three main classes of this type of 
system simulation are discussed here.

4.4.2.1 Dynamic or Steady State
The simulation of a system may be classified as dynamic or steady state. The former refers to cir-
cumstances where changes in the operating conditions and relevant system variables occur with 
respect to time. Many thermal systems are time-dependent in nature and a dynamic simulation 
is essential. This is particularly true for the startup and shutdown of the system. Also, in most 
manufacturing processes the temperature and other attributes of the material undergoing thermal 
processing vary with time, as shown in Figure 2.1. The system itself may vary with time over 
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the duration of interest due to energy input as in welding, gas cutting, heat treatment, and metal 
forming. In processes such as crystal growing, ingot casting, and annealing, the system varies 
with time along with the temperature of the material being processed. Dynamic simulation is also 
needed to study the response of the system to changes in the operating conditions such as a sharp 
increase in the heat load on a food freezing plant. The results obtained from a dynamic simulation 
are also useful in the design and study of the control scheme for satisfactory and safe operation of 
the system.

Steady-state simulation refers to situations where changes with respect to time are negligible 
or do not occur. Because the dependence of the variables on time is eliminated, a steady-state 
simulation is much simpler than the corresponding dynamic simulation. In addition, the steady-
state approximation can be made in a large number of practical cases, making steady-state simu-
lation of greater interest and importance in thermal systems. Except for times close to startup 
and shutdown, many systems behave as if they are under steady-state conditions. Thus, a blast 
furnace may be treated as essentially steady over much of its operation. A typical system that is 
transient at the beginning and end of its operation and steady over the rest is shown in Figure 4.22. 
In addition, the system itself may be approximated as steady even though the temperature of the 
material undergoing thermal processing varies with time. An example of this is a circuit board 
being baked. The baking oven may be approximated as being unchanged and operating under 
steady-state conditions while the board undergoes a relatively large temperature change as it 
moves through the oven.

4.4.2.2 Continuous or Discrete
In many systems such as refrigeration and air conditioning systems, power plants, internal combus-
tion engines, and gas turbines, the flow of the fluid may be taken as continuous, with no finite gaps 
in the fluid stream. Thus, a continuum of the material or the fluid is assumed, with the conservation 
laws based on this assumption. This implies the use of continuity, momentum, and energy equa-
tions from fluid mechanics and heat transfer for transport processes in a continuum. Particles, if 
present in the flow, are not treated separately but as part of the average properties of the fluid. Most 
thermodynamic systems can be simulated as continuous because energy and fluid flow are generally 
continuous [see Figure 4.23(a)].

On the other hand, if discrete pieces, such as ball bearings, fasteners, and gears, undergoing 
thermal processing, are considered, the simulation focuses on a finite number of such items. In 
the manufacture of television sets, individual glass screens are heat treated as they pass through a 
furnace on a conveyor belt, as sketched in Figure 4.23(b). In such cases, the energy balance of each 
item is considered separately to determine, for instance, the temperature as a function of time. An 
aggregate or an average may be obtained at the end to quantify the process, if desired. An example 
of this class of simulation is provided by the modeling of the movement of a plastic piece as it goes 
from the hopper to the die in an extruder to determine the time taken (generally known as residence 
time). An average residence time may be defined by considering several such pieces.

FIGURE 4.22 Temperature variation in a typical thermal system that is steady over most of the duration of 
operation and is time-dependent only near startup and shutdown.
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4.4.2.3 Deterministic or Stochastic
In most of the examples of thermal processes and systems considered thus far, the variables in the 
problem are assumed to be specified with precision. Such processes are known as deterministic. 
However, there are several cases where the input conditions are not known precisely and a probabil-
ity distribution may be given instead, with a dominant frequency, an average, and an amplitude of 
variation. The conditions may also be completely random with an equal probability of attaining any 
value over a particular range. When dealing with consumer demands for power, hot water, supplies, 
etc., probabilistic descriptions are often employed and the corresponding simulation, known as sto-
chastic, is carried out to determine the appropriate design variables. A useful simulation method, 
known as the Monte Carlo method, uses the randomness of the process along with appropriate 
probability distributions to simulate the system to determine the resulting average output, transport 
rate, time taken, and other characteristics. Employing random numbers generated on the computer, 
events are selected from the probability distributions to simulate the randomness in selection. The 
various steps in the overall process are followed to obtain the result for a given starting point. An 
aggregate of several such simulations yields the expected average behavior of the system. This 
approach is often used in manufacturing systems to account for statistical variations at different 
stages of the process (Dieter, 2000; Ertas and Jones, 1996).

4.4.3 Flow oF inFormAtion

A useful concept in the simulation of thermal systems is that of information flow between the dif-
ferent parts, components, or subsystems that make up the system. The flow of information from one 
part to another is considered in terms of quantities that are of particular interest to thermal systems, 
such as temperature, velocity, flow rate, and pressure. This flow of information also indicates the 
nature of coupling between two components. The input to a given item undergoing thermal process-
ing or to a continuous flow may be provided by the system parts and, similarly, the output from this 
item or flow may be fed to these parts. Clearly, different types of information flow arrangements 
may arise, depending on the thermal system. Such arrangements are often shown as information-
flow diagrams in which the various parts of the system are linked through inputs and outputs. The 
strategy for simulating the system is often guided by the nature and characteristics of information 
flow between the different parts of the system.

FIGURE 4.23 (a) Continuous and (b) discrete simulation.
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4.4.3.1 Block Representation
Each component may itself be represented as a block with its own characteristics, as well as inputs 
and outputs. For instance, a compressor may be represented by a block with the inlet pressure p1 and 
the mass flow rate m  as inputs and the outlet pressure p2 as the output. The efficiency and discharge 
rate may also be taken as outputs. The equation that expresses the relationship between these vari-
ables may be written within the block to indicate the characteristics of the component. Again, this 
equation may be an algebraic, differential, or integral equation, or a combination of these. For 
steady-state problems, assuming uniformity within each component, the characteristic equation 
linking the inputs and outputs will be an algebraic equation. ODEs arise for transient cases, if uni-
formity or lumping is still assumed within each component or part. PDEs arise for general, distrib-
uted, or nonuniform cases.

Similarly, a heat exchanger may be represented by a block, with flow rates 1 2 m and m  of the two 
fluid streams and inlet temperatures T1,i and T2,i as the inputs. Then, the outlet temperature T2,0 of 
one of the streams may be taken as the output, with f m m T T Ti i , , , , 01 2 1, 2, 2,0( ) =  representing the rela-
tionship between the inputs and the outputs. Figure 4.24 shows typical blocks that may be used to 
represent a few components of interest to thermal systems. Obviously, other combinations of inputs 
and outputs are possible and may be employed, depending on the specific application. The use of 
such blocks to represent the system components and subsystems facilitates the representation of the 
overall system in terms of the information flow between different parts.

4.4.3.2 Information Flow
A diagram showing the flow of information for a system is constructed using blocks for the various 
parts of the system. Let us consider the relatively complex problem of a plastic screw extrusion sys-
tem, as shown in Figure 1.10(b). The plastic material is conveyed, heated, melted, and forced through 
the die due to the rise in pressure Δp and temperature ΔT in the extruder. The transport processes are 
governed by nonlinear PDEs, further complicated by material property variations, complex geom-
etry, and the phase change. However, the extruder may be numerically simulated to study the depen-
dence of temperature and pressure on the inputs such as mass flow rate m, speed N in revolutions 
per minute, and barrel temperature Tb. The simulation results may be curve fitted to obtain algebraic 
equations. As an example, if the hopper, extruder, and die are taken as the three parts of the sys-
tem, Figure 4.25 shows the information-flow diagram for this circumstance. The following equations 
express, respectively, the relationships between the inputs and outputs for these three parts:
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Here, the extruder and the die are taken as fixed, so that only the operating conditions are varied. 
D is the diameter of the opening of the hopper and, thus, represents its geometry. Similarly, die 
diameter d and screw geometry may be included as variables.

FIGURE 4.24 Block representations of a few common components used in thermal systems.
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The pressures at the entrance to the hopper and at the exit of the die are taken as atmospheric. 
Here, f1 and f2 represent the characteristics of the hopper and the die, respectively. The mass flow 
rate into the die must equal that emerging from the extruder from mass conservation considerations 
for steady-state operation. The motor that provides the torque and the heater that supplies the heat 
input to the barrel are additional parts that may be included, as shown by dotted lines in the figure. 
The extruder itself may be considered to consist of different zones that are modeled separately, such 
as the solid conveying, melting, and metering sections. Again, these are coupled through the flow 
rate m and the temperature and pressure continuity. For further details on this system, specialized 
books, such as those by Tadmor and Gogos (1979) and Rauwendaal (2014), may be consulted.

The information-flow diagram for a vapor-compression cooling system, shown in Figure 1.8(a), 
may be similarly drawn. The characteristics of the compressor, condenser, throttling valve, and 
evaporator can be expressed by the equations
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The different states are shown on a p-h plot of the thermodynamic cycle in Figure 4.26(a). The 
information-flow diagram is shown in Figure 4.26(b). Conservation of enthalpy h in the throttling 
process, h3 = h4, is employed and the characteristic equations are derived for a given refrigerant fluid 
such as a hydrofluorocarbon (HFC) such as R-410A or R-134a. The inlet into each part corresponds 
to the exit from the preceding one in this closed cycle.

The information-flow diagram for the electric furnace shown in Figure 4.27(a) is more involved 
than the preceding two cases because energy transfer occurs between different parts of the system 
simultaneously. Thus, the heater exchanges thermal energy with the walls, gases, and the material. 
Similarly, the material undergoing heat treatment is in energy exchange with the heater, walls, and 
gases. Example 3.6 derived the mathematical model for this system. Figure 4.27(b) shows a sketch 
of the information-flow diagram for this circumstance, strongly coupling all the parts of the system. 
The flow of information between any two parts is due to energy transfer that involves combinations 
of the three modes: radiation, convection, and conduction. The representative equations are ordi-
nary and partial-differential equations for the transient problem, as modeled in Example 3.6.

In each of the three cases just outlined, different information-flow diagrams are obtainable 
by choosing different starting points and different inputs/outputs. The diagrams indicate the link 
between different parts of the system and thus suggest ways of approaching the simulation. In the 

FIGURE 4.25 Information-flow diagram for a screw extrusion system.
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first two examples of the extruder and the air conditioning system, the output from one component 
feeds into the next as an input. The overall arrangement is sequential because one part depends only 
on the preceding one. However, in the furnace, a part is simultaneously coupled with several oth-
ers through the energy exchange mechanisms. Therefore, in the former circumstances a sequential 
calculation procedure is appropriate for the simulation, whereas a simultaneous solution procedure 
is essential for the latter.

FIGURE 4.26 A vapor-compression cooling system. (a) Thermodynamic cycle; (b) information-flow 
diagram.

FIGURE 4.27 (a) An electric furnace; (b) information-flow diagram showing the coupling between different 
parts of the system.
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4.5 METHODS FOR NUMERICAL SIMULATION

The method appropriate for simulating a given thermal system is strongly dependent on the nature 
of the system and, thus, on the characteristics of the equations that represent the system. These are 
best specified in terms of the mathematical model. Let us consider a few important types of systems 
and their corresponding simulations.

4.5.1 steADy lumpeD systems

This is the simplest circumstance in the modeling and simulation of thermal systems. If the sys-
tem can be modeled as steady, the dependence of the variables on time is eliminated. In addition, 
if uniform conditions are assumed to exist within the various components or parts of the system, 
implying that they may be treated as lumped, spatial distributions of variables such as tempera-
ture and pressure do not arise. Then the governing equations are simply algebraic equations, 
which may be linear or nonlinear. The equations are coupled to each other through the unknowns, 
which are the inputs and outputs to the different blocks in an information-flow diagram, as seen 
earlier. The external inputs to the overall system are given or may be varied in the simulation and 
the overall outputs from the system represent the information desired from the simulation.

Most thermodynamic systems, such as power plants, air conditioners, internal combustion 
engines, gas turbines, compressors, pumps, etc., can usually be modeled as steady and lumped 
without much sacrifice in the accuracy of the simulation (Howell and Buckius, 1992; Moran and 
Shapiro, 2014). Similarly, fluid flow systems, such as a network of pipes and storage tanks, can often 
be treated as steady and lumped.

The governing algebraic equations in steady lumped systems may be written as

 

f x x x x

f x x x x

f x x x x

f x x x x

n

n

n

n n



, , , , 0

, , , , 0

, , , , 0

, , , , 0

1 1 2 3

2 1 2 3

3 1 2 3

1 2 3

( )
( )
( )

( )

… =

… =

… =

… =

 (4.38)

where the x’s represent the unknowns and the equations may be linear or nonlinear. If all the equa-
tions are linear, the system of equations may be solved by direct or iterative methods, using the 
former approach for relatively small sets of equations and for tridiagonal systems, and the latter for 
large sets, as discussed earlier. However, several equations in the set of algebraic equations govern-
ing typical thermal systems are usually nonlinear, making the solution much more involved than 
that for linear equations.

4.5.1.1 Successive Substitution Method
The two main approaches used for simulating thermal systems described by nonlinear equa-
tions are based on successive substitution and Newton-Raphson methods, which were discussed 
in Section 4.2.2 for a single nonlinear algebraic equation and for a set of nonlinear equations. Let 
us first consider the successive substitution method. In this case, for a single equation, the iterative 
solution obtained by solving the equation is substituted back into the equation and the iterations 
are continued until convergence is achieved, as indicated by an acceptable small variation in the 
solution from one iteration to the next. For a system of equations, each equation is solved for an 
unknown using known values from previous iterative calculations. This solution is then substituted 
into the next equation, which is solved to obtain another unknown. This is again substituted into the 
next equation, in succession, and the process is continued until the solution obtained does not vary 
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significantly from one iteration to the next. A scheme such as the modified Gauss-Seidel method 
given in Equation (4.19) may be used effectively to simulate the system.

The numerical algorithm is quite simple for this method. Relaxation may also be used to improve 
the convergence. SUR is particularly useful in obtaining convergence in nonlinear equations. Thus, 
if the relaxation factor ω is in the range 0 < ω < 1, SUR is applied as
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The successive substitution method is particularly well-suited for sequential information-flow 
diagrams, such as those shown in Figure 4.25 and Figure 4.26. The equations corresponding to the 
different parts of the system are solved in succession, using the inputs from the preceding part or 
equation, until convergence of the iteration is achieved to a chosen convergence criterion, as given 
by Equation (4.7). The method can be applied to large systems involving large sets of nonlinear 
algebraic equations. Computer storage requirements are small and computer programming is fairly 
simple. As a result, this approach is extensively used in industry for simulating steady-state thermal 
systems in mechanical and chemical engineering processes.

The main problem with the successive substitution method is difficulty in convergence of the iter-
ative process. For sequential information-flow diagrams, convergence is much more easily obtained 
than for simultaneous information-flow cases, such as the one sketched in Figure 4.27, because the 
numerical simulation follows the physical characteristics of the system in the former circumstance. 
Convergence is strongly dependent on the starting point and on the arrangement of the equations for 
solution. As seen earlier for linear systems, diagonal dominance is needed to assure convergence. 
Therefore, in linear systems the equations are arranged in order to place the dominant coefficient 
at the diagonal of the coefficient matrix, implying that each equation is solved for the unknown 
with the largest coefficient. Though the corresponding convergence characteristics are not available 
for nonlinear equations, a change in the arrangement of the equations can affect the convergence 
substantially. Generally, information blocks should be positioned so that the effect on the output is 
small for large changes in the input. The equations may be rewritten to achieve this. Stoecker (1989) 
gives a few examples in which the sequence of the equations and thus of the unknowns being solved 
can be changed to obtain convergence. Similarly, the starting values should be picked based on 
available information on the given system so that these are realistic and as close as possible to the 
final solution. Again, SUR may be used for cases where convergence is a problem. A few examples 
are included later in this chapter to illustrate these strategies.

4.5.1.2 Newton-Raphson Method
The second approach for solving a set of nonlinear algebraic equations is the Newton-Raphson 
method discussed in Section 4.2.2 for a single nonlinear equation and then extended to a set of 
nonlinear algebraic equations. This method is appropriate for an information-flow diagram in 
which a strong interdependence arises between the different parts of the system, such as that shown 
in Figure 4.27. The convergence characteristics are generally better than those for the successive 
substitution, or modified Gauss-Seidel, method. However, the method is much more complicated 
because the matrix of derivatives, given in Equation (4.17) and generally known as the Jacobian, 
has to be calculated at each iterative step. Because the computed variation of each of the functions 
fi with the unknowns xi is employed in determining the changes in xi for the next iteration, the itera-
tive scheme is much better behaved than the successive substitution method, which does not use any 
such quantitative measure of the change in fi with xi. However, the derivatives may not be easily 
obtainable by analysis and numerical differentiation may be necessary, further complicating the 
procedure. Generally, the Newton-Raphson method is useful for relatively small sets of nonlinear 
equations and for cases where the derivatives can be obtained easily. However, different approaches 
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have been developed in which the derivatives are computed numerically by efficient algorithms as 
the iterative scheme proceeds. For instance, the partial derivative ∂fi/∂xj may be computed as
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where Δxj is a chosen increment in xj. Thus, all the partial derivatives needed for Equation (4.17) are 
computed at each iteration and the next approximation to the solution obtained, carrying out this 
procedure until convergence to the chosen convergence criterion is achieved.

The Newton-Raphson approach links all the parts of the system simultaneously through 
the derivatives. Thus, changes in one component will affect all others at the same time and 
the effect is dependent on the corresponding derivatives. Therefore, the approach follows the 
physical behavior of systems where all the parts are strongly linked with each other. Several 
thermal systems, such as those in manufacturing and cooling of electronic equipment, have 
strong coupling between the different parts, making it desirable to use the Newton-Raphson 
method. However, if the systems have a large number of parts, leading to a large number of 
algebraic equations, it may be more advantageous to use the successive substitution approach, 
employing under-relaxation for better convergence. The examples that follow illustrate these 
methods of simulation.

Example 4.6

In the ammonia production system sketched in Figure 4.28, a mixture of 90 moles/s of nitrogen, 
270 moles/s of hydrogen, and 0.9 moles/s of argon enters the plant and is combined with the 
residual mixture crossing a bleed valve. Argon is an impurity and adversely affects the reaction 
(Stoecker, 1989; Parker, 1993). In the chemical reactor, a fraction of the entering mixture combines 
to form ammonia, which is removed by condensation. The bleed valve removes 23.5 moles/s of 
the mixture to avoid build-up of argon. The fraction of the mixture that reacts to give ammonia in 
the reactor is 0.57 exp(–0.0155 F1), where F1 is the amount of argon entering the reactor in moles 
per second. Solve the resulting set of algebraic equations by the successive substitution approach 
to obtain the flow rates and the amount of ammonia produced.

SOLUTION

The system of algebraic equations for the given process may be derived on the basis of mass con-
servation. If F1 and F2 are the flow rates of argon and nitrogen, respectively, in moles per second 

FIGURE 4.28 The ammonia production system considered in Example 4.6.
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entering the reactor, the flow rate of hydrogen is 3F2 moles/s from the chemical reaction, which 
yields ammonia. Then, we obtain
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Here, P represents the fraction of unconverted mixture of nitrogen and hydrogen and B repre-
sents the fraction of mixture that goes past the bleed valve. The chemical reaction for producing 
ammonia is

 + =N H NH3 22 2 3

Therefore, the amount of ammonia produced D is given by

 D F F2 [0.57 exp( 0.0155 )]2 1= −

The preceding four nonlinear algebraic equations may be rewritten to solve for the four 
unknowns F1, F2, P, and B in sequence, terminating the iteration when values do not change sig-
nificantly from one iteration to the next. Obviously, the equations and unknowns can be arranged 
in several ways to apply the successive substitution method. Many of these do not converge and 
solving the equations in a different order, as well as using different starting values, is tried. The 
computer programming is very simple, but the scheme diverges in many cases.

The method is found to converge if a starting value of B is taken and the four equations are 
solved in the following sequence:
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The convergence criterion may be applied to B or to the total flow rate F entering the reactor, 
where F = F1 + 4F2.

Applying the convergence criterion to F with the convergence parameter ε taken as 10−4, the 
numerical results obtained are shown in Figure 4.29. The argon flow rate and the total flow rate 
entering the reactor are computed, along with the amount of ammonia produced, for each itera-
tion. The convergence is found to be slow because of the first-order convergence of the method. 
It is ensured that the results are essentially independent of the value of ε chosen by varying ε. The 
numerical method is quite simple and is frequently applied to solve sets of nonlinear equations 
that arise in such thermal systems. The main problem is convergence, and different starting values 
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as well as different formulations and solution sequences of the algebraic equations may be tried 
to obtain convergence. SUR may also be used for improving the convergence characteristics. The 
method is popular because no derivatives are needed, as is the case for the Newton-Raphson 
method. Appendix A.M.4.5 gives a Matlab program for the solution of this problem.

Example 4.7

In a thermal system, the volume flow rate R of a fluid through a duct due to a fan is given in terms 
of the pressure difference P, which drives the flow as

 = − × ×−R P15 75 10 6 2

with

 = +P R80 10.5 5/3

Here, R is in m3/s and P is in N/m2. The first equation represents the characteristics of the fan and 
the second one that of the duct. Simulate this system by the successive substitution and Newton-
Raphson methods to obtain the flow rate and pressure difference.

SOLUTION

From the physical nature of the problem, we know that both P and R must be real and positive. 
Figure 4.30 shows the characteristics of the fan-duct system in terms of the flow rate R versus 
pressure difference P graphs. As the pressure difference P needed for the flow increases, due to 
blockage or increased length of duct, the flow generated by the fan decreases, ultimately becom-
ing zero at P of 447.2 N/m2, as can be calculated from the equation for the flow rate by setting 
R = 0. The pressure difference P in the duct is smallest at zero flow and increases as the flow rate 
increases. In addition, the given equations indicate that P must be greater than 80 and R must be 
less than 15, giving ranges for these variables for selecting the starting values.

FIGURE 4.29 Numerical results obtained for Example 4.6.
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The two equations are already given in the form xi = Fi(x1, x2, …, xi, …, xn), which is appropriate 
for the application of the successive substitution, or modified Gauss-Seidel, method. However, 
when the equations are employed as given, with starting values taken for P and R from their appro-
priate ranges, the scheme diverges rapidly. As mentioned earlier, if an equation x = g(x) is being 
solved for the root α by the successive substitution method, the absolute value of the asymptotic 
convergence factor g′(α) must be less than 1.0 for convergence. An estimation of the corresponding 
values of g′ in the given equations indicates that these values are much greater than 1.0.

Because both P and R are greater than 1.0, a reformulation of the equations may be carried 
out to yield
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so that fractional powers are involved and g′ becomes less than 1.0. The successive substitution 
scheme, when applied to these equations with starting values in the ranges 0 < R < 15 and 447.2 > 
P > 80, converges to yield the desired solution. The initial guesses for P and R are substituted on 
the right-hand sides of these equations to calculate the new values for R and P. These are resubsti-
tuted in the equations to obtain the values for the next iteration, and so on. The iterative process 
is terminated if

 − + − ≤ ε+ +R R P Pi i i i( ) ( )1
2

1
2

where the subscripts indicate the iteration number and ε is a chosen small quantity. The numeri-
cal results during the iteration are shown in Figure 4.31 for ε = 10−6 and the starting values for 
P and R taken as 80 and 0, respectively. The scheme converges to P = 332.0353 and R = 6.7314, 
both variables being within their allowable ranges. The results were not significantly altered at still 
smaller values of ε.

This problem may also be solved by eliminating P or R from the two preceding equations for R 
and P to obtain a single equation. Then the problem may be solved as a root solving circumstance. 

FIGURE 4.30 Characteristic curves, in terms of pressure difference versus flow rate graphs for the fan and 
the duct, respectively, for the system considered in Example 4.7.
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Using this approach, with R as the only unknown in the resulting nonlinear equation, succes-
sive substitution is applied to obtain the solution, as given by the Matlab program in Appendix 
A.M.3.4.

To apply the Newton-Raphson method, these equations are rewritten in terms of functions 
F and G as
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Initial guesses are taken for P and R, as before, and the values for the next iteration, i + 1, are 
obtained from the values after the ith iteration as
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where the increments (ΔR)i and (ΔP)i are calculated from the equations
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The four partial derivatives in the above equations are calculated for the R and P values at 
the ith iteration, using analytical differentiation of the functions F and G. The iterative process is 
continued until a convergence criterion of the form F 2 + G2 ≤ ε is satisfied. Figure 4.32 shows the 
computer output for ε = 10−4 and starting values of 2 and 100 for R and P, respectively. The results 
obtained are very close to those obtained earlier by the successive substitution method. The pro-
gram is simpler to write for the successive substitution method. However, the Newton-Raphson 
method converges at a faster rate, due to its second-order convergence. It usually converges if the 

FIGURE 4.31 Computer output for the solution to the problem considered in Example 4.7 by the successive 
substitution method.
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initial guessed values are not too far from the solution. Nevertheless, if divergence occurs, the ini-
tial guessed values may be varied and iteration repeated until convergence is achieved. Appendix 
A.M.4.6 gives a Matlab program for the solution of this problem in order to illustrate the use of 
Newton’s method to solve a system of nonlinear equations.

4.5.2 DynAmic simulAtion oF lumpeD systems

Dynamic simulation of thermal systems is used for studying the system characteristics at startup 
and shutdown, for investigating the system response to changes in operating conditions, and for 
design and evaluation of a control scheme. We are interested in ensuring that the system does not 
go beyond acceptable limits under such transient conditions. For instance, at startup, the cool-
ing system of a furnace may not be completely operational, resulting in temperature rise beyond 
safe levels. This consideration is particularly important for electronic systems because their perfor-
mance is very sensitive to the operating temperature [see Figure 3.6(b)]. Similarly, at shutdown of 
a nuclear reactor, the heat removal subsystems must remain effective until the temperature levels 
are sufficiently low. In many cases, sudden fluctuations in the operating conditions occur due to, 
for instance, power surge, increase in thermal load, change in environmental conditions, change in 
material flow, etc. It is important to determine if the system exceeds safety limits and if acceptable 
performance is achieved under these conditions.

4.5.2.1 Analytical Solution
If the various parts of the system can be treated as lumped, the resulting equations are coupled 
ODEs. Modeling of a component as lumped was discussed in Chapter 3 and the resulting energy 
equations, such as Equation (3.7), Equation (3.10), and Equation (3.11), were given. For a lumped 
body represented by the equation

 ρ
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the temperature T(τ) is given by
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The symbols are the same as those employed for Equation (3.7) through Equation (3.10). In 
the analytical solution given by Equation (4.42), the steady-state temperature is q/h, obtained for 
time τ → ∞. The initial temperature at τ = 0 is To, represented by θo = To – Ta. This solution gives 
the basic characteristics of many dynamic simulation results in which the steady-state behavior is 
achieved at large time. If q = 0, the convective transport case of Equation (3.7) is obtained, with 
Equation (3.9) as the solution. The quantity ρCV/hA is the response time in that case, as given 
earlier by Equation (3.1). If convective heat loss is absent, only qA is left on the right-hand side of 

FIGURE 4.32 The results by the Newton-Raphson method for Example 4.7.
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Equation (4.41) and the solution is T – To = (qA/ρCV)τ, indicating a linear increase with time if 
the heat input q is held constant.

The simulation of a system consisting of several parts, each of which is treated as lumped, 
involves a set of ODEs, rather than a single ODE. These equations may be linear or nonlinear. Most 
nonlinear equations, such as Equation (3.11), require a numerical solution. Even with linear equa-
tions, the presence of several coupled ODEs makes it difficult to obtain an analytical solution. As 
an example, let us consider two lumped bodies, denoted by subscripts 1 and 2, exchanging energy 
through convection. The energy equations for the two are obtained as
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where Ta is the temperature of the ambient medium with which body 2 exchanges energy by con-
vection. The convective heat transfer coefficients h1 and h2 refer to the inner and outer surfaces, as 
shown in Figure 4.33. The initial temperature is To at time t = 0.

Employing θ = T – Ta, these equations may be written, with θ1 = T1 – Ta, θ2 = T2 – Ta, and θo = 
To – Ta, as
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Then the analytical solution to these equations is obtained as
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FIGURE 4.33 System consisting of two lumped bodies exchanging energy by convection with each other 
and with the ambient medium.
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where
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Figure 4.34 shows the temperature variation with time for the two lumped bodies in this dynamic 
problem. The dimensionless temperatures start at θo, at time τ = 0, and decay to zero with time 
because of heat loss to the environment. The gradient dθ1/dτ is zero at τ = 0 because θ2 = θ1 = θo 
at the beginning of the process. Three first-order ODEs arise if three lumped bodies in energy 
exchange with each other are considered, four equations for four bodies, and so on. Analytical solu-
tions may be obtained as given here or by using other analytical techniques such as the Laplace 
transform method, which is an integral transform used in many applications such as control of 
dynamic systems, for a few idealized cases, particularly if the equations are linear.

4.5.2.2 Numerical Solution
If the ordinary differential equations are nonlinear, analytical solutions are generally not possible 
and numerical methods must be employed for the simulation. The use of Runge-Kutta and predictor-
corrector methods to solve a single ODE was discussed earlier. For solving a system of equations, 
such as that given by Equation (4.44), let us first consider the following two simultaneous first-order 
equations for dependent variables y and z:
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Then the fourth-order Runge-Kutta method gives yi+1 and zi+1 as
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FIGURE 4.34 Variation of the temperatures of the two lumped bodies in Figure 4.33 with time.
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The computations are carried out in the sequence just given to obtain the values of y and z at 
the next step. This procedure may be extended to a system of three or more first-order differential 
equations, and thus also to higher-order equations, which can be broken down into coupled first-
order equations as discussed earlier. All the conditions, in terms of the dependent variables and 
their derivatives, must be known at the starting point to use this method. Therefore, the scheme, as 
given here, applies to initial-value problems. If conditions at a different time must also be satisfied, 
a boundary-value problem arises and the shooting method, which employs a correction scheme to 
satisfy the boundary conditions, may be employed (Jaluria, 2012).

Finite-difference methods may also be applied to solve a system of ODEs. Algebraic equa-
tions are generated for each ODE by the finite-difference approximation and the combined set of 
equations is solved by the methods outlined earlier to obtain the desired simulation of the system. 
Considering, again, Equation (4.46), we may write the finite-difference equations as

 ( ) ( )−
∆τ

= τ −
∆τ

= τ+ +y y
F y z

z z
G y zi i

i i i
i i

i i i, , , ,1 1  (4.49)

where time τ = iΔτ, subscripts i and i + 1 represent values at time τ and τ + Δτ, respectively, and 
the functions F and G may be linear or nonlinear. Therefore, values at τ + Δτ may be determined 
explicitly from values at τ. This is the explicit formulation, which is particularly useful for nonlinear 
equations. However, F and G are often evaluated at τ + Δτ or at some other time between τ and 
τ + Δτ, particularly at τ + Δτ/2, for greater accuracy and numerical stability, as mentioned earlier for 
PDEs. This is the implicit formulation that gives rise to a set of simultaneous algebraic equations, 
linear ODEs generating linear algebraic equations, and nonlinear ODEs generating nonlinear ones. 
Other, more accurate, finite-difference formulations are obviously possible for Equation (4.49). This 
set of equations is then solved to simulate the thermal system. Higher-order equations arise in many 
cases, particularly in the analysis of dynamic stability of systems. These may similarly be simulated 
using the finite-difference method.

Dynamic simulation is particularly valuable in areas such as materials processing, which inevitably 
involves variations with time. Lumping is commonly used in thermodynamic systems, such as energy 
conversion and refrigeration systems, and the simulation outlined here helps in ensuring that the system 
behavior and performance are satisfactory under time-varying conditions. The dynamic simulation of 
large systems such as power and steel plants is particularly important because of changes in demand 
and in the inputs to the systems. Some of these aspects are considered in detail, employing examples, 
in Chapter 5. A typical manufacturing system is considered in the following to illustrate these ideas.

Example 4.8

Numerically simulate the casting of a metal plate of thickness L = 0.2 m in a mold of wall thick-
ness W = 0.05 m, assuming one-dimensional solidification, no energy storage in the solid formed, 
uniform temperature in the mold, and initial liquid temperature at the melting point Tm = 1200 K. 
A convective loss at heat transfer coefficient h = 20 W/(m2·K) occurs at the outer surface of the 
mold on both sides of the plate to an ambient medium at temperature Ta = 20°C. Find the total 
time needed for casting. Determine the effect of varying h, using values in the range of 10 to 
40 W/(m2·K), and of varying W, using values in the range of 0.02 to 0.1 m. Take density, specific 
heat, and thermal conductivity of the cast material as 9000 kg/m3, 400 J/kg·K, and 50 W/m·K, 
respectively. The corresponding values for the mold are 8000, 500, and 200, respectively. The 
latent heat of fusion is 80 kJ/kg.

SOLUTION

The problem concerns solidification of a molten material in an enclosed region, as shown in 
Figure 1.3. However, a very simple, one-dimensional mathematical model is used, as sketched in 
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Figure 4.35. The liquid is at the melting temperature Tm, a linear temperature distribution exists in 
the solid because energy storage in it is neglected, and the mold is at uniform temperature Tc(τ), 
where τ is time. The applicable equations are obtained from energy balance as
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where the subscript c refers to the mold and s refers to the solid, δ is the thickness of the solid 
formed, and Lf is the latent heat of fusion. The first equation gives the energy balance for the mold, 
which gains energy from the solid and loses to the ambient medium. The second equation bal-
ances the energy removed by conduction in the solid to the latent heat for phase change.

Therefore, two coupled ODEs are obtained for this dynamic problem, one for Tc and the other 
for δ. The material property values are substituted in the equations, which are then rewritten in 
the form of Equation (4.46) as

 ( ) ( )
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= τ δ δ
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F T
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These can easily be solved by the Runge-Kutta method, as outlined in the preceding section. 
However, a small, finite, non-zero value of δ must be taken at time τ = 0 to start the calculations. 
It must be ensured that the results are essentially independent of the value chosen. Some of the 
characteristic results obtained are shown in Figure 4.36 and Figure 4.37, in terms of the variation 
of Tc and δ with time. Casting is complete when δ = 0.1 m because heat removal occurs on both 
sides of the plate. It is found that a variation in the heat transfer coefficient has no significant effect 
on the temperature or the solidification rate, over the range considered. However, the mold thick-
ness W is an important design variable and substantially affects the solidification time and the 
temperature of the mold. From these results, the casting time at h = 20 W/(m2·K) and W = 0.05 m 
is 110 s. A thicker mold removes energy faster and thus reduces the casting time.

This example illustrates the use of dynamic simulation, which is particularly important for 
manufacturing processes and for modeling the time-dependent behavior of the system. Many 
more equations arise in large thermal systems; some may be ODEs and others may be PDEs. The 
solution to these equations may be obtained by extending the methods outlined here for simpler 
circumstances. However, for complex systems, the development of the computer codes is quite 
involved and commercially available general-purpose, as well as specialized, software is generally 
used to obtain the desired simulation results conveniently and rapidly.

FIGURE 4.35 Simple mathematical model for the casting process considered in Example 4.8.
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4.5.3 DistributeD systems

In the preceding sections, we considered the relatively simple circumstances in which lumping may 
be employed for modeling the different parts of a given system. This approximation leads to algebraic 
equations in the steady-state case and to ODEs in the time-dependent or dynamic simulation case. 
Even though the assumption of lumping or uniform conditions in each system part has been and still 
is widely used because of the resulting simplification, the easy availability of powerful computers 
and versatile software has made it quite convenient to model and simulate the more general distrib-
uted circumstance in which the quantities vary with location and time. Of course, if the lumped 
model is appropriate for a given problem because of, say, the very low Biot number involved, there 
is no reason to complicate the analysis and the results by using a distributed model. However, there 
are many problems of practical interest in which large variations occur over the spatial domain and 
the lumped approximation cannot be used. Temperature variation in the wall and in the insulation 
of a furnace is an example of this circumstance. Similarly, the velocity and temperature fields in an 
electronic system, in the cylinder of an internal combustion engine, in the combustor of a gas turbine, 
and in the molten plastic in an injection molding process are strong functions of location and time, 
making it essential to simulate these as distributed, dynamic systems for accurate results.

FIGURE 4.36 Calculated mold temperature Tc and solid region thickness δ as functions of time τ for differ-
ent values of the heat transfer coefficient h, at W = 0.05 m, in Example 4.8.
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The relevant equations for distributed systems are PDEs, which are frequently nonlinear due to 
material property changes, coupling with fluid flow, thermal buoyancy effects, and the presence 
of radiative transport. Several types of simple, linear PDEs, along with the corresponding solution 
procedures, were discussed in Section 4.2.4. Finite-difference, finite-element, and other approaches 
to obtain simultaneous algebraic equations from the PDEs and to solve these were outlined. Again, 
nonlinear PDEs lead to nonlinear algebraic equations and linear PDEs to linear algebraic equations. 
Once the set of algebraic equations is derived, the solution is obtained by the various methods for 
linear and nonlinear equations given earlier. Nonlinear equations are often linearized, as discussed 
in the following, so that new values may be calculated using the known values from previous time 
or iterations. In addition, commercially available software such as Ansys and CFD-Ace is generally 
employed in industry to simulate practical thermal systems.

4.5.3.1 Linearization
Consider the transient one-dimensional conduction problem represented by the equation

 ( ) ( ) ( )ρ ∂
∂τ

= ∂
∂
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FIGURE 4.37 Calculated mold temperature Tc and solid region thickness δ as functions of time τ for differ-
ent values of the mold wall thickness W, at h = 20 W/(m2·K), in Example 4.8.



222 Design and Optimization of Thermal Systems

where the material properties are functions of temperature T. If these are taken as constant, the lin-
ear equation given by Equation (4.27) is obtained. Then this equation may be solved conveniently by 
explicit or implicit finite-difference methods if the geometry and boundary conditions are relatively 
simple. For complicated domains and boundary conditions, finite-element or boundary element 
methods may be used, as discussed earlier.

If the properties are taken as variable due to material characteristics or temperature range 
involved, the energy equation is nonlinear because the terms are nonlinear in T. For instance, if the 
term on the right-hand side of Equation (4.50) is expanded, we get
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indicating the nonlinearity that exists in the equation.
There are several methods of simulating systems in which such nonlinear equations arise. In an 

iterative or time-marching process, the terms are commonly linearized by approximating the coef-
ficients, such as k(T) and ∂k(T)/∂x in the preceding equation, which causes the nonlinearity in the 
terms, by the following three approaches:

1. Using the values of the coefficients from the previous iteration or time step
2. Using extrapolation to obtain an approximation of these coefficients
3. Starting with values at the previous time step and then iterating at the present time step to 

improve the approximation

If extrapolation is used, the value of k at the (n + 1)th time or iteration step may be approximated as
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Similarly, other properties may be approximated. A larger time step may be taken for a desired 
accuracy level if extrapolation is used instead of simply employing the values at the previous time 
step. The third approach, which requires iteration, is more involved but allows still larger time steps 
for the same level of accuracy. Thus, nonlinear problems are linearized and then solved by the vari-
ous methods discussed earlier for linear PDEs (Jaluria and Torrance, 2003).

4.5.4 simulAtion oF lArge systems

All the aspects considered in this chapter can easily be extended to large thermal systems that 
involve large sets of algebraic and differential equations. Such systems may range from a blast fur-
nace for steel to an entire steel plant, from a cooling tower to a power plant, from the cooling system 
of a rocket to the entire rocket, and so on. Though many of the examples considered here involved 
relatively small sets of equations for simplicity and convenience, the basic ideas presented here are 
equally applicable to large and more complicated systems.

The two main features that distinguish large thermal systems from simpler ones are the presence 
of a large number of parts that lead to large sets of equations and relatively independent subsystems 
that make up the overall system. These aspects are treated by

1. Development of efficient approaches for solving large sets of equations
2. Better techniques for storing the relevant data
3. Subdivision of the system into subsystems that may be treated independently and then 

merged to obtain the simulation of the entire system
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All these considerations have been discussed earlier in this chapter and need not be repeated. 
Methods such as Gauss-Seidel are particularly useful for handling large sets of algebraic equations 
while keeping the computer storage requirements small. Similarly, modularization of the simulation 
process has been stressed at several places because this allows building up of the system simulation 
package while ensuring that each subsystem is treated satisfactorily. Chapter 5 presents the overall 
design process for such large systems.

Several specialized computer languages have been developed for the simulation of engineering 
systems. These are usually designed for certain types of systems and, as such, are more convenient 
to use than a general-purpose language such as C or Fortran. Many of these simulation languages 
are particularly suited for manufacturing systems. The general-purpose simulation system (GPSS) 
is a simulation language suited for scheduling and inventory control applications dealing with dif-
ferent steps in a process. Other languages that may be mentioned are SIMAN, SIMSCIPT, MAST, 
and MAP. Each of these is particularly oriented to a specific application, making it easy to enter the 
relevant data for simulation and to obtain the desired outputs for design, operation, and control of 
the system. Other computational environments, such as those provided by specialized software for 
computer simulation and design (e.g., Matlab, MATHCAD, Maple, and other CAD programs) are 
also useful. Parallel computing, which involves a large number of processors, is particularly valu-
able in modeling and simulating large thermal systems.

4.5.5 numericAl simulAtion versus reAl system

It would be worthwhile to conclude the discussion on system simulation by stressing the most 
important aspect, namely, that the simulation must accurately and closely predict the behavior of 
the actual system. A satisfactory simulation of a system is achieved when the response of the simu-
lated system to variations in operating conditions and to changes in the design hardware follows 
the expected physical trends and is a faithful representation of the given system. Unfortunately, the 
real system is rarely available to check the predictions of the simulation because one of the main 
uses of simulation is to study system behavior for a variety of designs without actually fabricating 
the system for these different designs. Therefore, other methods must generally be employed to 
validate the models and to ensure that accurate predictions of system behavior are obtained from 
the simulation.

As discussed in this and preceding chapters, the development of system simulation involves 
several steps. These include mathematical modeling, which generally also contains the correlating 
equations representing the results from physical modeling, material property data, and component 
characteristics; numerical solution to the representative equations; numerical modeling of differ-
ent system parts; merging of separate models to yield an overall model for the system; variation 
of operating conditions to consider design and off-design conditions; and investigation of system 
behavior for different design parameters. Therefore, the validation of the simulation can be based on 
the validation of these ingredients that lead to overall system simulation and on any available results 
obtained from similar existing systems. Finally, when a prototype is developed and fabricated on 
the basis of the design obtained, the experimental results from the prototype can be employed to 
provide a valuable check on the accuracy of the predictions.

In conclusion, a validation of the numerical simulation of the system is carried out to confirm a 
close representation of the real system by considering the following:

1. Validation of mathematical model
2. Validation of numerical schemes
3. Validation of the numerical models for system parts
4. Physical behavior of the simulated system
5. Comparison of results from simulation of simpler systems with available analytical and 

experimental results
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6. Comparison of results from simulation of existing systems with experimental data
7. Use of prototype testing results for final validation of simulation

It must also be reiterated that the results from future operation of the designed system are usu-
ally fed back into the model in order to continually make improvements for design and optimization 
efforts to be undertaken at later times. Once the system simulation is thoroughly validated and the 
accuracy of its predictions determined, it is used to obtain the numerical inputs needed for design 
and optimization, for studying off-design conditions, establishing safety limits, and investigating 
the sensitivity of the system to various design parameters.

4.6 SUMMARY

This chapter has considered the important topics of numerical modeling and system simulation. 
For most practical thermal systems, numerical methods are essential for obtaining a solution to the 
equations because of the inherent complexity in these systems arising from the nonlinear nature 
of transport mechanisms, complicated domains and boundary conditions, material property varia-
tions, coupling between flow and heat transfer mechanisms, transient and distributed nature of 
most processes, and a wide range of energy sources. Additional aspects such as those due to com-
bined heat and mass transfer, phase change, chemical reactions as in combustion processes, strong 
coupling between material characteristics and the process, etc., further complicate the analysis of 
thermal processes and systems.

The basic considerations involved in numerical modeling, particularly those concerned with 
accuracy and validation, are discussed, first with respect to a part or component and then the entire 
system. Various aspects such as the use of computer programs available in the public domain and 
commercially available software are considered in the context of a thermal system. The decoupling 
of the parts of the system in order to develop the appropriate mathematical and numerical models, 
followed by a thorough validation, is presented as the first step in the development of the numerical 
model for the complete system. The numerical solution procedures for different types of mathemati-
cal equations such as algebraic and ordinary, as well as partial, differential equations are outlined, 
largely to indicate the applicability and limitations of the various commonly used approaches for 
solving these equations. Of particular interest here were the techniques for solving nonlinear equa-
tions that are commonly encountered in thermal systems.

The basic strategy for developing a numerical model for a thermal system is presented in detail, 
considering the treatment for individual parts and subsystems and the merging of these individual 
models to obtain the complete model. Again, the validation of the overall numerical model for the 
system is emphasized. The physical characteristics of the results obtained from the model, their 
independence of the numerical scheme and of arbitrarily chosen parameters, comparisons with 
available analytical and numerical results, and comparisons with experimental data from existing 
systems and finally from prototype testing are all discussed as possible approaches to ensure the 
accuracy and validity of the model. It is crucial to obtain a model that is a close and accurate repre-
sentation of the actual, physical system under consideration.

The simulation of a thermal system is considered next. The importance and uses of simulation 
are presented. Of particular interest is the use of simulation to evaluate different designs and for 
optimization of the system. However, the application of simulation to investigate off-design condi-
tions, to modify existing systems for improved performance, and to investigate the sensitivity to 
different variables is valuable in the design and implementation of the system as well. Various types 
of simulation are outlined, including physical and analog simulation. The focus of the chapter is on 
numerical simulation, which is discussed in detail. Different classes of thermal problems encoun-
tered in practice are considered. These include steady or transient cases and lumped or distributed 
ones, resulting in different types of governing equations and consequently different techniques for 
numerical modeling. Simulation of large systems is considered in terms of the basic strategy for 
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modeling and simulation. The relationship between the simulation and the real system is a very 
important consideration and is confirmed at various stages of model development and simulation.
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PROBLEMS

Note: In the following exercises, whenever possible, write the appropriate computer programs, 
using sample programs given in Appendix A. Matlab commands such as roots, a\b, ode45, and 
others that may be applied to find the roots, solve algebraic equations, solve ODEs, etc., can then be 
used to check the numerical results obtained. Analytical solutions, if available, may also be used to 
validate the numerical results.
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 4.1 The mass balance for three items x, y, and z in a chemical reactor is governed by the follow-
ing linear equations:

 

2.2 4.5 1.1 11.14

4.8 2.5 1.62

2.1 3.1 10.1 15.57

+ + =
+ + = −

− − + =

x y z

x y z

x y z

  Solve this system of equations by the Gauss-Seidel method to obtain the values of the three 
items. You may arrange the equations in any appropriate order. Do you expect convergence? 
Justify your answer. The initial guess may be taken as x = y = z = 0.0 or 1.0.

 4.2 An industrial system has three products whose outputs are represented by x, y, and z. These 
are described by the following three equations:

 

1.8 3.1 7.6 12.2

4.8 6 1.1 24.8

3.3 1.7 0.9 13.0

− + =
+ − =

+ + =

x y z

x y z

x y z

a. Give the block representation for each of these subsystems.
b. Draw the information-flow diagram for the system.
c. Set up this system of equations for an iterative solution by any appropriate method, 

starting with an initial guess of x = y = z = 0.
d. Show at least five iterative steps to obtain the solution to simulate the system.

 4.3 The mass balance for three items a, b, and c in a reactor is given by the following linear 
equations:

 
+ + =

− + = −
+ − = −

a b c
a b c

a b c

4 2 2 17
5 5

2 3 6 12

  Solve this system of equations by the Gauss-Seidel iteration method. The initial guess may 
be taken as a = b = c = 0.0 or 1.0.

 4.4 Solve the following set of linear equations by the Gauss-Seidel iteration method. The initial 
guess may be taken as 0.0 or 1.0.

 

+ + =
+ + =
+ + =

x y z

x y z

x y z

5 2 17

3 8

2 6 23

  Vary the convergence parameter to ensure that results are independent of the value chosen.
 4.5 A firm produces four items, x1, x2, x3, and x4. A portion of the amount produced for each is 

used in the manufacture of the other items. The balance between the output and the produc-
tion rate yields the equations

 

2 5 32

3 2 6 36

3 5 2 41

2 10 8 58

1 2 4

1 2 3

1 2 3 4

2 3 4
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  Solve these equations by the SOR method and determine the optimum value of the relax-
ation factor ω. Obtain the production rates of the four items. Compare the number of iter-
ations needed for convergence at the optimum w with that for the Gauss-Seidel method 
(ω = 1).

 4.6 Using the successive substitution and the Newton-Raphson methods, solve the following 
equation for the value of x, which is known to be real and positive:

 = − −x x[10(10 ) 8]5 0.5 3

  The equation may be recast in any appropriate form for the application of the methods. 
Compare the solution and the convergence of the numerical scheme in the two cases.

 4.7 The solidification equation for casting in a mold at temperature Ta, considering energy stor-
age in the solid, is obtained as

 ( )/ exp erf( )1/2 2( )− π = η η ηC T T Lm a

  where C is the material specific heat, Tm is the melting point, L is the latent heat, and 
η = δ/[2(ατ)1/2], δ being the thickness of the solidified layer, as shown in Figure P4.7, α is 
the thermal diffusivity, and τ is the time. Take α = 10−5 m2/s, L = 110 kJ/kg, Tm = 925°C,  
Ta = 25°C, and C = 700 J/kg·K for the material being cast. Approximate the error function as 
erf(η) = η, for 0 < η < 1, and erf(η) = 1.0 for η > 1. Solve this equation for η and calculate δ as 
a function of time τ. What is the solidification time for a 0.4-m-thick plate, with heat removal 
occurring on both sides of the plate?

 4.8 For the casting of a plate 10 cm thick, use the graphs presented in Example 4.8 to determine 
the total solidification times for the cases when the mold is 2 cm or 10 cm thick. Also, deter-
mine the time needed to solidify 75% of the plate. The heat transfer coefficient h is given as 
40 W/m2K.

 4.9 A spherical casting of diameter 10 cm has a total solidification time (TST) of 5 min. Assuming 
Chvorinov’s model, TST = C(V/A)2, where V is the volume, A is the surface area, and C is a 
constant, calculate the diameter of a long cylindrical runner with a TST of 12 min.

 4.10 The speed V of a vehicle under the action of various forces is given by the equation

 + + =V V V5.0 exp( /3) 2.5 2.0 20.52

  Compute the value of V, using any appropriate method. Justify your choice of method. 
Suggest one other method that could also have been used for this problem.

 4.11 The temperature T of an electrically heated wire is obtained from its energy balance. If the 
energy input into the wire, per unit surface area, due to the electric current is 1000 W/m2, the 

FIGURE P4.7 
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heat transfer coefficient h is 10 W/(m2·K), and the ambient temperature is 300 K, as shown in 
Figure P4.11, the resulting equation is obtained as

 T T1000 0.5 5.67 10 [ 300 ] 10 ( 300)8 4 4( )= × × × − + × −−

  Calculate the temperature of the wire by the secant method. Using this numerical simula-
tion, determine the effect of the energy input on the temperature by varying the input by 
±200 W/m2. Also, vary the ambient temperature by ±50 K to determine its effect on the 
temperature. Do the results follow the expected physical trends?

 4.12 A cylindrical container of diameter D is placed in a stream of air and the energy transfer 
from its surface is measured as 100 W. The energy balance equation is obtained using cor-
relations for the heat transfer coefficient as

 +





π =
D

D D
60

50 1000.466

  Find the diameter of the container using any root-solving method. Also, use this simula-
tion to determine the diameter needed for losing a given amount of energy in the range 
100 ± 20 W by varying the heat lost.

 4.13 Use the bisection method to determine the root of the equation

 − −
+













− =x
x

1 exp
10

1 4
1 0

 4.14 Use the successive substitution method to determine the variable v from the equation

 v
14

72*10
85 10.86

0.5
0.65

= − ν



 −






















−

 4.15 Use Newton’s method or the secant method to solve the equation

 − =x xexp( ) 02

 4.16 Use Newton’s method to find the real roots of the equation

 − + − + =x x xx 4 7 6 2 04 3 2

  Discuss the nature and number of roots obtained. Also use the roots command in Matlab to 
find the roots and compare with the earlier results.

FIGURE P4.11 
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 4.17 The root of the equation

 − =x x[exp( 0.5 )] 1.21.8

  is to be obtained. It is given that a real root, which represents the location where the maxi-
mum heat flux occurs, lies between 0 and 6.0. Using any suitable method, find this root. 
Give reasons for your choice of method. What is the expected accuracy of the root you 
found?

 4.18 The generation of two quantities, F and G, in a chemical reactor is governed by the equations

 
+ =

+ =
F G G

G F

2.0 3.0 13.8

2.0 16.6

2 2

3 2

  Solve this system of equations using the Newton-Raphson method and starting with F = G = 1.0 
as the initial guess. What is the nature of these equations and do you expect the scheme to con-
verge? Set the system up also as a root-solving problem. Suggest a method to solve it and obtain 
the solution.

 4.19 In a chemical treatment process, the concentrations c1, c2, c3, and c4 in four interconnected 
regions are governed by the system of nonlinear equations

 

+ + + =
+ + − =
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4

  Solve these equations by the modified Gauss-Seidel method to obtain the concentrations.
 4.20 A manufacturing system consists of a hydraulic arrangement and an extrusion chamber. 

The two are governed by the following two equations:

 
− =

− − + =
P F

P F

1.3 0

 (900   95 ) 10 0

2.1

1.6 0.5

  Show the flow of information for this system. Set up the system of equations for an iterative 
solution, starting with an initial guess of P = F = 1. Show at least three iterative steps toward 
the solution.

 4.21 Solve the following nonlinear system by Newton’s method:

 
+ =

+ − =
X Y

X Y

3 11

2 4 0

3 2

2

  Try solving these equations by the successive substitution method as well.
 4.22 In a metal forming process, the force F and the displacement x are governed by

 ( )= −
+
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  Solve for F and x, applying the Newton-Raphson method to this system of equations. Also, 
determine the sensitivity of the force F to a variation in the total input S, ∂F/∂S, where S is 
the given value of 250, by slightly varying this input.

 4.23 A copper sphere of diameter 5 cm is initially at temperature 200°C. It cools in air by 
convection and radiation. The temperature T of the sphere is given by the energy 
equation

 ( )ρ
τ

= − εσ − + − CV
dT

d
T T h T T Aa a( )4 4

  where ρ is the density of copper, C is its specific heat, V is the volume of the sphere, τ is the 
time, which is taken as zero at the start of the cooling process, ε is the surface emissivity, 
σ is the Stefan-Boltzmann constant, Ta is the ambient temperature, and h is the convective 
heat transfer coefficient. Compute the temperature variation with time using the Runge-
Kutta method and determine the time needed for the temperature to drop below 100°C. The 
following values may be used for the physical variables: ρ = 9000 kg/m3, C = 400 J/(kg·K), 
ε = 0.5, σ = 5.67 × 10−8 W/(m2·K4), Ta = 25°C, and h = 15 W/(m2·K).

 4.24 Consider the preceding problem for the negligible radiation case, ε = 0, with h = 100 W/(m2·K). 
Nondimensionalize this simpler problem and obtain the solution in dimensionless terms. Then, 
give the results for a 10-cm-diameter sphere.

 4.25 The temperature variation in an extended surface, or fin, for the one-dimensional approxi-
mation, is given by the equation

 ( )− − =d T

dx

hP

kA
T Ta 0

2

2

  where x is the distance from the base of the fin, as shown in Figure P4.25. Here P is the 
perimeter, being πD for a cylinder of diameter D, A is the cross-sectional area, being πD2/4 
for a cylindrical fin, k is the material thermal conductivity, Ta is the ambient temperature, 
and h is the heat transfer coefficient. The boundary conditions are shown in the figure and 
may be written as

 x T T x L
dT

dx
oat 0: and at : 0= = = =

  Here, L is the length of the fin. Simulate this fin, which is commonly encountered in thermal 
systems, for D = 2 cm, h = 20 W/(m2·K), k = 15 W/m·K, L = 25 cm, To = 80°C, and Ta = 20°C. 
Nondimensionalize this problem to obtain the governing dimensionless parameters. Use the 
shooting method to obtain the temperature distribution, and discuss expected trends at dif-
ferent parametric values.

FIGURE P4.25 
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 4.26 If radiative heat loss is included in the preceding problem, the energy equation becomes

 ( )( )− − − εσ − =d T

dx

hP

kA
T T

P

kA
T Ta a 0

2

2
4 4

  Solve this problem with ε = 0.5 and σ = 5.67 × 10−8 W/(m2·K4), using the finite-difference 
approach, and compare the results with the preceding problem. Increase the emissivity 
to 1.0 (black body) in this simulation and compare the results with those at 0.5. Are the 
observed trends physically reasonable?

 4.27 The temperature distribution in a moving cylindrical rod, shown in Figure P4.27, is given by 
the energy equation

 ( )−
α

− − =d T

dx
U

dT

dx

h

kR
T Ta

1 2
0

2

2

  where U is the velocity of the moving rod of radius R, α is the thermal diffusivity, and the 
other variables are the same as in the preceding problem. The boundary conditions are

 = = → ∞ → ∞0: :0at x T T and as x T T

  Employing the finite-difference approach, compute T(x). Take U = 1 mm/s, h = 20 W/(m2·K), 
α = 10−4 m2/s, k = 100 W/(m·K), To = 600 K, Ta = 300 K, and R = 2 cm. Numerically simulate 

→ ∞x  by taking a large value of x and ensuring that the results are independent of a further 
increase in this value. Also, nondimensionalize this problem and determine the governing dimen-
sionless variables. If the material and dimensions are fixed, what are the main design variables? 
Discuss how these may be varied to control the temperature decay over a given distance.

 4.28 For the manufacturing process considered in Problem 3.6, set up the mathematical system 
for numerical simulation. Take each bolt to have surface area A, volume V, density ρ, and 
specific heat C. Outline a scheme for simulating the process. What outputs do you expect to 
obtain from such a simulation?

 4.29 In the simulation of a thermal system, the temperatures in two subsystems are denoted by 
T1 and T2 and are given by
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−
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2

  Under what conditions will the response of T1 be much slower than that of T2? Write down 
the finite-difference equations for solving this set of equations and outline the numerical 

FIGURE P4.27 



232 Design and Optimization of Thermal Systems

procedure if the time step Δτ1, for T1, is taken as much larger than the time step Δτ2, for T2. 
Note that (hA/ρCV) is a function of temperature.

 4.30 An experimental study is performed on a plastic screw extruder along with a die to deter-
mine the relationship between the mass flow rate m and the pressure difference P. The 
relationship for the die is found to be

  =m 0.5P0.5

  and the relationship for the screw extruder is

  = + −P m m2 3.5 51.4 2.2

  First, give the block representation for each of these subsystems. Then show the flow of informa-
tion for the system. Set up this system of equations for an iterative solution by successive substitu-
tion, starting with an initial guess of m = 0 and P = 1. Obtain the solution to simulate the extruder.

 4.31 In an injection molding process, the flow of plastic in two parallel circuits is governed by 
the algebraic equations

 

  

  

 

68 8 550 5 10

700 10 15

1 2

2
1 1

2.5

2 2
3

= +
∆ = + = − −

= − −

m m m

p m m m

m m

  where m is the total mass flow rate, m1 and m2 are the flow rates in the two circuits, and Δp 

is the pressure difference. Simulate the system, employing the Newton-Raphson method. 
Study the effect of varying the zero-flow pressure levels (550 and 700 in the preceding equa-
tions) by ±10% on the total flow rate m.

 4.32 Solve the preceding problem using the successive substitution method. The number of equa-
tions may be reduced by elimination and substitution to simplify the problem. Compare the 
results and the convergence characteristics with those for the preceding problem.

 4.33 The dimensionless temperature x and heat flux y in a thermal system are governed by the 
nonlinear equations

 
+ =

+ = −

x y

x y

3 21

2 2

3 2

2

  Solve this system of equations by the Newton-Raphson and the successive substitution 
methods, comparing the results and the convergence in the two cases.

 4.34 Simulate the ammonia production system discussed in Example 4.6 to determine the change 
in the ammonia production if the bleed (23.5 moles/s) and the entering argon flow 
(0.9 moles/s) are varied by ±25%. What happens if the bleed is turned off? Can this circum-
stance be numerically simulated?

 4.35 The gross production of four substances by an engineering concern is denoted by a, b, c, 
and d. A balance between the net output and the production of each quantity leads to the 
following equations:

 

− + =
− + − =

+ − =
− + =

a b d
a b c

b c d
c d

4 2 5 22
2 8 16

3 4 3 30
3 12 6
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  Solve these equations by the SOR method to simulate the system. The constants on the 
right-hand side of the equations represent the net production of the four items. If the net 
production of x2 is to be increased from 16 to 24 (50% increase), calculate the gross produc-
tion of all the items to achieve this.

 4.36 A water pumping system consists of pipe connections and pumping stations, each of which 
has the following characteristics:

  = − −P m m1850 17.5 0.7 2

  where m  is the mass flow rate of water and P is the pressure rise in each pumping station. 
The mass flow rate is measured as 32 kg/s with all eight pumping stations in the pipeline 
operating. The pressure drop in the pipe is given as proportional to the square of the mass 
flow rate. Obtain the governing equations to determine the flow rate if a few stations are 
inoperative and are bypassed. Then calculate the resulting flow rate if one or two stations 
fail.

 4.37 The height H of water in a tank of cross-sectional area A is a function of time τ due to an 
inflow volume flow rate qin and an outflow rate qout. The governing differential equation is 
obtained from a mass balance as

 
τ

= −A
dH

d
q qin out

  The initial height H at τ = 0 is zero. Calculate the height as a function of time, with A = 0.03 m2, 
qin = 6 × 10−4 m3/s, and qout = 3 × 10−4 H m3/s. Use both Euler’s and Heun’s methods with 
a step size of 10 s. Plot H as a function of time τ. Give the times taken by the height to reach 
2 m and 3.5 m in your answer. Why does the increase in H become very slow as time 
increases?

 4.38 The temperature of a metal block being heated in an oven is governed by the equation

 
τ

= −dT

d
T10 0.05

  Solve this equation by Euler’s and Heun’s methods to get T as a function of time τ. Take the 
initial temperature as 100°C at τ = 0.

 4.39 A stone is dropped at zero velocity from the top of a building at time τ = 0. The differential 
equation that yields the displacement x from the top of the building is (with x = 0 at t = 0)

 
τ

= −d x

d
g 5 V

2

2

  where g is the magnitude of gravitational acceleration, given as 9.8 m/s2, and V is the down-
ward velocity dx/dτ. Using Euler’s method, calculate the displacement x and velocity V as 
functions of time, taking the time step as 0.5 s.

 4.40 Simulate the hot water storage system considered in Example 3.5 for a flow rate of 0.01 m3/s, 
with the heat transfer coefficient h given as 20 W/(m2·K) and ambient temperature Ta as 25°C. 
The inlet temperature of the hot water To is 90°C. Obtain the time-dependent temperature 
distribution, reaching the steady-state conditions at large time. Study the effect of the flow 
rate on the temperature distribution by considering flow rates of 0.02 and 0.005 m3/s.

 4.41 Consider one-dimensional conduction in a plate that is part of a thermal system. The plate 
is of thickness 3 cm and is initially at a uniform temperature of 1000°C. At time τ = 0, the 
temperature at the two surfaces is dropped to 0°C and maintained at this value. The thermal 
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diffusivity of the material is α = 5 × 10−6 m2/s. Solve this problem by any finite-difference 
method to obtain the temperature distribution as a function of time.

 4.42 A cylindrical rod of length 40 cm is initially at a uniform temperature of 15°C. Then, at time 
τ = 0, its ends are raised to 100°C and held at this value. For one-dimensional conduction in 
the rod, the temperature distribution T(x) is governed by the equation

 
α

∂
∂τ

= ∂
∂

− −T T

x
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1
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2

2

  where H is a heat loss parameter. Using any suitable method, solve this problem to obtain 
the time-dependent temperature distribution for Ta = 15°C, α = 10−6 m2/s, and H = 100 m−2. 
Discuss how this simulation may be coupled with the modeling of fluid flow adjacent to the 
rod and other parts of the system to complete the model of a given system, without actually 
solving the flow.

 4.43 Consider heat conduction in a two-dimensional, rectangular region of length 0.3 m and 
width 0.1 m. The dimension in the direction normal to this region may be taken as large. 
The dimensionless temperature is given as 1.0 at one of the longer sides and as 0.0 at the oth-
ers. Solve the governing Laplace equation by the SOR method and determine the optimum 
relaxation factor. Discuss how, in actual practice, such a simulation may be linked with 
those for other parts of the system.

 4.44 Consider the fan and duct system given in Example 4.7. Vary the zero-flow pressure, given 
as 80 in the problem, and the zero-pressure flow rate, given as 15 here, by ±20%. Discuss the 
results obtained. Are they consistent with the physical nature of the problem as represented 
by the equations?

 4.45 Show the information-flow diagram for Problem 4.18. Also, draw the information-flow dia-
gram for the simulation of Problem 4.35. Do not solve the equations; just explain what 
approach you will use.
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5 Acceptable Design of a 
Thermal System: A Synthesis 
of Different Design Steps

5.1 INTRODUCTION

In the preceding chapters, we have discussed the main aspects involved in the design of a thermal 
system. An acceptable or satisfactory design must satisfy the given requirements for the system 
and must not violate the limitations or constraints imposed by the application, materials, safety, 
environmental effects, and other practical considerations. At this stage, we are not concerned with 
the optimization of the system and are largely interested in obtaining a feasible design. Though any 
design that meets the given requirements and constraints may be adequate for some applications, 
it is generally desirable to seek a domain of acceptable designs from which an appropriate design 
is selected on the basis of cost, ease of fabrication, availability of materials, convenience, market-
ability, etc.

The various considerations that are involved in the development of an acceptable design of a 
thermal system were discussed in Chapter 2. These led to the following main steps:

1. Formulation of the design problem
2. Conceptual design
3. Initial design
4. Modeling of the system
5. Simulation of the system
6. Evaluation of the design
7. Selection of an acceptable design

Optimization of the design follows the determination of a domain of acceptable designs and is 
not included here. Most of the other aspects, particularly problem formulation, conceptual design, 
modeling, and simulation, were discussed in detail in the preceding chapters. The first step in the 
foregoing list quantifies the design problem, and the second step provides the basic idea or concept 
to achieve the desired goals. The remaining steps constitute what might be termed as the detailed, 
quantitative design process, or simply the design process for convenience. These steps analyze the 
design and ensure that the problem statement is satisfied.

In this chapter, we will consider the synthesis of the different steps and stages that constitute 
the design effort in order to obtain an acceptable design. Individual aspects, such as modeling and 
simulation of thermal systems, which were discussed in detail earlier, will be considered as parts of 
the overall design strategy. The main purpose of this chapter is to link the different aspects that are 
involved in the design of a thermal system and to demonstrate the design procedure, starting with 
the problem formulation, proceeding through modeling and simulation, and ending with an accept-
able design. Examples are employed to illustrate the coupling between the various steps and their 
combination to yield the desired design.

Several diverse thermal systems, ranging from those in materials processing and heating/
cooling to those in energy and environmental systems, were considered in the previous chapters. 
It has been shown that the basic concerns, modeling, simulation, and system characteristics, 
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vary significantly from one class of systems to another. For instance, lumped steady-state mod-
eling is usually adequate for refrigeration and air conditioning systems, leading to algebraic 
equations, whereas distributed time-dependent modeling is generally needed for manufacturing 
processes and electronic equipment cooling, resulting in partial differential equations (PDEs). 
Consequently, the simulation procedures vary with the type of system under consideration. The 
design strategy itself may be affected by these considerations. Therefore, examples of thermal 
systems from different application areas are considered in this chapter and the corresponding 
design strategies presented. The systems considered range from relatively simple ones to fairly 
complicated ones in order to demonstrate the applicability of the basic ideas to the design of a 
wide variety of systems.

Before proceeding to the complete design process for typical thermal systems, an aspect that 
needs more detailed consideration is that of initial design. In many cases, the initial design is 
reached by considering the requirements and constraints of the problem and choosing the design 
variables, through approximate analysis and estimates, so that these satisfy the given problem 
statement. If different components are to be chosen and assembled for a thermal system, the 
choice of these components is guided by the requirements and constraints, so that the initial 
design is itself an acceptable design. Though redesign is obviously needed in case the initial 
design is not acceptable, it is important to employ the best possible initial design so that it is 
either acceptable by itself or the number of redesigns needed to converge to an acceptable design 
is small.

5.2 INITIAL DESIGN

The search for an initial design follows the formulation of the problem and the conceptual 
design. It is thus the first step in the quantitative design procedure. The analysis of the system, 
through modeling and simulation, and evaluation of the design for its acceptability are based 
on the initial design. The initial, starting, design affects the convergence of the iterative design 
process and often even influences the final acceptable or optimal design obtained. Therefore, the 
development of an initial design is a critical step in the design procedure, and considerable care 
and effort must be exerted to obtain a design that is acceptable or as close as possible to being 
acceptable.

Ideally, design variables should be selected so that the initial design satisfies the given require-
ments and constraints. Unfortunately, this is usually not possible for thermal systems because analy-
sis only yields the outputs on system behavior for given inputs, rather than solve the inverse problem 
of yielding the inputs needed for a desired behavior. If the outputs and inputs were connected by 
simple relationships that could be inverted to obtain the inputs for required outputs, the problem 
would be considerably simplified. However, thermal systems usually involve complexities arising 
from nonlinear mechanisms, PDEs, coupled phenomena, and other complications, as discussed in 
Chapter 1. This makes it very difficult to solve the inverse problem in order to select the design vari-
ables, in an initial design, to satisfy all the requirements and constraints. Consequently, iteration is 
generally necessary to obtain a satisfactory design.

Several approaches may be adopted in the selection or development of the initial design. The 
approach that is appropriate for a given problem is a function of the nature of the thermal system 
under consideration, information available on previous design work, and the scope of the design 
effort. Some commonly used methods for obtaining an initial design are

1. Selection of components to meet given requirements and constraints
2. Use of existing systems
3. Selection from a library of previous designs
4. Use of current engineering practice and expert knowledge of the application
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5.2.1 selection oF components

In general, a combination of all the approaches given above is used to come up with the best 
initial design for practical thermal systems. However, each of these may also independently yield 
the desired starting point for iterative design. Selection of components is particularly valuable 
in thermodynamic systems, such as refrigeration, air conditioning, and heating systems, where 
the design of the overall system generally involves selecting the different components to meet 
the given requirements or specifications. An example of this is the air-cycle refrigeration sys-
tem, based on the reverse Brayton cycle and shown in Figure 5.1 This system is commonly used 
aboard jet aircrafts to cool the cabin. The turbine, the compressor, and the heat exchanger may be 
selected based on the desired temperature and pressure in the cabin, along with the thermal load, 
to obtain an initial design.

An analysis of the thermodynamic cycle shown yields the appropriate specifications of the compo-
nents for an ideal cycle or for a real one with given isentropic efficiencies (Reynolds and Perkins, 1977;  

FIGURE 5.1 The hardware and the thermodynamic cycle, with real, nonideal compressor and turbine, for 
the Brayton cycle.
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Howell and Buckius, 1992; Moran and Shapiro, 2014). For an ideal cycle, the efficiency η, which is the 
ratio of the work done to the energy input into the system, is given by the expression
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(5.1)

where γ is the ratio of the specific heat at constant pressure Cp to that at constant volume Cv , and PH 
and PL are the high and low pressures in the system, respectively. The corresponding temperatures 
can be calculated for ideal constant entropy or isentropic processes and then for a real, nonideal 
system using the efficiencies. Any constraints on pressures or temperatures given in the problem 
can be taken care of by a proper choice of these components. A given range of desired efficiency for 
satisfactory systems may also be taken as a requirement. Therefore, the initial design itself satisfies 
the problem statement and is an acceptable design. This design may be modeled and simulated to 
study the system behavior under different operating conditions to ensure satisfactory performance 
in practical use. Example 5.1 and Example 5.2 discuss this approach for thermodynamic systems.

5.2.2 existing systems

The development of an initial design based on existing systems for applications similar to the one 
under consideration is a very useful technique. Unless a completely new concept is being considered 
for the given application, systems that perform similar, though different, tasks are usually available 
and in use. For instance, if a forced-air furnace is being designed for continuous heat treatment 
of silicon wafers as a step in the manufacture of semiconductor devices, as shown in Figure 5.2, 
similar systems that are being used for other processes, such as baking of circuit boards, drying of 
food items, and curing of plastic components, may be employed to obtain initial estimates of the 
heater specifications, wall material and dimensions, conveyor design, interior dimensions, etc. This 
provides the starting point for the iterative design-redesign process, which varies the relevant design 
variables to arrive at an acceptable design.

5.2.3 librAry oF previous Designs

Any industry involved with the design of systems and equipment would generally develop many 
successful designs over a period of time for a variety of applications and design specifications. Even 
for the design of a particular system, several designs are usually generated during the process to 
obtain the best or optimal design. Consequently, a library of previous successful designs can be built 
up for future use. Note that many of these designs may not have been translated into actual physi-
cal systems and may have remained as possible designs for the given application. Such a library 
provides a very useful source of information for the selection of an initial design. For instance, an 
effort on the design of heat exchangers would give rise to many designs that may not be chosen for 
fabrication because they were not the optimum or because they did not meet the requirements for a 

FIGURE 5.2 A thermal system for the heat treatment of silicon wafers in the manufacture of electronic 
components.
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given application. However, for different design specifications, some of the earlier designs that were 
discarded might be satisfactory. Similarly, the design of an air compressor may yield many designs 
that are discarded because the pressure or the flow rate is too low. However, if this information is 
retained, it can be used for selecting an initial design for some other applications. Therefore, con-
siderable effort is saved in the development of the initial design if such a library of earlier designs, 
along with the appropriate specifications, is available. As soon as a new design problem is initi-
ated, the library may be employed to obtain a design with outputs as close as possible to the given 
requirements. For instance, if the total rate of heat transfer desired from the heat exchanger is given, 
a design that gives the closest heat transfer rate is chosen from the design library. This approach is 
particularly suitable for equipment, such as heat exchangers, heat pumps, boilers, and refrigerators.

5.2.4 expert knowleDge

The last approach for developing an initial design is based on information available on the particular 
application and corresponding types of thermal systems employed, along with current engineering 
practice. Such an approach is very hard to quantify because the available information is often vague 
and may not have a solid analytical foundation. This is what is often termed as expert knowledge, 
i.e., the information obtained from an expert in the area. Several ideas developed over the years 
form the basis for such knowledge and play a major role in determining what is feasible. Information 
from earlier problems and attempts to resolve them is also part of this knowledge. Many aspects in 
thermal systems are difficult to analyze or measure, such as contact thermal resistance between sur-
faces, radiative properties of surfaces, surface roughness, fouling in heat exchangers, and losses due 
to friction. Similarly, random processes such as demand for power, changes in environmental condi-
tions, and fluctuations in operating conditions are not easy to ascertain. In all such circumstances, 
current engineering practice and available information on the given application are used to come up 
with the initial design. These aspects are considered in greater detail in terms of knowledge-based 
design methodology in Chapter 11.

Example 5.1

A refrigeration system is to be designed to maintain the temperature in a storage facility in the 
range of −15°C to −5°C, while the outside temperature varies from 15°C to 22°C. The total ther-
mal load on the storage unit is given as 20 kW. Obtain an initial design for a vapor compression 
cooling system.

SOLUTION

Because the lowest temperature in the storage facility is −15°C, the evaporator must operate at a 
temperature lower than this value. Let us select the evaporator temperature as −25°C. Similarly, 
the ambient temperature can be as high as 22°C. Therefore, the condenser temperature must be 
higher than this value to reject energy to the environment. Let us take the temperature at which 
the condenser operates as 30°C. The total thermal load is 20 kW, which is 20/3.517 = 5.69 tons. 
Therefore, the refrigeration system must be capable of providing this cooling rate. Because addi-
tional energy transfer may occur to the system and also for safe operation, let us design the system 
for 7.5 tons, which gives a safety factor of 7.5/5.69 = 1.32.

We must now choose the refrigerant. Because of environmental concerns with 
chlorofluorocarbons and because of the relatively large refrigeration system needed here, let us 
choose ammonia as the refrigerant. The various parts of the system are shown in Figure 1.8(a). All 
these parts, except for the compressor, usually have high efficiencies and may be assumed to be 
ideal. The compressor efficiency could range from 60% to 80%. Let us take this value as 65%. 
The thermodynamic cycle in terms of a temperature-entropy plot is shown in Figure 5.3. The fluid 
entering the throttling valve is assumed to be saturated liquid and that leaving the evaporator is 
assumed to be saturated vapor. These conditions are commonly employed in vapor compression 
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refrigeration systems. The nonideal behavior of the compressor is seen in terms of an increase in 
entropy during compression.

For ammonia, the various pressures may be determined from available tables or charts 
(Van Wylen et al., 1994). Therefore, the pressure at the inlet to the compressor is obtained as 
151.5 kPa. The pressure at the entrance to the throttling valve is determined as 1167.1 kPa, which 
is also the pressure at the exit of the compressor. The temperatures at the evaporator exit and valve 
entrance are −25°C and 30°C, respectively. The enthalpy at the compressor exit is obtained from

 0.652 1

2 1
η = −

−
=h h

h h
s

a

where η is the compressor efficiency and the various states are shown in Figure 5.3. The entropy 
is constant between the states 2s and 1. Using this condition, the enthalpy h2s is obtained as 
1733 kJ/kg. Therefore, with h1 = 1430.9 kJ/kg, h2a is obtained from the preceding equation as  
h2a = 1895.7 kJ/kg. This value of the enthalpy is used to determine the temperature at the compres-
sor exit as 188.7°C. The coefficient of performance (COP) is obtained as

 COP
Heat removed
Energy input

2.341 4

2 1
= = −

−
=h h

h ha

Also, the heat removal rate, per unit mass flow rate of the refrigerant,  /Q m, is

 


1430.9 1430.9 342.5 1088.4 kJ/kg1 4 3= − = − = − =Q
m

h h h

assuming enthalpy to remain unchanged in the throttling process, i.e., h3 = h4. Because the total 
required cooling rate is 7.5 tons = 26.38 kW, the mass flow rate m of the refrigerant is

 m s
26.38

1088.4
24.24 10 kg/ 87.25kg/hr3

 = = × =−

Therefore, an initial design for the refrigeration system is obtained. It is seen that several design 
decisions had to be made during this process. Clearly, different values of the design variables 

FIGURE 5.3 Thermodynamic cycle for the vapor compression refrigeration system considered in 
Example 5.1, along with the calculated conditions at various states.
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could have been chosen, leading to a different initial design. This implies that the design obtained 
is not unique. In addition, because each part was chosen to satisfy the given problem statement, 
the initial design itself is an acceptable design. The fluid chosen is ammonia and the system 
capacity is 7.5 tons. The inlet and outlet conditions for each system part are obtained in terms 
of the inlet temperature and pressure, as given in Figure 5.3. The mass flow rate of the refriger-
ant is 87.25 kg/h. Thus, these items may be procured based on the given specifications. Because 
the items available in the market may have somewhat different specifications, the design may be 
adjusted to use available items, rather than have these custom made, in order to reduce costs. 
However, the system should be analyzed again if these items are changed to ensure that it meets 
the given requirements and constraints.

The preceding example illustrates the approach commonly used for a fairly wide range of ther-
mal systems. The various components, dimensions, materials, and configuration are chosen on the 
basis of the conceptual design and the given problem statement for the design. The choices are 
also usually guided by the availability of various items so that the overall cost may be minimized.

Example 5.2

A remote town in Asia is interested in developing a 20 MW power plant, using the burning of 
waste material for heat input and a local river for heat rejection. It is found that temperatures as 
high as 350°C can be attained by this heat source, and typical temperatures in the river in the 
summer are around 30°C. Obtain a simple initial design for such a power plant.

SOLUTION

A Rankine cycle, such as the one shown in Figure 2.15(a), may be chosen without superheating 
the steam to simplify the system. This system has been analyzed extensively, as given in most 
textbooks on thermodynamics, and can be designed based on available information (see Moran 
and Shapiro, 2014). Water is chosen as the working fluid, again because of available property data, 
common use in typical power plants, and easy access to water at this location. Due to the tem-
perature ranges given, the boiler temperature is taken as 300°C to ensure heating and boiling with 
energy input at 350°C. The condenser temperature is taken as 40°C to allow heat rejection to the 
river water, which is at 30°C. Then the initial temperature cycle of the proposed power plant may 
be drawn, as shown in Figure 5.4. The various states are given, with the idealized states indicated 
by subscript s, as in the previous example.

Now, we can proceed to first model the system and then analyze the thermodynamic cycle. 
All the components are taken as lumped, in order to simplify the model and because interest 
lies mainly in the energy transport and not in the detailed information for each component. The 
process is approximated as steady, which would apply for a steady operation of the power plant 
and not for the startup and shutdown stages or for power surges. The transient effects, which con-
siderably complicate the analysis, may be considered later for designing the control system. Thus, 

FIGURE 5.4 Thermodynamic cycle for the power plant design considered in Example 5.2.
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the analysis with steady lumped components will lead to coupled algebraic equations, which can 
be solved to obtain the power delivered, water flow rate needed, heat input, and other relevant 
quantities.

Considering first the ideal cycle with isentropic turbine and pump, the steam tables are used 
to obtain properties at the relevant temperatures. We find that, for saturated steam, the enthalpy 
h1 = 2749 kJ/kg and entropy s1 = 5.7045 kJ/kg, which is equal to s2s for an ideal turbine. Then the 
quality of the fluid x2s is obtained as

 5.7045 0.5725
8.2570 0.5725

0.66782
2= −

−
= −

−
=x

s s
s s

s
s f

g f

where the subscripts f and g refer to saturated liquid and gas, respectively. This gives  
h2s = hf + x2s(hg – hf) = 167.57 + 0.6678 × 2418.6 = 1782.71 kJ/kg.

Similarly, for saturated liquid, h3 = 167.57 kJ/kg, s3 = s4s = 0.5725 kJ/kg. The enthalpy h4s is 
obtained by using the ideal pump work per unit mass, v3(p4 – p3), where v3 is the specific volume 
at state 3 and the p’s are the pressures. Thus,

 
( )= + − = + × × − ×

= + =

−h h v p ps ( ) 167.57 1.0078 10 8.581 0.007384 10

167.57 8.64 176.21 kJ/kg
4 3 3 4 3

3 3

where the pressures are in MPa and the multiplying factor 103 is used to obtain the work in kJ/kg. 
Then, the work done, or power output, for the ideal case is given by

  , , 1 2 4 3( ) ( ) ( )= − = − − − W m W W m h h h hTurbine ideal Pump ideal s s

where m is the mass flow rate of water/steam. It is calculated for the ideal cycle, using the preced-
ing equation, as

 

20 MW 1000 kW/MW
957.65 kJ/kg

20.88 kg/s
( )( )= =m

We can now include the effect of turbine and pump efficiencies. Taking them at typical values of 
80%, we have

 0.81 2

1 2

−
−

=h h
h h s

which gives h2 as 1975.97 kJ/kg. Similarly, the pump work becomes

 =W( )/0.8 10.8 kJ/kgPump, ideal

This then gives h4 = 167.57 + 10.8 = 178.37 kJ/kg. These values can now be used to obtain the 
water flow rate as 26.24 kg/s. The heat input is given by m(h1 − h4) = 26.24 × (2749.0 − 178.37) 
kW = 67.45 MW. The heat rejected at the condensers is m(h2 − h3) = 47.45 MW. The overall  
thermal efficiency is 20/67.45 = 0.2965, or 29.65%.

Thus, an acceptable initial design of the thermal system is obtained by choosing components 
and thermodynamic states based on given constraints and requirements. The efficiencies of the 
turbine and the pump can be adjusted if better information is available. As in Example 5.1, the 
design is not unique and several acceptable designs can be developed. The various components, 
such as the turbine, pump, condensers, and boiler, can be procured on the basis of the specified 
flow rate, pressure, and temperature ranges. The sensitivity of the design to variations in the com-
ponents can be studied in order to choose available items instead of custom-made ones to reduce 
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cost. These two examples demonstrate a frequently used approach for developing an initial design 
from the given problem statement so that an acceptable design is obtained. Once such an initial 
design is obtained, the operating conditions and component characteristics may be varied in the 
simulation to optimize the system, as discussed later.

5.3 DESIGN STRATEGIES

5.3.1 commonly useD Design ApproAch

A strategy that is frequently employed for the design and optimization of thermal systems was 
discussed in earlier chapters. An initial design is developed based on the problem statement and 
the corresponding system is modeled, simulated, and evaluated. If the given requirements and con-
straints are satisfied, the initial design is acceptable; otherwise, a redesign process is undertaken 
until an acceptable design is obtained.

Clearly, this particular strategy is not unique, even though this is the most commonly used 
approach because of the systematic flow of information and the ease of implementation. In addition, 
as discussed earlier, the initial design may be based on existing systems and processes and thus 
result in a design that is very close to the final acceptable design. However, other strategies have 
been developed and are used for a variety of applications. Two strategies that are based on modeling 
and simulation are presented here.

5.3.2 other strAtegies

5.3.2.1 Adjusting Design Variables
Another approach is based on using the analysis, which incorporates modeling and simulation, to 
study a range of design variables and determine the resulting outputs from the system for a typical, 
fixed set of operating conditions. The basic concept is kept unchanged and the design variables, such 
as dimensions, components, geometrical configuration, and materials, are varied over their given 
ranges and the effect on the important quantities in the problem investigated. The resulting relation-
ships between the outputs and the inputs may also be expressed in terms of correlating equations, 
using the curve-fitting techniques presented in Chapter 3. An acceptable design is then obtained by 
choosing the appropriate values for the various design variables based on the problem statement and 
quantitative simulation results.

5.3.2.2 Different Designs
Another strategy considers a collection of chosen designs and employs modeling and simula-
tion to study the system behavior over the expected range of operating conditions. An initial 
design is not the starting point and simulation results are obtained for a variety of designs. An 
acceptable design is obtained from the various designs considered by comparing the simula-
tion results with the problem statement, ensuring that all the requirements and constraints are 
satisfied.

Both of these strategies are shown schematically in Figure 5.5. The main difference between 
these and the approach discussed in detail earlier (Figure 2.13) is that an initial design is not the 
starting point for the design process. Extensive simulation results are obtained for a range of design 
variables for fixed operating conditions in one case and for a variety of designs under different oper-
ating conditions in the other. The desired acceptable designs are selected based on these results and 
the formulation of the design problem.

5.3.2.3 Examples
Let us consider the ingot casting system shown in Figure 1.3. Suppose the system is to be designed 
to obtain a solidification time τs smaller than a given value, without violating given constraints 
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on temperature gradients in the materials. The solidification time is typically the time taken to 
solidify a given volume fraction of the melt, say 80%, because the ingot may be removed from 
the mold at this stage without waiting for the entire liquid region to solidify. A mathematical 
model and a simulation scheme may be developed for this process to compute the solidification 
time for different values of the design variables, keeping the molten material and dimensions of 
the enclosed region fixed. A simple one-dimensional model may be developed assuming negli-
gible flow in the melt. Then, the numerical results on how solidification proceeds with time for 
a range of design variables, such as the wall material and thickness and convective heat transfer 
coefficient (representing a fan or circulating water for cooling the mold) at the outer surface of 
the wall, may be obtained. The governing equations for this simple model are (Viswanath and 
Jaluria, 1991)
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where the subscripts l, s, and m refer to the liquid, solidified region, and mold; α is the thermal dif-
fusivity; and y is the coordinate distance, as shown in Figure 5.6.

Then numerical simulation may be employed to compute the location of the solid/liquid inter-
face as a function of time, thus yielding the solidified region. Therefore, the time needed to 
solidify a given amount of material can be determined. For two- or three-dimensional problems, 
the progress of solidification from different sides may be determined to obtain the volume of 
the solidified material, if the solidification along different directions is assumed to be indepen-
dent. Some of the typical results are shown in Figure 5.7, Figure 5.8, and Figure 5.9, indicat-
ing the effects of mold wall thickness d = Wm − Wo, thermal conductivity of mold material km 

FIGURE 5.5 Two different strategies for design of a thermal system: (a) Using design variables as inputs for 
fixed operating conditions; (b) using operating conditions as inputs for different designs.
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(normalized by ks, the thermal conductivity of the solid), and convective heat transfer coefficient 
h at the outer wall of the mold. Thus, the effect of the different variables on solidification time 
τs is obtained. A greater mold wall thickness and thermal conductivity and a larger h all lead 
to faster solidification, as physically expected. Similarly, different operating conditions, such as 
ambient temperature, initial temperature of the mold, and initial temperature of the melt Tpour 
may be considered for a group of different designs, specified in terms of the design parameters. 
From these results, an acceptable design may be obtained to achieve the desired solidification 
time τs for solidifying 80% of the given volume. More sophisticated models have been developed 
and analysis of this system has been carried out by several investigators in recent years because 
of the importance of solidification in many manufacturing processes, such as crystal growing, 
alloy casting, three-dimensional printing, and thermal sprays.

Similarly, thermal systems arising from other application areas may be considered to illustrate 
the use of these two design strategies. For instance, the stratified water thermal energy storage 

FIGURE 5.6 A one-dimensional model for solidification.

FIGURE 5.7 Variation of the rate of solidification with the mold wall thickness d.
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system discussed in Example 3.5 may be taken. The simplified one-dimensional, vertical transport 
model yielded the governing equation

 W
Z Z

H
2

2

∂θ
∂ ′τ

+ ∂θ
∂

= ∂ θ
∂

− θ (5.5)

where all the terms in the equation were defined earlier and nondimensionalization was used 
to reduce the number of parameters. Here, W and H are the dimensionless vertical velocity and 

FIGURE 5.8 Effect of the thermal conductivity of the mold material on the rate of solidification.

FIGURE 5.9 Effect of the convective heat transfer coefficient h on the solidification rate.
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convective heat transfer coefficient, respectively. Therefore, the equation may be solved numerically 
for arbitrary values of the parameters W and H to yield the temperature distribution as a function 
of time. Figure 5.10 shows the results obtained from such a simulation for a typical energy storage 
system. Therefore, for given flow rate, inlet/outlet locations, and discharge temperature into the 
tank, the resulting temperature at the outlet may be calculated as a function of time. If hot water 
is to be supplied for a given duration at a specified minimum temperature level, the system may 
be designed by varying the dimensions, insulation, heat loss at the outer surface, etc., to meet this 
requirement. The simulation is used to generate results for a range of design variables and operating 
conditions. An acceptable design is then selected by comparing these results with the requirements 
and constraints.

5.3.2.4 Selection of Acceptable Design
Extensive work has been done on the analysis of a wide variety of thermal systems, and sophisti-
cated models and simulation results are often available in the literature. However, the use of these 
results to obtain a satisfactory design is not a trivial exercise, even though most analyses claim that 
the results obtained will be valuable in design. As mentioned earlier, analysis is much simpler than 
design because the outputs resulting from given inputs are to be determined. In design, the inverse 
problem of finding the variables or conditions under which the desired outputs will be obtained is 
to be solved. By generating extensive simulation results, the attempt is to solve the inverse problem 
for design by correlating the outputs with the inputs.

Certainly, it is necessary to focus on some important parameters in order to obtain an accept-
able design from simulation results. For instance, solidification time was taken as the main aspect 
in ingot casting. The duration for which water can be supplied without its temperature going below 
a minimum value may be the criterion for a water energy storage system. Then, such an output 
may be expressed in terms of the inputs by means of correlating equations, derived by the use of 
curve-fitting techniques. If such expressions are available, the design problem becomes relatively 
simple because the conditions needed for satisfying the requirements may be calculated easily 
from these expressions. Still, it must be noted that the inverse solution is generally not unique and 
optimization techniques are often used to narrow the domain from which an acceptable design 
may be selected.

In summary, different design strategies may be developed for different applications. The system-
atic approach represented by Figure 1.4 and Figure 2.13 is the most commonly employed strategy 

FIGURE 5.10 Calculated temperature profiles in an enclosed body of water for two inflow/outflow 
configurations at different values of dimensionless time τ′.
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because it is also often the most efficient one. In most other approaches, extensive computations, 
which are generally time-consuming and expensive, are used in order to generate the results from 
which the appropriate design is extracted. It may also be mentioned here that, even though numeri-
cal simulation is used for most of the inputs needed for design, experimentation may also provide 
important data, particularly for cases where an accurate mathematical model is not easily obtained.

Example 5.3

A thermal system consisting of a solar collector and an energy storage tank with recirculating 
water, as shown in Figure 5.11, is to be designed to obtain 2.1 × 105 kJ of stored energy over a 
10-hour day. The ambient temperature is given as 20°C and the water temperature is initially at 
this value. The water temperature in the storage tank must reach a value greater than 40°C, but 
less than 100°C, to be used in an industrial application. The collector receives a constant solar 
flux of 290 W/m2 and loses energy by convection at a heat transfer coefficient h of 4 W/(m2 ⋅ K) to 
the ambient medium. Obtain an acceptable design.

SOLUTION

A very simple mathematical model for this system is obtained by assuming that the convective 
heat loss qc from the collector can be approximated as

 
20

2
20= + −



q hA

T
c

o

where To is the maximum temperature attained over the day and A is the surface area of the col-
lector, implying that an approximate average surface temperature is used to obtain the heat loss. 
Actually, the temperature varies nonlinearly with time and a differential equation needs to be 
solved to obtain the temperature variation. This approximation considerably simplifies the model. 
In addition, the storage tank is assumed to be well-mixed so that a uniform temperature exists 
across it. Heat loss from the tank is neglected.

With these assumptions, an energy balance for the collector yields
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 × = × ×T

Ao290 4
20

2
20 (10 3600) 2.1 10 105 3

where a constant heat flux input of 290 W/m2 into the collector arises over a 10-hour period. Both 
sides of the preceding equation are in Joules. An energy balance for the storage tank of volume 
V gives

 × × × − = × ×V To1000 4200 ( 20) 2.1 10 105 3

FIGURE 5.11 Solar collector and storage tank system considered in Example 5.3.
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where the density of water is taken as 1000 kg/m3 and the specific heat at constant pressure as 
4200 J/(kg ⋅ K). The preceding two equations may be simplified to give

 ( )− −  =T Ao290 2 20 5833.3

 = +T
V

o
50

20

Therefore, these equations may be used to calculate the collector area A and the volume V of 
the storage tank for an acceptable design. The requirement of the total energy is already satisfied. 
The only other requirement is that 100 > To > 40°C. Therefore, a domain of acceptable designs can  
be generated with these limitations. We may write these equations as
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If To is chosen as 45°C, V is obtained as 2 m3 and A as 24.3 m2. This gives an acceptable design 
because it satisfies the given requirements and constraints. Similarly, if To is chosen as 95°C, V is 
0.67 m3 and A is 41.66 m2. For To = 70°C, which is the average over the given range, V is 1 m3 
and A is 30.7 m2.

Clearly, a unique solution is not obtained and an infinite number of designs can be generated in 
the domain given by the requirement 100 > To > 40°C. If the system is optimized, with respect to 
cost or some other chosen criterion, this domain is substantially reduced, leading to an essentially 
unique solution in many cases. This is a small thermal system and approximations are used to 
develop a simple mathematical model. Models that are more complicated can also be developed 
for greater accuracy. However, this example illustrates a design strategy based on modeling and 
simulation, without using an initial design, to develop an acceptable design. It also indicates the 
crucial need to optimize the system.

5.3.3 iterAtive reDesign proceDure

Iteration is an essential part of design in most design strategies and procedures because, as dis-
cussed earlier, an inverse problem is to be solved. In the analysis of thermal systems, the effort is 
directed at obtaining the output characteristics for given inputs such as operating conditions and 
design variables. However, in design, the requirements and constraints are given and the variables 
that result in a system that satisfies these are to be determined. As a result, the solution to the prob-
lem is not unique and several designs may have to be considered before obtaining one that satisfies 
the requirements and constraints.

5.3.3.1 Convergence
Any iterative procedure requires a criterion for convergence or termination of the iteration. In the 
design problem, because the given requirements and constraints may involve several variables and 
thus many criteria for convergence, it is useful to focus on a particular quantity or condition that is 
of particular significance to the problem at hand. This quantity may then be followed as iteration 
proceeds to ensure that the scheme is indeed converging and to stop the iteration when the desired 
results have been obtained or if a specified number of iterations have still not yielded a solution. 
For instance, in a cooling system, the rate of heat removal may be chosen as the main quantity of 
interest, even though the flow rates and temperatures are also important in the design. Similarly, the 
temperature of a material emerging from a heat treatment furnace may be selected as the criterion 
for following the iteration scheme.

Even though a particular parameter or quantity is considered with respect to the iteration 
scheme, the design obtained at convergence must be evaluated to ensure that all the design 
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requirements and constraints have been satisfied. Because the quantity chosen for termination 
of the iteration is the most important aspect or a combination of dominant aspects in the design 
problem, there is a good possibility that the design obtained at convergence will be an accept-
able design. However, if the design is not satisfactory, the design variables may be varied over 
a domain close to the converged design to seek an acceptable design. If, despite these efforts, 
a satisfactory design is not obtained, some of the requirements or constraints may have to be 
relaxed to obtain a solution.

If x1, x2, x3, …, xn represent n quantities of interest in a thermal system to be designed, the 
requirements may be specified as

 , , or= ≤ ≥x d x d x di i i i i i (5.6)

which may be written as

 0, 0, or 0− = − ≤ − ≥x d x d x di i i i i i  (5.7)

Here, any one of the preceding conditions may apply to a given quantity and di represents the 
given requirements, with i = 1, 2, 3, …, n. The inequalities may be converted into equalities by 
assuming an acceptable tolerance level εi, as, for instance, xi − di = εi, where εi may be positive or 
negative.

For example, in a heat exchanger, the given requirements relate to the flow rates, temperatures, 
and heat transfer rate. Thus, if the inlet flow rate and inlet temperatures of the hot and cold fluids 
are fixed, the outlet temperature of the cold fluid as well as the heat transfer rate may be taken as 
the requirements, with the configuration, dimensions, and materials used in the heat exchanger 
as design variables. If energy losses to the environment are included, the efficiency of the system 
may be defined as the ratio of the energy gained by the cold fluid to that lost by the hot fluid. An 
efficiency greater than a given value may then be a requirement. Several such requirements are 
generally associated with the design of a thermal system. However, the most important requirement, 
say the outlet temperature of the cold fluid in the present example, may be chosen as the criterion for 
convergence of the iterative redesign scheme.

If it is not possible to isolate a particular quantity for the iterative scheme, a combination of 
important variables or of their difference from the required values, such as

 or ( ) ( ) ( )1 2 3 1 1 2 2 3 3Y x x x Y x d x d x d= + + = − + − + −  (5.8)

may be chosen and the function Y employed to keep track of the progress of the iteration. If both 
positive and negative values of the variables or of their differences from the requirements are con-
sidered, Y may be defined as

 or ( ) ( ) ( )1 2 3 1 1 2 2 3 3Y x x x Y x d x d x d= + + = − + − + −  (5.9)

or as
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A square root of the expressions on the right-hand sides of the two equations given in 
Equation (5.10) may also be employed. All the terms in the preceding equations for Y should gener-
ally be normalized by the required values, such as di, to make them of comparable magnitude.

Therefore, several different requirements may be included in a design parameter or quantity that 
is used to follow the iterative process and to determine its convergence. For instance, in the case of 
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the heat exchanger discussed previously, the design parameter Y may be taken in terms of the cold 
fluid outlet temperature To and heat transfer rate Q as
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where the subscript r refers to the required values. Then the desired value of Y for the given 
problem may be determined, being zero if differences from the requirements are employed as in 
Equation (5.11). Weighting factors may also be used to accentuate the importance of certain require-
ments over the others.

Therefore, the iterative redesign process becomes quite similar to the iterative procedures 
employed for solving nonlinear algebraic equations, as outlined in Chapter 4. The design parameter 
Y is defined in terms of the important requirements and the desired value obtained from the problem 
statement. As seen previously, neither the definition of Y nor its required value for a satisfactory 
design is unique. However, this approach does allow one to follow the iterative scheme and to ter-
minate the iteration when Y attains the desired value Yr to within a chosen tolerance level ε

 Y Yr− ≤ ε (5.12)

Figure 5.12 shows the variation of Y as the iteration proceeds for a typical design problem. The 
value may go up or down locally. However, it is possible to determine if the scheme is approach-
ing convergence in the long run, if divergence would occur, or if the results are simply oscillating 
without convergence.

A design parameter or criterion such as Y can also be used to determine the rate of convergence 
of the iterative scheme and to develop schemes that would accelerate convergence. Many of the 
ideas presented in Chapter 4 on the iterative convergence of nonlinear equations are applicable. 
Because each iteration is time-consuming for most practical thermal systems, it is important to 
reduce the number of iterations needed to obtain an acceptable design. Also, design variables that 
are particularly difficult to change, such as geometry, are often held constant while other variables 
are altered for reaching an acceptable design. A discussion of some of these aspects follows.

5.3.3.2 System Redesign
In the iterative redesign procedure, a given design is evaluated in terms of the problem statement, 
and, if it is found to be unacceptable, the system is redesigned by varying the design variables, 
keeping the conceptual design unchanged. This new design is again evaluated and the itera-
tive process continued until a satisfactory design is obtained. As discussed previously, a single 

FIGURE 5.12 Variation of a parameter Y chosen to represent the acceptability or improvement of the design 
as a function of the number of iterations N.
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important quantity or a parameter representing several important aspects in the problem may be 
employed to follow the iteration and to terminate it when a convergence criterion such as that 
given by Equation (5.12) is satisfied. We now wish to address how redesign is undertaken at each 
step of the iteration.

Redesign involves choosing different values of the design variables in the problem. The various 
types of design variables that are of interest in typical thermal systems are

1. Geometrical configuration
2. Materials employed
3. Dimensions of various parts
4. Characteristics or specifications of different components or devices used in the system

The performance of the system also depends on the operating conditions, which may be varied to 
obtain different product and system characteristics and for optimizing the operation of the system. 
However, in system design, we are largely interested in the hardware of the system and thus the 
listed design variables are considered for redesigning a system.

It is useful to follow a systematic approach in varying the design variables. Consider a simple 
household refrigerator. The configuration, materials, dimensions, and specifications of the compo-
nents such as the compressor and condenser can be changed to obtain a new design. If all these are 
varied at each iterative step, it is hard to keep track of the progress made from one design to the 
next and to determine the effect of each variable on the system performance. One way of approach-
ing redesign is to keep most design variables unchanged while one variable or a set of variables 
is altered. The geometrical configuration, materials, and dimensions may be kept constant while 
different compressors, condensers, etc., are considered. Similarly, the dimensions of the interior 
region, wall thickness, and other dimensions may be varied while the remaining design variables 
are held constant. The given constraints are invoked when any particular design variable is being 
changed or selected. Of course, the design variables may not be independent and may have to be 
varied together. For example, the condenser capacity and its surface area go together, linking the 
dimensions with the component specifications.

Similarly, we may consider the forced-air heat treatment oven discussed earlier and shown in 
Figure 2.28. Again, the geometry, materials, dimensions, and components, such as the heater and 
the fan, are the main design variables. The geometry and materials are often chosen on the basis of 
information available from existing or similar systems. The range of variation in these two parame-
ters is generally limited by the application and by the availability and cost of materials. For instance, 
the configuration may be determined by the fact that a high side opening is needed to insert the 
material to be heated. Similarly, cost considerations may limit the material selection to steel and 
aluminum. In any case, the configuration and materials may initially be chosen to comply with 
such considerations related to the application. As the design process advances, even the geom-
etry and the materials may be varied if a satisfactory design is not obtained. However, the initial 
efforts are directed at dimensions and components that may be altered somewhat more easily and 
that have wide ranges of variation, limited by the constraints in the problem. A schematic of such 
an approach, which considers different types of design variables with a predetermined priority, is 
shown in Figure 5.13, with components varied first, followed by dimensions, then by materials, and 
so on. This priority is based on the designer’s expertise and is a good candidate for automation, as 
discussed in Chapter 11.

Even when attention is focused on the dimensions, these may be varied one at a time in order to 
determine the resulting effects. If the effect of varying a given dimension, say the wall thickness of 
the oven, is small, the effort may be shifted to other dimensions such as the height of the enclosed 
space. If the dimensions, along with the configuration and the materials, are held constant, different 
heaters and fans may be considered for the redesign. After each change, the design is evaluated in 
terms of a chosen quantity or parameter that characterizes the design to ascertain if the new design 
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is an improvement over the previous one. If the design appears to be becoming worse, the direction 
of the change is reversed.

The given constraints are taken care of in the selection of the design variables. As the iteration 
proceeds, the effect arising from each change is obtained and the sensitivity of the system perfor-
mance to variation in different design variables is determined. This allows one to focus on the most 
important variables and thus converge to an acceptable solution more rapidly.

5.4 DESIGN OF SYSTEMS FROM DIFFERENT APPLICATION AREAS

We have considered the main aspects involved in the design of a thermal system, starting with 
conceptual design and proceeding through initial design, modeling, and simulation to design evalu-
ation, redesign, and convergence to an acceptable design. It has also been shown that thermal sys-
tems arise in many diverse applications and vary substantially from one application to another. The 
examples considered thus far have similarly ranged from relatively simple systems, with a small 
number of parts, to complex ones that involve many parts and subsystems. In actual practice as 
well, the complexity of the design process is strongly dependent on the nature and type of thermal 
system under consideration.

Among the simplest design problems are those that involve selecting different components that 
make up the system and then simulating the system to ensure satisfactory performance for given 
ranges of operating conditions. The governing equations are generally nonlinear algebraic equa-
tions in such cases, and the various numerical techniques outlined in Chapter 4 may be used for the 
simulation. On the other hand, complex systems such as those in materials processing, aerospace 
applications, and electronic equipment cooling generally involve sets of PDEs that are coupled to 
each other and to other types of equations that govern different parts of the system. A few examples 
from some of the important areas of application are given here to illustrate the synthesis of the vari-
ous ideas and design steps discussed earlier.

5.4.1 mAnuFActuring processes

This is one of the most important areas in which thermal systems are of interest. Though manufac-
turing has always been of crucial significance in engineering, this area has become even more vital 
in recent years because of the development of new materials, applications, and processing tech-
niques. Several important manufacturing processes were mentioned earlier, including processes 

FIGURE 5.13 Priority for changing the design variables, considering the configuration, materials, dimen-
sions, and components as variables.
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such as plastic extrusion, heat treatment, casting, bonding, hot rolling, and optical fiber drawing. 
Many new and emerging processes and systems have been developed to meet the demands for 
advanced materials and devices. These include three-dimensional printing, chemical vapor deposi-
tion (CVD), thermal sprays, and laser processing. The thermal systems associated with different 
manufacturing processes are quite diverse, with different concerns, mathematical models, and gov-
erning mechanisms. They are generally complicated and involve features such as

1. Time-dependent behavior
2. Combined transport modes
3. Strong dependence on material properties, which often have to be treated as variable and 

not as constant
4. Sensitivity to operating conditions
5. Strong coupling between the different parts of the system.

Other characteristics may also be important in specific applications, as discussed in specialized 
books on manufacturing such as Ghosh and Mallik (1986), Kalpakjian and Schmid (2013), and 
Jaluria (2018).

The governing equations for manufacturing processes are typically PDEs that are coupled through 
the boundary conditions and material property variations. However, because the problem may vary 
substantially from one process to another, it is very difficult to develop a general approach to model-
ing, simulation, and design of these systems. A few examples of thermal systems in manufacturing 
were discussed in earlier chapters and a few others will be considered in the presentation on optimiza-
tion. Here, in the following example, we shall discuss the design process for a typical system employed 
for thermal processing of materials. The problem is taken from an actual industrial process.

Example 5.4

Straight plastic (PVC) cords are to be made into a coil by thermoforming. The conceptual design 
involves winding the cord over a stainless steel mandrel and heating the plastic beyond its glass 
transition temperature of 250°F (121.1°C), without exceeding the maximum temperature of 320°F 
(160°C), followed by cooling to about 120°F (48.9°C) to make the shape permanent. The cords 
have a thickness of 0.1 in (2.54 mm) and the inner diameter of the coil must be 0.25 in (6.35 mm). 
The desired length of the final coil is 12 in (30.5 cm). Develop a mathematical model for the 
process and use the results from simulation to obtain an acceptable design of the thermal system. 
Suggest possible variations in the design that would improve the product and system performance.

SOLUTION

The design problem may be formulated easily from the preceding description of the process. 
The given quantities are some of the materials and dimensions that cannot be varied. Thus, the 
mandrel has a diameter of 6.35 mm and a length greater than 305 mm. The cord is wound tightly 
around it, giving an outer diameter of the composite cylinder assembly as 11.43 mm. The require-
ments are in terms of the desired temperature levels, with a constraint on the maximum allowable 
temperature, in the plastic. It is desirable to raise every point in the plastic cord to a temperature 
above 121.1°C, without exceeding the allowable value of 160°C.

Let us first consider a model for calculating the temperatures in the cord and the mandrel and 
then link it with the system. The typical properties of PVC and stainless steel are obtained from 
the literature (such as Appendix B) and are listed as, respectively,

density, ρ (kg/m3) 958 8055

specific heat, C (J/kg.K) 2500 480
thermal conductivity, k (W/m.K) 0.3 15.1
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We can now apply the model development procedures discussed in Chapter 3. Because of the 
relatively small range of temperature variation, the ratio of the change in the various properties 
to their average values is small, e.g., Δk/kavg ≪ 1, allowing us to assume constant properties. It is 
also assumed that the cord is tightly wound on the mandrel so that no significant gaps are left 
along the cylinder axis. In addition, the length L (30.5 cm) is much greater than the outer diam-
eter D (1.143 cm) of the cord-mandrel assembly, shown in Figure 5.14, i.e., L/D ≫ 1. This implies 
that variation along the axial coordinate may be neglected. In addition, if the heat transfer at the 
surface is uniform, axisymmetry is assured. Therefore, the problem may be treated as a one-
dimensional, radial, transport situation.

In addition to the aforementioned simplifications, the mandrel may be taken as lumped because 
of its small diameter and high thermal conductivity, compared to the plastic. If the Biot number, 
Bi = h R/k, is estimated, even for fairly high values of the convective heat transfer coefficient h, it is 
found to be smaller than 0.1, supporting the assumption of temperature uniformity in the mandrel. 
The problem reduces to that of heat transfer in a hollow plastic cylinder with given conditions 
at the inner and outer surfaces. Then the governing equation for the temperature T(r, τ), where r 
is the radial coordinate distance measured from the cylinder axis and τ is time, may be written as
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The initial temperature at τ = 0 is simply taken at a uniform value of Tinit for both the mandrel 
and the cord. Here, Ts is the temperature of a radiating source, F is a geometric factor, ε is the 
surface emissivity of the plastic, h is the convective heat transfer coefficient, Ta is the temperature 
of the fluid surrounding the cord, R is the radius of the core-mandrel assembly and subscript i 
refers to the mandrel and also the contact surface between the cord and the mandrel because 
of temperature uniformity in the mandrel. If Ts ≫ T, the radiative transport may be replaced by a 
constant surface heat flux qs. The convective heat transfer coefficient h is linked to the velocity of 
air U through correlations such as (Gebhart, 1971)
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FIGURE 5.14 Plastic cord wound on a metal mandrel.
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where ka is the thermal conductivity of the fluid and ν is its kinematic viscosity. Also, see 
Appendix D for various heat transfer correlations.

The preceding problem may be solved numerically to obtain the temperature variation in the 
plastic with time and location and that in the mandrel with time. Because the governing equation 
is parabolic, time marching may be used, starting with the initial conditions. The Crank-Nicolson 
method is appropriate because of the second-order accuracy in time and space and better stabil-
ity characteristics as compared to the explicit FTCS method (Jaluria and Torrance, 2003). Sample 
computer programs, particularly those in Matlab, given in Appendix A may be used to develop the 
numerical model. Therefore, numerical results may be obtained for a variety of operating and design 
conditions. Based on these results, the desired acceptable design for the system may be obtained, as 
discussed earlier in terms of the design strategies, which are not based on an initial design.

Figure 5.15 shows the results in terms of the outer surface temperature and the inner surface or 
mandrel temperature for a constant heat flux input qs at the surface, with no convection. Similarly, 
Figure 5.16 shows the corresponding results for convective heating, without radiative input. The 

FIGURE 5.15 Transient temperature response to a constant heat flux input at the outer surface of the 
plastic cord.

FIGURE 5.16 Temperature variation for convective heating.
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results when both convection and radiation are present are shown in Figure 5.17. Different values 
of the heat flux and convection coefficient are taken in these calculations. The governing equa-
tion and the boundary conditions may also be nondimensionalized to generalize the problem and 
derive the governing dimensionless variables (Jaluria, 1976). The heat flux is nondimensionalized 
as qsR/kTinit and the convective heat transfer coefficient as the Biot number Bi. In Figure 5.17, the 
dimensionless heat flux is kept at 5.0 and the Biot number is varied. Similarly, other numerical 
results may be obtained. It is clear from these results that a combination of radiation and convec-
tion gives the desired flexibility and control over the temperature levels.

Let us now consider the thermal system for this process. A continuous movement of the plastic 
cords, wound on the mandrel, in a wide channel with electric heaters and air flow driven by a 
fan may be designed, as shown in Figure 5.18. The mandrels are rotated to ensure uniform surface 
heating. The heaters are positioned over a chosen distance L1, so that the plastic cords are heated 
up to this distance, and then cooled to room temperature over the remaining length. The time τ1 
in the heating region is L1/V, where V is the speed at which the cords are traversed. The design 
variables are the fan, represented here in terms of U or h, the heater, represented in terms of the 
heat flux qs, length of the heating region L1, and length of the cooling region L2.

The speed of the cords V, the ambient air temperature Ta, and the initial cord temperature Tinit 
are operating conditions, with the design being obtained for chosen values of these. For off-design 
conditions, simulation can be used to determine the effect of these on the system performance. 
Both qs and U may also be adjusted within the ranges available for the corresponding equipment. 
Clearly, the solution to this problem is not unique and many different design possibilities exist.

FIGURE 5.17 Temperature variation for combined convection and constant heat flux input qs, with  
qsR/k = 5.0.

FIGURE 5.18 A possible conceptual design for the thermal system considered in Example 5.4.
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Figure 5.19 shows the circumstance when the cords are heated at constant heat flux in the heat-
ing zone and then cooled by convection. From these results different sets of design variables may 
be selected to satisfy the given requirements and constraints. For a chosen value of cord speed 
V, the lengths L1 and L2 may be determined for particular qs and h. An acceptable design is thus 
obtained from this figure. For a mandrel traversing speed of 1 cm/s, a heating region length of 
1.1 m and a cooling region length of 1.4 m are obtained from this figure if the maximum tempera-
ture is kept at 300°F (148.9°C) for safety. For higher maximum temperatures, the corresponding L1 
and L2 may be determined. With these design variables, not every point in the cord reaches the 
required temperature for coiling, though most of the plastic does. For better and more uniform 
coiling, additional features may be needed.

Similarly, the heater and the fan may be varied for different designs. In this design problem, an 
initial design is not used. Instead, the modeling and simulation results are employed to guide us 
toward the appropriate acceptable design. In addition, this is obviously not the optimal design, for 
which a quantity such as cost or process time may be minimized.

The major problems encountered here are due to the low thermal conductivity of the plastic 
and the narrow temperature range in which the plastic must be maintained to avoid damage. 
This is typical of plastic thermoforming processes. The surface temperature easily reaches the 
maximum allowable value, while the inner surface is essentially unchanged. This suggests some 
changes in the system that may allow us to obtain greater temperature uniformity in the plastic. 
The mandrel may be made hollow to reduce the value of (ρCV)i and thus diminish its effect on the 
inner surface temperature. It may also be made of a material whose thermal capacity, ρC, is less 
than that of stainless steel, such as molybdenum. Finally, a hollow mandrel may be used with flow 
of hot gases or with an electric heater located at the core in order to provide energy input at the 
inner surface of the plastic. Such changes would make the temperature distribution in the plastic 
cord more uniform than that for the earlier design.

5.4.2 cooling oF electronic equipment

This is an important area for design because electronic devices are generally very temperature-
sensitive and it is crucial to design efficient systems to remove the thermal energy dissipated in 
electronic equipment. Surface heat fluxes have risen substantially, from about 102 to 106 W/m2, 
over recent years due to size reductions of electronic circuitry. Further reduction in size is largely 
restricted by the heat transfer problem and the availability of thermal systems to effectively cool the 
equipment (Incropera, 1988, 1999). Figure 5.20 shows the dependence of the difference between 
the surface temperature of the electronic device and the ambient as a function of the input heat flux. 

FIGURE 5.19 Results for heating of the cords at a constant heat flux, followed by convective cooling.
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Various modes of heat transfer for removal of the dissipated energy are also indicated, with natural 
convection cooling in air applicable at very low heat flux levels and liquid cooling with boiling at 
very high levels. Cooling of electronic systems involves components and subsystems of various 
length scales, such as the chip, circuit board, server, rack, and data center. Different concerns arise 
for cooling at these different levels and a variety of cooling techniques are employed.

Though it is not possible to discuss all the different types of electronic systems and cooling meth-
ods employed in practice, the main characteristics of these systems are

1. Temperature-sensitive performance of circuitry, leading to tight temperature constraints
2. Strong dependence on geometry
3. Three-dimensional transport
4. Conjugate transport due to coupling between conduction in the solid and convection in the 

cooling fluid
5. Radiation heat transfer, which is often substantial in air cooling
6. Fluid must be electrically insulating if brought into direct contact with circuitry

Steady-state problems are usually of interest, though transient effects may be important at startup 
and shutdown. Other characteristics that arise for particular applications are discussed in special-
ized books in this area such as Steinberg (1991), Kraus and Bar-Cohen (1983), Seraphin et al. (1989), 
and Incropera (1999).

In the design of thermal systems for the cooling of electronic equipment, such as those sketched 
in Figure 1.12, typical inputs, requirements, constraints, and design variables are as follows:

Given quantities: Energy dissipated per component or thermal energy to be removed, number 
of components, basic geometry, and configuration of the circuitry

FIGURE 5.20 Temperature differences obtained in the cooling of electronic equipment for different modes 
of heat transfer. (Adapted from Kraus and Bar-Cohen, 1983.)
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Requirements: Desired temperature level of electronic components such as chips. There 
should be no concentration of thermal effects, or hot spots.

Constraints: Material temperature limitations, size and geometry limitations, fluid in contact must 
be electrically insulating, limitations on fluid flow rate from consideration of pressure needed

Design variables and operating conditions: Cooling fluid, mode of cooling including pos-
sibility of phase change, particularly boiling, inlet temperature of fluid, fluid flow rate, 
location of components and boards, materials used, fan characteristics, fins for enhanced 
cooling, and dimensions

Modeling and simulation are used to obtain the temperature distributions in the system, par-
ticularly the temperatures in the various devices and electronic components, for various ranges of 
operating conditions and design variables, as discussed in Example 3.7 for a particular geometry. 
Also of interest are the pressure head needed for the flow, in order to select an appropriate blower 
or fan, and the overall energy removed from the system. If hot spots arise, despite efforts to elimi-
nate them through enhanced cooling rates, local heat removal arrangements such as heat pipes, 
heat sinks, impinging jet of cold fluid, and localized boiling may be employed (see Figure 1.2). A 
computer-aided design (CAD) system may also be developed for specific types of electronic equip-
ment, through the use of relevant software, graphics, interactive inputs, and appropriate databases.

The design process is generally first directed at the cooling parameters, keeping the geometry 
of the electronic circuitry unchanged. Therefore, different fluids, flow rates (as given by different 
fans or blowers), inlet fluid temperature (as varied by the use of a chiller), and flow configurations 
(due to different locations of inflow/outflow ports and vents in the casing) are considered to deter-
mine if an acceptable design is obtained. If this effort is not successful, the dimensions, number, 
and locations of the boards and the components may have to be varied within the given constraints. 
If even this does not lead to an acceptable design, the mode of cooling may be varied, for instance, 
going from natural to forced convection in air, to liquid immersion, or to boiling. Hydrofluorocarbon 
and fluorocarbon coolants are commonly used for immersion cooling and for boiling. The typical 
convective heat transfer coefficients for different modes and fluids are (in W/(m2 ⋅ K))

Natural convection, air 5–10

Forced convection, air 10–50

Immersion cooling, liquids, natural convection 100–200

Immersion cooling, liquids, forced convection 200–500

Boiling, common liquids 1,000–2,000

Boiling, liquid nitrogen 5,000–10,000

Therefore, a considerable amount of control is obtained by varying the fluid and the mode of heat 
transfer. If adequate cooling is still not obtained, as indicated by the presence of hot spots and exces-
sive temperatures in electronic components such as devices and chips, techniques to enhance local 
heat transfer rates and modifications in the design of the boards and the circuitry may be undertaken. 
Obviously, the latter approach involves a strong interaction with the designers of the electronic circuit for 
the given application. The design of the cooling system, therefore, may be directed at problems that arise 
at the component, board, server, rack or data center level. The thermal system to be designed is strongly 
influenced by the basic problem to be solved, the geometry, and the heat flux levels. A relatively simple 
design problem is shown in the following example to illustrate some of the basic considerations involved.

Example 5.5

Consider the forced convective cooling of the electronic system shown in Figure 5.21. Air is the 
cooling fluid and the vertical printed circuit boards contain electronic components, each of which 
dissipates 200 W. The height, width, and thickness of the board are given as 0.1, 0.1, and 0.02 m, 
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respectively. Either copper or aluminum may be considered as representative of the material for 
the boards. The temperature of the components must not exceed 100°C, even if the air tempera-
ture in the enclosure containing the boards rises to a value as high as 55°C. Develop a mathemati-
cal model for this problem, assuming the convective heat transfer coefficient to be 20 W/(m2⋅K), 
and design the system to accommodate a given number of electronic components.

SOLUTION

By employing a given value of the convective heat transfer coefficient, the problem is consider-
ably simplified because the fluid flow in the enclosure need not be determined. However, in 
general, the conjugate problem of conduction in the boards coupled with convective transport 
in the fluid has to be solved, requiring the solution of coupled nonlinear PDEs, as considered in 
Example 3.7. In the present case, a simple mathematical model is derived to determine the tem-
perature distribution in the board.

The thermal conductivity k for copper is found from the literature as 391 W/(m·K) and that 
for aluminum as 226 W/(m·K). Because of the small thickness of the board, the Biot number Bi 
is found to be very small. For aluminum, Bi = 20 × (0.02/2)/226 = 8.8 × 10−4, where 0.02/2 m 
is the half-thickness of the board. Therefore, uniform temperature may be assumed across the 
board thickness. Because the width is much larger than the thickness, and because conditions 
do not vary in this direction, uniform temperature may also be assumed in the transverse direc-
tion, reducing the problem to that of a vertical extended surface, as shown in Figure 5.22. The 
bottom of this fin, or extended surface, is in contact with the base of the equipment, which is 
assumed to be at room temperature. One final approximation is made to complete the model. 
The total heat dissipated by the electronic components is assumed to be uniformly distributed 
over the total volume of the board, giving rise to a volumetric energy source q″′ in W/m3 in the 
board, as shown.

FIGURE 5.21 Physical arrangement of an electronic system being cooled by forced convection with air  
as the fluid.
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The governing equation for this simplified conduction problem is
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where y is the vertical coordinate distance, as shown in Figure 5.22, P is the perimeter of the 
board, A is its cross-sectional area, and Ta is the average air temperature surrounding the board. 
Here, A = wt and P = 2(w + t), where w and t are the width and thickness of the printed circuit 
board, respectively. The volumetric heat generation q″′ is given by
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where V is the volume of the board, L is its length, and Q is the total power dissipated in each 
board. If this dissipated power is due to a number of similar electronic components, n, each dis-
sipating heat at the rate of Qs, then Q = nQs, where Qs is given as 200 W. The governing equation 
may also be written more conveniently as
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where θ = T − Ta and Y = y/L. The imposed boundary conditions are
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Therefore, the mathematical model yields a second-order ordinary differential 
equation, which may be solved analytically or numerically to obtain the temperature distribu-
tion in the board for a variety of operating and design conditions. Numerical modeling with 

FIGURE 5.22 Model of an electric circuit board, as considered in Example 5.5.



263Acceptable Design of a Thermal System

the Runge-Kutta method is particularly appropriate because of the high level of accuracy and 
versatility obtained by this method. A shooting scheme is needed for this boundary value prob-
lem to satisfy the conditions at Y = 0 and 1, as outlined in Chapter 4. Matlab may be employed, 
using an ODE solver such as ode45, as discussed earlier. A root solving method may be used 
for iterating the solution to satisfy the condition at Y = 1. The programs given in Appendix A 
may be easily modified to obtain the desired converged solution. The results obtained with 
a Newton-Raphson correction scheme applied to the fourth-order Runge-Kutta method are 
presented here.

Figure 5.23 shows the calculated temperature distributions in the boards for the two materials, 
considering different numbers of electronic components located on the board. The temperature 
limit, which is taken as θ = 45°C to reflect the worst condition with the largest air temperature, is 
also shown. It is seen that only three components located on a copper board yield a maximum 
temperature below the limiting value. This information leads to the selection of copper as the 
appropriate material for the board to obtain an acceptable design. The limitation on the number 
of components is also demonstrated by these results. For a larger number of components per 
board, other design variations are necessary. The effect of varying the width of the board for five 
components is shown in Figure 5.24. If the width can be increased to 0.3 m, five components can 
be accommodated without violating the temperature limit. Similarly, increase in the thickness and 
height of the board leads to reduction in temperature levels, allowing additional components to 
be located per board. In addition, higher convection heat transfer rates would be needed if higher 
component densities were desired.

Clearly, the mathematical model for this problem is a relatively simple one and the complex-
ity due to coupling with convective flow has been avoided. Inclusion of the effect of geometry, 
turbulent flow, localized heat dissipation, and several other considerations that are important in 
practical systems requires a much more elaborate model (see Example 3.7). However, the results 
obtained from such an accurate model would again indicate the maximum temperatures encoun-
tered and the maximum number of components that may be located on a board without exceed-
ing the temperature limit. These results are then employed to obtain an acceptable design that 
meets the given requirements and constraints.

5.4.3 environmentAl systems

Thermal systems involved in environmental problems have grown considerably in interest and 
importance in the recent years because of increasing concern with the environment and the need to 
design efficient systems for the disposal of rejected energy, chemical pollutants, and solid waste. Of 

FIGURE 5.23 Temperature distribution for (a) copper and (b) aluminum board with different numbers of 
heat dissipating electronic components.
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particular concern is the discharge of thermal energy and chemicals into water bodies such as lakes 
and into the atmosphere. The decay and spread of the discharge determine the effect on the local 
environment as well as on a global scale. Sketches of the flows generated by such discharges into 
the environment are shown in Figure 5.25 (see also Figure 1.14).

Environmental processes are generally quite complex due to the strong dependence of the trans-
port mechanisms on fluid flow. Some of the important characteristics of these processes are

1. Time-dependent, often periodic, phenomena
2. Generally turbulent flow
3. Combined modes of heat transfer, including phase change
4. Combined heat and mass transfer

FIGURE 5.24 Effect of the variation of the board width w on the temperature distribution for a copper board 
with five electronic components.

FIGURE 5.25 Flows generated in the ambient medium due to heat rejection.



265Acceptable Design of a Thermal System

5. Chemical reactions in some cases
6. Dependence on location, topology, and local ambient conditions
7. Stable thermal stratification of the air or water environment

The last one refers to colder or denser fluid lying below warmer or lighter fluid, impeding convec-
tive flow. All these aspects tend to complicate the modeling of environmental processes. Therefore, 
the design of the relevant thermal systems is quite involved.

The design problem varies from one application to the next. Let us first consider thermal or mass 
discharges to human-made ponds, lakes, cooling towers, etc., as shown in Figure 1.14. The design 
problem may then be formulated as

Given quantities: Total rate of energy or mass discharged, and geographical location, which 
fixes the average and time-dependent values of the local solar flux, wind speed, relative 
humidity, cloud cover, and ambient temperature.

Requirements: Temperature or concentration levels must not exceed specific values at 
the outfall or discharge into the water body or at a particular distance from it. Such 
requirements often arise from governmental regulations.

Constraints: Limits on maximum flow rate, maximum size of cooling pond, cooling 
tower, etc.

Design variables: Location of outfall or discharge, location of intake of water for a power 
plant or industrial unit, dimensions of inflow/outflow channels, hardware for varying the 
flow rate, temperature or concentration at outfall.

A similar formulation for the design problem in other environmental applications, such as solid 
waste disposal, may be obtained in terms of given quantities, requirements, constraints, and design 
variables. For instance, incineration as a means to dispose of solid waste involves a combustion 
furnace in which the waste material is burned at relatively high temperatures to avoid undesirable 
combustion products. The system design involves designing the furnace with the given require-
ments and constraints on temperatures, flow rates, and energy input/output.

The heat transfer from a cooling pond such as a lake involves

1. Solar flux absorbed in the pond
2. Heat loss due to evaporation
3. Heat transfer to the air due to convection
4. Radiative transport to the environment
5. Energy transfer at the bottom and sides

All these transport mechanisms are fairly involved and simplifications are generally used to 
estimate the resulting heat and mass transfer. The solar flux is assumed to be absorbed largely at 
the surface, heat losses at the bottom and sides are often neglected for deep lakes with large surface 
area, and so on. The resulting transport rates depend on the wind speed, relative humidity, cloud 
cover (varying from 0 for a clear sky to 1 for an overcast sky), location, time of day and year, and 
local topology. However, all the transport rates may be combined into a simple expression such as

 ( )q h T Ts e= −  (5.13)

where h is an overall heat transfer coefficient; q is the total heat transfer rate at the surface, includ-
ing evaporation; Ts is the surface temperature; and Te is known as the equilibrium temperature, 
being the temperature that the surface must attain to make the heat transfer rate q become zero. 
This temperature Te can often be represented as a sinusoidal variation, with appropriate values 
given for h over different seasons such as winter and summer (Moore and Jaluria, 1972). Because 
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the basic process is periodic, the integral of the heat transfer over 365 days of the year is zero, 
i.e., for time τ in days,

 q d 0
0

365

∫ ( )τ τ =  (5.14)

Therefore, a natural lake or pond may be modeled to compute the temperature distribution over 
the year. If thermal energy is discharged into the water body, its temperature must rise to get rid of 
the additional energy. In addition, the recirculating flow set up in the water body may result in a tem-
perature increase at the intake for a power plant. Such a temperature rise increases the temperature 
for heat rejection and thus decreases the efficiency of the power plant. Let us consider an example 
of such a thermal system.

Example 5.6

A shallow pond of length 100 m, width 20 m, and depth 4 m is to be used to reject thermal 
energy from an industrial facility. The equilibrium temperature Te of the pond is 25°C and the 
overall convective heat transfer coefficient h is given as 50 W/(m2·K). This includes the effects of 
all the surface energy loss mechanisms. The difference in temperatures between the intake and 
the discharge is given as 10°C and the intake temperature must not rise beyond 2.5°C due to 
heat rejection, as limited by government environmental regulations. The turbulent transport may 
be modeled as an enhanced diffusive process with the eddy diffusivity and viscosity taken as 
10−5 m2/s over the flow region. Heat loss to the ground at the bottom may be neglected. Design 
a thermal system to reject 400 kW to the pond. How would this design change if higher energy 
levels were to be rejected to the pond?

SOLUTION

The given quantities are the pond dimensions, the total amount of heat rejected Q, the tempera-
ture difference ΔT between the intake and outfall, and the surface heat transfer parameters h and 
Te that characterize the local ambient conditions. The requirement is that the temperature rise at 
the intake must not exceed 2.5°C. The main constraint is that the energy rejected to the pond must 
be rejected to the environment for a steady-state circumstance.

This is a fairly typical problem encountered in heat rejection to water bodies. The only design 
variables are the locations and dimensions of the intake and outfall channels. The dimensions of 
these channels will determine the flow velocities. In practice, limitations are generally imposed 
on the discharge velocity. Because the pond is given as shallow, with the depth H much less than 
the length L and width W, uniform conditions over the depth may be assumed. Then heat transfer 
from the pond occurs only at the surface and the total thermal energy rejected to the pond must 
be lost to the environment at the surface for steady-state conditions, which may be assumed to 
apply here.

Let us first consider a very simple one-dimensional model with uniformity assumed over the 
pond width as well, as shown in Figure 5.26. Then the total rate of heat rejected Q is given as

 Q C uHW T hW T T dxp e

L

∫ ( )= ρ ∆ = −
0

  (a)

where u is the average discharge velocity in the x direction and T(x) is the temperature distribution 
in the pond. The governing equation for T(x) is

 u
dT
dx

d
dx

dT
dx

h T T
C H

h
e

p

( )= ε



 −

−
ρ

  (b)



267Acceptable Design of a Thermal System

where εh is the eddy thermal diffusivity. The boundary conditions are

 at 0:   and at  : 0= = = + ∆ = =x T T T T x L
dT
dx

o L   (c)

where To is the temperature at the outfall, x = 0, and TL is the temperature at the intake, x = L. It is 
assumed that there is no heat loss beyond x = L, giving the zero gradient condition.

This problem may be conveniently solved numerically by finite-difference methods, starting 
with TL taken as Te and To as Te + ΔT. The temperature distribution over the pond surface is cal-
culated. If TL increases above Te, the new values of TL and To are employed and the temperature 
distribution recalculated. This iterative process is carried out until the temperature distribution 
does not vary significantly from one iteration to the next. A typical convergence criterion would 
be | |1 − ≤ ε( ) ( )+

T TL
n

L
n  where the superscripts indicate the iteration number, and ε is a chosen small 

quantity. Figure 5.27 shows the computed results for different values of the total rate of energy 
rejected to the pond. It is clearly seen that the temperature rise at the intake is less than the allow-
able value of 2.5°C for Q = 400 kW. Therefore, this is an acceptable design. In fact, the tempera-
ture rise at the intake is within the given limit even for Q = 600 kW. For still higher values of Q, 
the given requirements cannot be met and an additional heat rejection system, such as a cooling 
tower, will be needed.

FIGURE 5.26 (a) Three-dimensional problem of heat rejection to a body of water, along with (b) a simplified 
one-dimensional model.

FIGURE 5.27 Temperature distribution from the one-dimensional slug flow model for different values of 
energy rejected Q, for Example 5.6.
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For small values of Q, the intake temperature is unchanged. However, as Q increases, the flow 
rate and thus u increases, resulting in an increase in the temperature level needed to lose the 
increased amount of energy by surface heat transfer. This gives rise to a larger intake temperature. 
An increase in the eddy diffusivity εh, which represents the turbulence due to wind and the flow 
in the pond, also increases the intake temperature due to enhanced mixing. It is also noted from 
this figure that the intake does not have to be at the far end of the pond to satisfy the given require-
ments of the problem. Because piping and pumping costs increase with distance, an optimal solu-
tion that minimizes costs, while satisfying the design problem, can be found.

The model used is an extremely simple one, but it allows us to determine the location of the 
intake to restrict the temperature rise there. Eddy viscosity and diffusivity are dependent on the 
flow field and are, thus, not constants but vary with location. Information available in the litera-
ture may be used to represent the turbulent transport more accurately. Other turbulence closure 
models may also be used for higher accuracy (Shames, 2002). Two-dimensional models have the 
advantage of considering different locations of the intake and outfall over the surface of the pond 
and of varying the channel widths. For instance, two flow configurations are shown in Figure 5.28, 
along with typical flow results in terms of streamlines given for different values of the stream func-
tion Ψ. Uniformity is again assumed in the third direction and the governing convective transport 
equations are solved to obtain the temperature distribution over the pond surface. From such 
results, the temperature at the intake is determined for different flow configurations and intake/
outfall channel dimensions. The intake temperature rises due to the flow recirculation, as well as 
due to the increased energy input into the pond. Again, acceptable designs may be obtained that 
satisfy the given problem statement.

FIGURE 5.28 Two-dimensional surface flow due to heat rejection for two different configurations.
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In actual practice, the problem of heat rejection to water bodies is quite complicated because 
of three-dimensional, turbulent, flows and combined heat transfer modes operating at the surface. 
Frequently, commercially available computer software is used to simulate the flow to obtain the tem-
perature or concentration distributions. Some of the basic considerations involved in such problems 
are indicated by this simple example. This problem is particularly suitable for optimization in order 
to minimize the costs involved in pumping by keeping the intake and outfall as close as possible and 
with minimum piping lengths without violating the intake temperature requirements.

5.4.4 heAt trAnsFer equipment

This is a particularly important topic in the design of thermal systems because heat transfer 
equipment, which includes heat exchangers, condensers, boilers, ovens, and evaporators, is used 
extensively in a wide variety of applications ranging from heating and cooling of buildings and 
automobiles to manufacturing processes. These items may be considered for design as subsystems 
or as systems that arise in specific applications. They may also be designed as general hardware 
that may be employed as components in a variety of systems. Once designed and manufactured, the 
components are available as ready-made items for given sets of specifications. This is particularly 
true of heat exchangers that are often designed and fabricated as separate items that may be incor-
porated into the overall design of the thermal system as components. Let us, therefore, consider the 
design of heat exchangers and outline some of the main concerns that arise.

5.4.4.1 Modeling and Simulation
The analysis of heat transfer processes in heat exchangers is given in most heat transfer textbooks, 
such as those by Lienhard and Lienhard (2011), Incropera and Dewitt (1990, 2001), and Bejan 
(1993). A few simple results are discussed here for the design of systems such as those shown in 
Figure 1.5. For a counter-flow heat exchanger, a simple mathematical model may be developed, as 
discussed in Chapter 3, by employing the following simplifications and assumptions:

1. Steady flow conditions
2. Uniform velocity distribution in pipes, i.e., slug flow
3. Temperature variation only in axial, x, direction; taken as lumped in other directions
4. Negligible conduction in the axial direction
5. Constant properties
6. Overall heat transfer coefficient U constant over heat transfer surface
7. Negligible energy loss to the environment

With these assumptions, the energy balance for a differential element in a counter-flow heat 
exchanger shown in Figure 2.19 may be written as

 1 1 1 2 2 2dQ m C dT m C dT U T dAp p= = = ∆   (5.15)

where dQ is the rate of energy transfer across surface area dA between the two fluids, with dT1 and 
dT2 representing the corresponding temperature changes, with distance from one end, and ΔT is the 
local temperature difference T1 − T2. If these equations are integrated over the total heat transfer 
surface area A, we obtain the total heat transfer rate Q as

 
 1 1 1, 1, 2 2 2, 2,( ) ( )= − = −Q m C T T m C T Tp i o p o i  (5.16a)
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Here, U is the overall heat transfer coefficient, and the remaining quantities are the same as those 
defined with respect to Figure 2.19. If Q is positive, fluid 1 is hotter than fluid 2; otherwise, fluid 2 
is hotter. From these equations,

 T T T T
e

m C m C e
o i i i

S

p p
S

1
/

1, 1, 1, 2,
1 1 2 2 ( )( )= − − −

−
 (5.17)

where
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Therefore, the outlet temperature of a given fluid from the heat exchanger may be determined if 
the two entering temperatures are given. Similarly, the outlet temperature of the other fluid may be 
obtained by interchanging subscripts 1 and 2. For the special case of   1 1 2 2m C m C mCp p p= = , it can 
be shown that the temperature difference remains constant at T1,o − T2,i and the outlet temperature 
of fluid 1 is

 
 / 1

1, 1,
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−
+

T T
T T

mC UA
o i
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p

 (5.19)

The temperature difference ΔTm in Equation (5.16b) is known as the logarithmic mean tem-
perature difference (LMTD). For a parallel-flow heat exchanger, shown in Figure 1.5, this mean 
temperature difference is obtained as

 T
T T T T

T T T T
m

i i o o

i i o oln /
1, 2, 1, 2,

1, 2, 1, 2,

( ) ( )
( ) ( )∆ =

− − −
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 (5.20)

Therefore, the total heat transfer rate may be determined if all the temperatures are given. In addi-
tion, the outlet temperature of a particular fluid may be computed as just given for a counter-flow 
heat exchanger.

Another approach for the analysis of heat exchangers is based on the effectiveness ε, defined as

  
, ,

Q
Q

Q

mC T Tmax p min hot in cold in( ) ( )ε = =
−

 (5.21)

where Qmax is the maximum possible rate of heat transfer with the same inlet temperatures, fluids, 
and flow rates. It can be shown that Qmax is obtained when the fluid with smaller mCp denoted 
here as 

( )mCp min
 goes through the maximum possible temperature difference. If fluid 1 is the  

fluid with smaller mCp, the effectiveness ε of a counter-flow heat exchanger can be derived from the 
energy balance equations to yield

 1
/

where  1
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Here, M = mCp and UA/Mmin is known as the number of transfer units (NTU). The dependence 
of the effectiveness ε on Mmin/M2, or Mmin/Mmax, and on the NTU has been studied for a variety 
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of heat exchangers (Kakac et al., 1983; Kays and London, 1984). Figure 5.29 shows a few typical 
results presented in graphical form. Therefore, for given conditions, the NTU and Mmin/Mmax may be 
calculated and the appropriate charts or equations used to determine the effectiveness ε. The actual 
heat transfer is then obtained from Equation (5.21).

The overall heat transfer coefficient U is determined largely from heat transfer correlations for 
flow in channels and pipes. A commonly used correlation is the Dittus-Boelter equation, which 
gives

 Nu 0.023 Re Pr with Re and Pr0.8( ) ( )= = =
ν

= ν
α

hD
k

VD

f

n  (5.23)

Here, Nu is the average Nusselt number, Re is the Reynolds number, Pr is the Prandtl number, D 
is the diameter, and n is 0.4 if the fluid is being heated and 0.3 if it is being cooled. The hydraulic 
diameter Dh, which is four times the flow cross-sectional area divided by the wetted perimeter, 
is used for annular regions, giving Dh = Do − Di, with Do and Di representing the outer and inner 
diameters, respectively. The various thermal resistances in the heat exchanger are added to obtain 
the overall thermal resistance and thus the heat transfer coefficient U. For a tubular heat exchanger, 
neglecting conductive resistances, this yields

 
1

1/ 1/( )( )=
+

U
hi ho

 (5.24)

where hi and ho are convective heat transfer coefficients for the inner and outer fluids, respectively. 
Conductive resistances, if significant, may also be included. Fouling of heat exchangers leads to 
deposits on the surfaces and thus to a higher conductive resistance. This effect may be included as a 
fouling factor, which gives the additional resistance due to fouling for different fluids and operating 
conditions.

5.4.4.2 Design Problem
The foregoing discussion presented some of the salient points in the modeling and analysis of heat 
exchangers. Because of the importance of heat exchangers in engineering systems, extensive work 
has been done on different configurations, fluids, applications, and operating conditions. For fur-
ther details on the results available in the literature, the references given earlier, along with several 
others concerned with thermal systems such as Boehm (1987), Stoecker (1989), and Janna (2014), 

FIGURE 5.29 Effectiveness ε of (a) parallel-flow and (b) counter-flow heat exchangers in terms of the NTU 
and Mmin/Mmax. (Adapted from Incropera and Dewitt, 2001.)
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may be consulted. Detailed results are available on heat transfer coefficients, fouling, effectiveness, 
pressure drop in heat exchangers, and many other important practical aspects.

The formulation of the design problem for a heat exchanger is strongly influenced by the appli-
cation because the requirements and constraints may be quite different from one circumstance to 
another. A typical design problem might involve the following:

Given quantities: Fluid to be heated or cooled, its inlet temperature and flow rate.
Requirements: Outlet temperature of the fluid to be heated or cooled.
Constraints: Limits on inlet temperature and flow rate of other fluid, and on fluids that may 

be used. Constraints on dimensions and materials.
Design variables: Configuration and dimensions of heat exchanger.
Operating conditions: Inlet temperature and flow rate of the other fluid, which is heating/

cooling the given fluid, ambient conditions.

Then an appropriate type of heat exchanger is selected and its size determined to obtain the 
surface area A that would lead to the required outlet temperature. The dimensions and materials are 
chosen with the given constraints in mind. Frequently, both fluids are given; otherwise, an appro-
priate fluid may be chosen for superior heat transfer characteristics, low fouling, low cost, lower 
viscosity that results in smaller pressure needed for the flow, and easy availability. Either of the 
two approaches given here, LMTD and NTU methods, may be used. The design problem may also 
require a particular heat transfer rate for specified fluids, flow rates, and inlet temperatures. Again, 
the equations given earlier and charts available in the literature may be used to design the system.

Generally, in the design of heat exchangers, the outer diameter is constrained due to size limita-
tions. The inner tube diameter and the length are then the main design variables for parallel-flow 
and counter-flow heat exchangers. The flow rates are used to compute the Reynolds number, which 
is used to determine the convective heat transfer coefficient. The overall heat transfer coefficient U 
is then obtained by including the conductive resistances and fouling factors. From the calculated 
value of U, the heat transfer rate and the outlet temperatures are determined using the energy bal-
ance equations, given previously. Several problems are given at the end of this chapter to illustrate 
the modeling, simulation, and design of heat exchangers.

The model for a heat exchanger given here is fairly simple. Many of the approximations, such as 
negligible heat losses, radially lumped temperature distributions, negligible axial conduction, and 
uniform velocity, may be relaxed for more accurate results. Analytical or numerical solution of the 
governing equations may be employed to obtain the desired temperature variation in the system and 
the heat transfer rate. The convective problem is generally not solved and heat transfer correlations 
are used to determine the overall heat transfer coefficient. However, more accurate correlations 
as well as detailed simulations of the convective problem are available for use in designing these 
systems. The following example illustrates the use of the preceding analysis for the design of a heat 
exchanger.

Example 5.7

Design a counter-flow, concentric-tube heat exchanger to use water for cooling hot engine oil 
from an industrial power station, as shown in Figure 5.30. The mass flow rate of the oil is given as 
0.2 kg/s and its inlet temperature as 90°C. The water is available at 20°C, but its temperature rise 
is restricted to 12.5°C because of environmental concerns. The outer tube diameter must be less 
than 5 cm and the inner tube diameter must be greater than 1.5 cm due to constraints arising from 
space and piping considerations. The engine oil must be cooled to a temperature below 50°C. 
Obtain a feasible design if the length of the heat exchanger must not exceed 200 m. Redesign 
the system if the length is restricted to 100 m. Even though the fluid properties vary with tem-
perature, take these as constant for simplification, with the specific heat at constant pressure (Cp),  
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viscosity (μ), and thermal conductivity (k) as 2100, 0.03, and 0.15 for the oil, and as 4179, 
8.55 × 10−4, and 0.613 for water, all in S.I. units.

SOLUTION

Several requirements and constraints are given as inequalities. Appropriate values may thus 
be chosen to satisfy these. Therefore, the outlet temperature of the oil may be taken as 45°C, 
the inner tube diameter as 2 cm, and the outer tube diameter as 4 cm. These values satisfy 
the inequalities, but may have to be adjusted if a feasible design is not obtained.

 
Total energy lost by the oil Q

0.2 2100 90 45 18.9 kW

, , ,( )
( )

= = −

= × × − =

m C T Th p h h i h o

where the subscript h refers to the hot oil, i to the inlet, and o to the outlet. The mass flow rate is 
represented by m and the temperatures by T. Assuming zero heat loss to the ambient, the energy 
lost by the oil is gained by the water. Therefore,
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Because the temperature rise is restricted to 12.5°C,

 

18,900
4179 12.5

0.36 kg/s≥
×

=mw

Let us choose the mass flow rate of water as 0.4 kg/s, which gives the outlet water temperature that 
satisfies the given constraint on temperature rise, as
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Therefore, the LMTD, ΔTm, is
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Neglecting the conductive resistances due to tube walls and the layer formed by fouling, the 
overall heat transfer coefficient U is given by

 1
1/ 1/( ) ( )=

+
U

h hi o

FIGURE 5.30 Counter-flow heat exchanger considered in Example 5.7.
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where hi and ho are the convective heat transfer coefficients in the inner tube and the outer 
annulus. To determine if the flows are laminar or turbulent, the Reynolds numbers ReD need to be 
determined. For water flow in the inner tube,
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0.02 8.55 10
2.98 104
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= ×
π × × ×

= ×−
m
D
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Therefore, the flow is turbulent and a correlation such as the Dittus-Boelter equation (Incropera 
and Dewitt, 2001) may be used to obtain the heat transfer coefficient hi. Therefore,

 Nu 0.023(Re ) Pr 0.023 29,800 5.83 176.80.8 0.4 0.8 0.4( ) ( ) ( )= = =D D

because the Prandtl number Pr = μCp/k = 5.83 for water. This gives hi as
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For flow in the annulus, the hydraulic diameter Dh = Do – Di = 0.02 m. The Reynolds number  
ReDh  is
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This implies that the flow in the annulus is laminar. For Di /Do = 0.5, the Nusselt number for 
developed annular flow with one surface isothermal and the other insulated may be employed to 
calculate the heat transfer coefficient at the inner surface of the annulus (Incropera and Dewitt, 
1990, Table 8.2). The Nusselt number thus obtained is

 Nu 5.74= =h D
k

D
o h

h

Therefore,

 5.74 0.015
0.02

43.1 W/(m K)2= × = ⋅ho

and
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Now, the total heat transfer is given by

 = ∆Q UA Tm

where A is the heat transfer area, being the inner surface of the annulus. Therefore, if L is the 
length of the heat exchanger,

 42.8 0.02 39.5= π ∆ = × π × × ×Q U D L T Li m

This gives L as

 18,900
42.8 0.02 39.5

177.9 m=
× π × ×

=L

This satisfies the given requirement that the length be less than 200 m. Therefore, a feasible or accept-
able design is obtained. Clearly, there are many other acceptable designs because several variables 
were chosen arbitrarily to satisfy the given constraints and requirements. This is typical of most design 
problems where there is considerable freedom in the choice of design variables, leading to a domain 
of acceptable designs from which an optimal design may be determined for a given objective function.

Let us now consider variations in this design to obtain a length less than 100 m. It is obvious 
from the preceding calculations that the heat transfer coefficient in the tube hi is very high and 
has a small effect on the overall heat transfer coefficient U. Therefore, a reduction in Di does not 
significantly affect U, but it reduces the area A, which leads to an increase in L. The outer diameter 
may be increased up to 5 cm, but this results in a reduction in ho. The effect of changing other 
variables may similarly be considered. The best course of action is to reduce Do while keeping 
Di unchanged. If Do is taken as 3 cm, Di/Do = 0.667, Re 169.8,=Dh  and NuDh is obtained from 
Incropera and Dewitt (2001) as 5.45. This gives ho as

 5.45 0.15
0.01

81.8 W/(m K)2= × = ⋅ho

This yields the value of U as 80.6 W/(m2 · K), which leads to L = 94.5 m. Therefore, this is an accept-
able design because the length constraint of 100 m is satisfied. It is seen here that once an acceptable 
design is obtained, other designs can easily be generated by varying the design variables. In addition, 
the sensitivity of the results to changes in the variables, as obtained from the simulation or a sensitivity 
analysis, can be used effectively to obtain acceptable designs for other constraints and requirements.

Similar design procedures can be used for other heat exchanger designs. More accurate math-
ematical models may also be employed in cases where higher accuracy is desired and for more 
complex problems. Also, additional effects such as fouling may be included for practical systems. 
It must also be noted that numerical software may easily be developed for such problems and 
used effectively to consider wide ranges of design parameters and operating conditions.

5.4.5 FluiD Flow systems

Fluid flow is an important part of thermal systems because the transport of mass and energy occurs 
due to the flow of fluids such as refrigerants, combustion products, water, and air. Although convec-
tive transport is relevant to many different types of thermal systems and has been considered for 
several applications in the preceding sections, fluid flow systems such as the pipe networks shown 
in Figure 1.20 are also important in many practical circumstances. Figure 5.31 shows a couple of 
fluid systems that involve a piping network as well as pumps to move the fluid. The design of such 
fluid flow systems generally involves the following two considerations:

1. Selection of fluid flow equipment
2. Design of the piping system for the flow
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The first consideration is directed at the selection of equipment such as pumps, fans, blowers, 
compressors, valves, and storage vessels. Obviously, the design of these components may also be 
undertaken, depending on the application and the scope of the overall effort, as discussed previously 
for heat exchangers. The second aspect relates to pressure or head losses in pipes due to friction, 
bends, pipe fittings, joints, valves, etc., and the appropriate overall pressure difference that must be 
provided to maintain a given flow rate.

5.4.5.1 Selection of Equipment
In selecting appropriate equipment for a given application, it is necessary to know the desired flow 
rate, pressure head needed, and the fluid involved. Constraints on dimensions, flow velocity, system 
weight, etc., are also important considerations. The requirements and constraints are then matched 
with the specifications of the available hardware and a selection is made based on cost and charac-
teristics of the equipment. A brief description of some of this equipment is given in the following 
for the sake of completeness.

A pump is a device used to move fluid by drawing the fluid into itself and then forcing it out 
through an exhaust port. It may be used to move liquids in pipelines, to lift water from a water 
processing plant to a storage tank high above the city, to empty a container, or to put an oil under 
pressure as in a hydraulic brake system. Many different types of pumps are available, often being 
classified as reciprocating, rotary, or centrifugal. Sketches of these three types of pumps are shown 
in Figure 5.32. In a reciprocating pump, an inlet valve, which opens at appropriate points during the 
motion of a piston, allows the lower pressure fluid to flow into a chamber. Then the back-and-forth 
movement of the piston is employed to push the fluid through an outlet valve. In a rotary pump, the 
rotating elements contain fluid that is physically pushed out. Both of these types of pumps employ 
fixed movements of the fluid and are thus positive displacement devices. The centrifugal pump 
raises the pressure by imparting kinetic energy to the fluid. The fluid picks up velocity as it flows in 

FIGURE 5.31 Two fluid flow systems, involving flow in pipes and pumps.
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the pump and, as it exits, a pressure rise is generated due to the centrifugal force. Further subdivi-
sion of centrifugal pumps as axial, radial, and mixed flow pumps is made according to the direction 
of fluid flow with respect to the axis of rotation. Several other types of pumps are available for fluid 
flow systems.

The characteristics of a pump may be written in terms of the pressure difference Δp generated 
by it and the mass flow rate m of a given fluid. Figure 5.33 shows a typical characteristic curve, 
indicating the decrease in the pressure due to friction and other losses as the flow rate increases. 
Curve fitting may be used to obtain a correlating equation, which represents such data on pump 
characteristics. This equation may be of the form

 , 0 ,   , 0 1 2
2f p m or for example p A A m A m( )∆ = ∆ = − −    (5.25)

where A0, A1, and A2 are constants. A0 gives the highest pressure generated, which arises under no-
flow conditions. Similar correlations may be derived for different types of pumps if experimental 
data on their characteristics are given. Therefore, the constants, such as the A’s in Equation (5.25), 
characterize a particular pump for a given fluid. The specifications of a pump may then be given 
in terms of the pressure generated for a specified flow rate of a particular fluid, the maximum flow 
rate that can be delivered, or the maximum pressure that can be generated. The requirements for 
an application can then be employed to select a pump for the purpose. See Pollak (1989), Warring 
(1984), and Boehm (1987) for further details.

A fan is also a device used to move fluids, though the pressure head is generally quite small. The 
flow is generated by producing a low compression ratio, as in ventilation. Blowers are fans that oper-
ate with most of the resistance to flow downstream of the fan. Exhausters are also fans that operate 
with most of the resistance upstream of the fan. Three main types of fans are usually defined. These 
are axial, propeller, and centrifugal, with the first two employing the angle of attack of the rotating 
blade to move the fluid. The housing plays an important role in controlling the flow rate in axial 
fans, whereas propeller fans are not good for controlling the flow. In centrifugal fans, the centrifugal 
force acting at the perimeter of the fan results in a pressure rise as the gas leaves the fan. The blade 

FIGURE 5.32 Different types of pumps. (Adapted from Boehm, 1987.)

FIGURE 5.33 Typical graph representing the characteristics of a pump.
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profiles, some of which are shown in Figure 5.34 from Boehm (1987), affect the performance of the 
fan significantly. The characteristics may again be given in terms of the pressure head Δp and mass 
flow rate m. The diameter D and the revolutions per minute (RPM) N may also be included to obtain 
an equation of the general form

 f p m D N or for example p Am D Na b c, , , 0 ,   , ( )∆ = ∆ =  (5.26)

Here, A, a, b, and c are constants obtained from a curve fit of the data on the equipment. For 
further details on fans and their characteristics, see Thompson and Trickler (1983) and Avallone 
et al. (2007).

A compressor is a machine that increases the pressure of a gas or vapor by reducing the fluid 
specific volume as it passes through the equipment. Compressors are used in a wide variety of appli-
cations such as cleaning, pneumatic tools, paint spraying, refrigeration, and tire inflating. Again, 
there are several types of compressors such as reciprocating, rotary, centrifugal, jet, or axial flow, 
depending on the mechanical means used to compress the fluid. The thermodynamics of compres-
sors are given in most textbooks on thermodynamics, such as Van Wylen et al. (1994), Howell and 
Buckius (1992), and Cengel and Boles (2014). The energy needed for an actual or real compressor 
is compared against ideal isothermal or adiabatic processes to yield the compression efficiency. The 
characteristics of a compressor may be given in terms of the flow rate and the pressure generated 
for a given fluid such as air or a refrigerant like ammonia. For further details on different types of 
compressors and their characteristics, see Gulf (1979), Bloch (2006), and Brown (2005).

Other fluid flow equipment may similarly be considered and selected for different applications. 
Storage vessels are commonly used to provide a buffer between the supply and the demand. An 
example of this is the household hot water storage tank, which is used to meet the demand for hot 
water when the outflow exceeds the inflow, as in the morning. Similarly, storage of thermal energy 
in solar energy utilization is an essential part of the overall system. Figure 5.35 shows a few com-
mon types of storage vessels from Boehm (1987). Valves are important ingredients in the success-
ful design and operation of several thermal systems. Many types of valves, such as globe, gate, 

FIGURE 5.34 Different blade profiles in fans. (Adapted from Boehm, 1987.)
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butterfly, and ball, shown in Figure 5.36, are available to provide shut-off, open-flow, or throttling. 
The main consideration in throttling valves is the pressure drop as a function of the flow rate for a 
given fluid. The characteristics may therefore be given as  , 0f p m( )∆ = . Check valves are used to 
obtain flow in one direction only. The flow rate is then given as a function of the opening size.

Extensive information is available in the literature on fluid flow equipment, particularly on the 
different types of devices and their basic characteristics. The manufacturers of these devices gener-
ally give the specifications in terms of the flow rates and the pressures, along with limitations on 
their use with respect to the fluid, temperatures, and environmental conditions. The characteristic 
curves obtained from prototype testing are also available in many cases. From this information and 
the needs of the given application, the appropriate equipment may be selected. However, it must be 
reiterated that these equipment designs may also be undertaken separately if the needs of the project 
require it.

FIGURE 5.35 Common types of storage vessels. (Adapted from Boehm, 1987.)

FIGURE 5.36 Schematic diagrams for (a) globe, (b) gate, (c) butterfly, and (d) ball valves. (Adapted from 
Boehm, 1987.)
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5.4.5.2 Piping Systems
The design of piping networks and systems is based on flow rates and the pressure head needed to 
generate the desired flows. The flow rate in a circular tube of diameter D yields the Reynolds num-
ber Re as Re = ρVD/μ = 4 m/πDμ, where ρ is the fluid density, V is the average velocity in the tube, 
m is the mass flow rate, and μ is the fluid dynamic viscosity. Similarly, the Reynolds number may 
be defined and calculated for noncircular tubes, annuli, and channels (Incropera and Dewitt, 2001; 
Shames, 2002). The Reynolds number determines whether the flow is laminar or turbulent (see 
Example 5.7). Empirical results are generally used to obtain the friction coefficient f as a function 
of Re and the pipe surface roughness e, which depends on the material and affects the pressure loss 
due to friction. The basic concepts involved are given in most books on fluid mechanics. Only a brief 
discussion is given here for completeness.

The pressure drop Δp due to friction in a pipe of constant diameter D over a length L is given by 
the expression
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where the friction factor f may be obtained for laminar and turbulent flows from, respectively,
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Here, the second equation is the widely used Colebrook formula for f, and log represents the log-
arithm to base 10. Iteration is used to solve for the root f in this equation, using the techniques dis-
cussed in Chapter 4. Other equations and experimental results presented in graphical form, known 
as Moody’s chart, are available for determining the friction factor f (Fox and McDonald, 2003). For 
noncircular channels, the hydraulic diameter Dh, defined earlier, is used instead of D.

The flow through a variety of fittings, bends, abrupt changes in area, joints, etc., also gives rise 
to pressure head losses, mainly due to flow separation. These losses are usually known as minor 
losses and are expressed as
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where the loss coefficient K is determined experimentally for each circumstance and the total pres-
sure loss is obtained by summing the different losses. Extensive information on experimentally 
determined coefficients for pipe entrances, contractions, bends, valves, fittings, etc., is available in 
the literature (Fox and McDonald, 2003; Janna, 2014) and may be used for calculating the pressure 
drop in a piping system. The modified Bernoulli’s equation is generally used to include the effects 
of friction and minor losses and may be written as
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where the subscripts 1 and 2 refer to two locations in the flow, g is the magnitude of gravitational 
acceleration, z is the vertical location with respect to a chosen ground level, and the summations 
indicate head losses due to friction, bends, etc. Therefore, this equation may be applied to compute 
the pressure head needed for a given flow in a chosen piping system, including the effects of gravity 
involved in raising or lowering the fluid. Many examples of the application of this equation and of 
the calculations for head losses are given in most textbooks on fluid mechanics.
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Example 5.8

A water distribution system consisting of two centrifugal pumps in two parallel-flow channels, as 
shown in Figure 5.37, is to be designed. The total mass flow rate m is the sum of the flow rates  
  1m and   2m in the two paths. Therefore,

   1 2= +m m m  (a)

Also, the characteristics of the two pumps are given in terms of the pressure difference P and flow 
rates as

  ( )  and  ( )1 1
2.75

2 2
2.75= − = −P P A m P P B m   (b)

where the pressures are in kPa and flow rates in kg/s. Here, P1 and P2 are the maximum pressure 
heads generated, for no-flow conditions, and A, B are constants. Curve fitting has been used 
to derive these equations from experimental data, as outlined in the preceding section and in 
Chapter 3. The energy balance, considering elevation change H and friction losses, is obtained 
from Bernoulli’s equation as

 ( )2= +P H C m   (c)

The initial design values of P1, P2, A, B, and C are given as 500, 700, 7, 22, and 4.75, respectively. 
In addition, the pressure head H due to the elevation is fixed and given as 140 kPa. The required 
total flow rate is 6.5 kg/s. Determine if this initial design is satisfactory. If not, vary the design vari-
ables from their initial values up to ±35% of the initial values to obtain an acceptable design. From 
these results, determine conditions under which maximum flow rate is obtained.

SOLUTION

The mathematical model has been derived using the basic ideas presented in the preceding sec-
tion. The fixed quantity is the elevation pressure head H, and the requirement is that the flow must 
be greater than 6.5 kg/s. The design variables that refer to the pump are P1, P2, A, and B, while 
C refers to the friction and other losses in the pipes. The constraints are placed on all the design 
variables as ±35% of the initial values.

We need to simulate this system by solving the given set of nonlinear algebraic equations to deter-
mine the total flow rate. Although all the equations may be used directly in the simulation, the problem 
may be simplified by eliminating m and P to obtain the following two equations for     1 2m and m :

     ,1 2 1 2
2

1 1
2.75( ) ( ) ( )= + + − +F m m H C m m P A m   (d)

     ,1 2 1 2
2

2 2
2.75( ) ( ) ( )= + + − +G m m H C m m P B m   (e)

FIGURE 5.37 Fluid flow system considered in Example 5.8.
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The Newton-Raphson method may be used conveniently to solve this system of two nonlinear 
equations, as discussed in Chapter 4. The resulting values of   1m and  2m  would then yield the total 
flow rate from Equation (a). The pressure head P, if needed, may be calculated from the other 
equations.

If the values of   1m and   2m after the ith iteration are  1,m i and 2,m i, the values for the next itera-
tion are given by

     1, 1 1, 1, 2, 1 2, 2,= + ∆ = + ∆+ +     m m m m m mi i i i i i (f)
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Here, the derivatives and functions are evaluated for the ith iteration and the equations are solved 
for   1,∆m i and  2,∆m i . The derivatives are obtained mathematically from the expressions for F and 
G. Equation (f) then yields the new values for  1m  and  2m .

Using the approach just outlined, the individual as well as the total flow rates are computed. A 
convergence criterion of 10−4 is applied to the sum of the squares of the functions F and G, i.e., the 
iteration is terminated if |F2 + G2| ≤ 10−4. It is ensured that the results are negligibly affected by a 
further reduction in the convergence parameter. Starting with initial, guessed values of 1.0 for both 
  1m and  2m , convergence is achieved in seven iterations, yielding  1m  = 3.277 and  2m  = 2.826. The 
pressure head P is obtained as 316.932 and the total flow rate m as 6.103, which is less than the 
required value of 6.5. Therefore, the given initial design is not acceptable and the design variables 
are changed over the given ranges to obtain higher flow rates.

Figure 5.38 and Figure 5.39 show the computed results in terms of the total flow rate m over 
the range of variation of the design variables. In each case, one design variable is changed while 
the others are held constant at the base or initial values. It is easy to see that the required total flow 
rate m is 6.5 or larger if C is at its lowest value of 3.09. It exceeds 6.5 also if P1 is greater than 605. 
In both cases, the other variables are at the base values. For changes in other design variables, 
the flow rate m is less than 6.5. Therefore, a domain of acceptable designs is obtained. Here, the 
design variables are changed one at a time in order to follow the basic trends and minimize the 
changes needed in the initial design.

Clearly, these results indicate that the highest total flow rate is obtained with the largest allow-
able values of P1 and P2, which represent the largest zero-flow pressures generated by the pumps, 
and the smallest values of A, B, and C, which indicate the smallest head losses. This result is physi-
cally expected. If the costs of making these changes in the design variables are also considered, 
an optimal design may be sought that minimizes the cost while meeting the given requirements 
and constraints. This aspect is considered in detail in later chapters.

5.4.6 other AreAs

In the preceding sections, we considered several different areas of practical application in 
which thermal systems are of particular interest. The main concerns that arise in the design 
of the system were outlined. A few examples were also given to illustrate the use of the design 
procedures presented in earlier chapters. However, it is not possible to consider every type of 
thermal system that arises in engineering practice. Similarly, even for the few areas considered 
in detail in the preceding sections, only a few salient features and examples could be discussed. 
However, these examples and the accompanying discussions serve to indicate the basic nature 
of the design process to obtain an acceptable thermal system for the particular application. 
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Starting with the formulation of the design problem and the conceptual design, the detailed, 
quantitative design process is illustrated, employing different strategies for converging to an 
acceptable design.

The different steps involved in the design process were discussed in earlier chapters and the cou-
pling of all these aspects is illustrated here. The main considerations presented here are expected to 
apply to other types of thermal systems and to different problems. Some of these areas and problems 
are considered again in later chapters with respect to optimization.

5.4.7 Design oF components versus Design oF systems

Throughout this chapter, we have focused on thermal systems, ranging from small systems con-
sisting of only a few parts to large systems consisting of many parts that interact with each other. 
Similarly, in earlier chapters, the treatment and discussions have been largely directed at systems. 
Not much has been said about the design of components, even though each system obviously consists 

FIGURE 5.38 Effect of P1 and P2 on the total flow rate m  in Example 5.8.
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of a number of components and the design of the system is often closely coupled with that of the 
components. In addition, in many cases, the components themselves consist of separate parts and 
may be considered as subsystems or systems for design purposes. Heat transfer and flow equipment 
such as heat exchangers, pumps, blowers, fans, and compressors are examples of items that are gen-
erally treated as components even though these involve interacting parts. Many of these components 
have been considered in preceding sections as parts of a larger system such as an air conditioning 
system or a water flow system. Therefore, it is worthwhile to clarify the design of a system as com-
pared to that for a component.

FIGURE 5.39 Effect of the parameters A, B, and C on the total flow rate m  in Example 5.8.
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A component is basically an independent item that is often available, ready-made, over wide 
ranges of specifications. The characteristics of each component, such as a pump or a blower, are 
also available from the manufacturer, who is obviously involved in the design and production of 
such components. Therefore, the design of the components precedes that of the system. However, 
we have employed the availability of standard items and their characteristics to design systems that 
are obtained by combining different components to obtain a desired thermal process. It is largely a 
question of focus and interest, these being related to the overall system in this book rather than to 
individual components. Some of the discussion in Section 5.4.4 and Section 5.4.5 has been directed 
toward components and their selection, with a few relevant references being given for additional 
information. The design process outlined for systems can also be employed for components that 
involve a number of interacting parts, such as heat transfer and flow equipment. For others, such as 
pipes, sensors, heaters, and valves, that do not contain interacting parts, modeling and simulation 
can again form the basis for design, but this problem has not been considered here. The components 
are largely treated as available items whose characteristics are employed in the modeling and simu-
lation of the complete system and that can be selected for the overall design process.

5.5 ADDITIONAL CONSIDERATIONS FOR LARGE PRACTICAL SYSTEMS

In all our discussions on the design of thermal systems, we have focused on the thermal aspects arising 
from heat and mass transfer, fluid flow, and thermodynamics. This is obviously because of the types 
of systems that are of particular interest to us in this book. Thermal aspects are the dominant mecha-
nisms in the processes and systems under consideration and, therefore, the design is largely based on 
these. However, the successful design and implementation of practical systems generally involve sev-
eral additional considerations that must be included if the system is to perform satisfactorily.

Some of these additional considerations have been mentioned earlier and include

1. Safety
2. Control of the system
3. Environmental impact
4. Structural integrity and mechanical strength
5. Selection and availability of materials
6. Costs involved
7. Availability of facilities and utilities
8. Regulation, legal issues

Safety is a very important consideration and is generally addressed by providing sensors that 
monitor the levels of temperature, pressure, concentration, and other physical quantities that may 
affect the safety of material and personnel. In general, unsafe levels of such variables are given, and 
the system is turned down or turned off if these are exceeded. An alarm may also be used to alert 
the operator. In many cases, certain components of the system cannot be turned on if the specified 
conditions are not met. For instance, the heaters in a boiler may be set so that they can be turned 
on only if the water level is adequate. Many such safety features are usually built into the design to 
avoid damage to the system as well as to the user.

Control of the system is one of the most important technical aspects that must be included in the 
design for successful operation of the system. If a system is designed for a particular temperature at 
the surface or in the fluid, a control scheme is needed to ensure that these are maintained at these 
values, within an allowable tolerance. Sensors are used to monitor the appropriate physical quan-
tity, and the control scheme makes the appropriate correction, as needed. Similarly, the flow rate 
of a fluid or a given material must be maintained at the design value in order to obtain the required 
product quality or production rate. A control strategy may be employed to preserve these within 
acceptable levels. Automation also depends strongly on the control scheme used. Many different 
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control strategies are available and may be used effectively to ensure satisfactory performance of 
the system. These include on/off arrangements, which are very commonly used in thermal systems, 
proportional control, and integral control, among others. Control systems constitute an important 
area and, though beyond the scope of this book, generally form an important ingredient in the final 
implementation of the thermal system, as outlined in Chapter 2.

The environmental impact is generally an important consideration in system design today 
because of increasing concerns with pollution, depletion of the ozone layer, greenhouse effect, 
global warming, climate change, and solid waste disposal. Therefore, the impact of the designed 
system on the environment has to be evaluated for successful implementation. In particular, the 
types and amounts of pollutants discharged into the atmosphere or into bodies of water need to be 
estimated. The amount of solid waste generated and the procedures to dispose these must be deter-
mined. Similarly, if gases such as carbon dioxide or sulfur dioxide are being generated, it may be 
necessary to develop means to convert these into harmless byproducts.

One of the most important technical, though not necessarily thermal, considerations involved in 
the design of a system is that pertaining to the mechanical strength of the system. It is crucial that the 
structural integrity of the system be maintained and that the various elements that constitute the sys-
tem do not fail under the temperatures, pressures, loads, and other forces acting on these. Therefore, 
the mechanical strength of the various materials must be considered in terms of stresses in different 
parts of the system, ensuring that these do not fail by fracture or excessive deformation. Even if a 
particular item satisfies the requirements and constraints imposed by the thermal aspects, it must still 
meet the strength requirements. However, in most cases, the constraints due to strength considerations 
may be translated into the appropriate limitations on temperature, pressure, speed, weight, etc. This 
is particularly true of thermal stresses that arise due to temperature gradients in the material. Thus, 
excessive thermal stresses can be expressed in terms of a constraint on the temperature gradient or 
difference across a given system part. Similarly, considerations such as wear, fatigue, and buckling are 
generally taken care of by limiting the speed, duration of daily usage, total time for which the system 
is employed, temperatures, pressures, and so on. Consequently, many of the constraints considered in 
this book may be the outcome of mechanical strength and structural integrity considerations.

The selection of materials is another important consideration, as discussed in Chapter 2. With the 
development of new materials such as composites, ceramics, alloys, and different types of polymers, 
the choice of materials has expanded substantially in recent years. The design would therefore be 
influenced by the availability of appropriate materials. In most cases, effort is made to choose the 
most suitable material with respect to the cost and the desired thermal properties. Economic consider-
ations are always critical to the success of the design effort because the viability of a project depends 
strongly on the overall financial return. Therefore, it is important to evaluate the system with respect 
to the costs incurred for the hardware as well as for the operation of the system. The productivity in 
terms of the output can then be considered along with the price to determine the rate of return on the 
investment. Some of these aspects are presented in the next chapter. The availability of appropriate 
facilities and utilities such as power and water is an important consideration in the overall design pro-
cess. Additional issues such as governmental regulations and legal matters also have to be satisfied for 
a successful system. The following example presents the design of a relatively large practical thermal 
system, considering mainly the thermal aspects that determine the product quality and consistency.

Example 5.9

Discuss the modeling, simulation, and design of the batch annealing furnace, shown in Figure 5.40, 
which is used for the annealing of steel sheets rolled up in the form of annular cylindrical coils.

SOLUTION

The problem considered is an actual industrial system that is used in the steel industry. Annealing 
is employed for relieving the stresses in the material, which has undergone a rolling process during 
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manufacture, such as that shown in Figure 1.10(d). The annealing process restores the ductility 
in the material for further machining and forming operations. As shown in Figure 5.40, the steel 
sheets are rolled into the form of three cylindrical coils and stacked vertically with convector 
plates, which aid the protective inert gas flow, at both ends of each coil. A stainless steel cover 
encloses the coils and an inert environment is maintained between the coils and the cover by 
the flow of gases such as nitrogen and helium. These gases are driven by a fan at the bottom, as 
shown. The region between the cover and the furnace walls contains flue gases, which are usually 
obtained from the blast furnace of the steel plant. These gases contain various combustion prod-
ucts, such as carbon dioxide, sulfur dioxide, and moisture, due to combustion occurring at the two 
burners. These burners are located circumferentially and the flow enters tangentially causing swirl 
in the flow. The dimensions in Figure 5.40 are shown in terms of symbols for generality. Typically, 

FIGURE 5.40 A batch annealing furnace for cylindrical coils of steel sheets. (Adapted from Jaluria, 1984.)
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the height H6 is approximately 4.0 m and diameter Db is approximately 1.8 m. Different types and 
sizes of furnaces are used in practice. For further details on this system, see Harvey (1977) and 
Jaluria (1984).

The basic thermal process involves heating of the coils to the annealing temperature of approxi-
mately 723°C; maintaining the temperature at this value for a given time known as the soaking 
period so that this temperature level is attained at all points in the coil and the internal stresses are 
relieved; initial slow cooling to allow the microstructure to settle down; and, finally, rapid cooling 
with the furnace walls removed. The typical temperature cycle undergone by the material at a 
point in the coil is shown in Figure 5.41. The numerical simulation of the system must, therefore, 
include the heating, soaking, and cooling processes and determine the temperatures at various 
locations in the system as functions of time.

This is a fairly involved problem and requires a transient, distributed model to obtain the inputs 
needed for design. However, many simplifications can be employed to reduce the complexity of 
the problem and make it amenable to numerical simulation. First, we break the system down in 
terms of the following components or parts:

1. Coils
2. Convector plates
3. Inert gases
4. Protective cover
5. Furnace or flue gases
6. Furnace walls

The temperature in each component varies, in general, with the height z, taken from the base 
of the furnace, the radial distance r, taken from the axis of the coils, the circumferential location 
φ, and time τ. Mass, momentum, and energy balances lead to the governing equations for the 
different parts. All these equations are coupled to each other through the boundary conditions.

With respect to model development, it is first noted that axisymmetry may be assumed due 
to the cylindrical configuration of the system and the anticipated circumferential symmetry in the 
energy exchange mechanisms. This simplifies the problem to an axisymmetric transient circum-
stance. The coil is essentially a hollow cylinder with inner radius Ri and outer radius Ro. There are 
usually gaps, filled with inert gases, that exist between the different layers of the coil. As a result, 
the thermal conductivity in the radial direction kr is generally much smaller than that in the axial 
direction kz. Then the governing energy equation for the steel coils may be written as
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FIGURE 5.41 Typical temperature cycle of the annealing process. (Adapted from Jaluria, 1984.)



289Acceptable Design of a Thermal System

where the subscript m indicates the coil material and the other symbols have their usual connota-
tions. The conductivities and other properties may be obtained from the available literature on 
this problem. All the properties depend on temperature. The initial and boundary conditions for 
the preceding equation are obtained from the initial temperature Tr , heat transfer with the cover 
and inert gases at the outer surface of the coils, and convective heat transfer with the inert gases 
at the inner surface of the coils.

Similarly, simplifying approximations are made for other components, shown schematically in 
Figure 5.42. Using the techniques discussed in Chapter 3, the temperature in the convector plate 
Tp is assumed to vary only with radial position and time, because the Biot number based on its 
thickness is small. For the cover, temperature variation across its thickness is neglected because 
of its small thickness and high conductivity. Thus, the temperature Tc of the cover varies with z 
and τ. The furnace wall is treated as an axisymmetric conduction problem, yielding the energy 
equation as

 1ρ ∂
∂τ

= ∂
∂

∂
∂







+ ∂
∂

∂
∂















C

T
k

r r
r

T
r z

T
z

w w
w

w
w w

where the subscript w denotes the wall.
For the gases, radial temperature uniformity is assumed because of turbulent mixing and only 

the variations with height and time are considered. The resulting energy equations for the inert 
gases in the annular and outer region of the coils are, respectively,

 C UA
dT
dz

Ph T T r Dg p g

g
i m g iat = /2( ) ( )ρ = − −

 C UA
dT
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Ph T T T T r Dg p g

g
o m g c g oat /2( ) ( ) ( )ρ = − + −  =

Here, the subscripts g and c refer to the inert gas and the cover, respectively, U is the average 
velocity, A is the cross-sectional area, P is the perimeter for heat transfer, subscript i refers to the 
core region in the center, and subscript o to the region outside the coils between the coils and 
the cover. Similarly, the appropriate equations are written for the cover, flue gases, and convector 
plates.

FIGURE 5.42 Components of the system for developing a mathematical model.
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As discussed in detail in Chapter 4, all the components of the system are modeled and simu-
lated individually, with constant, specified boundary conditions to decouple them from each 
other. These uncoupled problems allow one to validate the mathematical model and the cor-
responding numerical scheme for each component. It was found that the various approximations 
made for the model are valid and that the gases and the cover have a very fast transient response. 
The coils are the slowest in response and the largest time step can be employed for simulating 
these. The various numerical schemes discussed in Chapter 4 can be used for the numerical simu-
lation of the different components. Explicit methods are particularly useful because of the variable 
properties. However, implicit methods can also be used for better numerical stability.

The mathematical models and the numerical schemes for individual components are verified 
and validated by considering the physical trends obtained from the simulation, eliminating the 
dependence on numerical parameters such as grid size and time step, and comparing the results 
for a few idealized cases with analytical results. These individual numerical models are then cou-
pled with each other by using the actual boundary conditions, arising from heat transfer between 
different components. The overall system is then simulated.

In practical systems, the overall annealing process is controlled by monitoring a thermocouple 
in contact with the base of the bottom coil. This is known as the control thermocouple and 
it is important to use numerical simulation to obtain the temperature cycle measured by this 
thermocouple.

Using typical values for the operating conditions, such as initial temperature, flow rates of 
the gases, and composition of the flue gases, the temperature variation with time was computed 
at various locations in existing furnaces. These results were compared with measurements. 
Figure 5.43 and Figure 5.44 show the comparison between the numerical results and experi-
mental data, indicating fairly good agreement. The operating conditions were varied and it was 
confirmed that the behavior of the system follows expected trends. Large variations in the gov-
erning parameters and operating conditions were also tried to determine safe levels of operation 
and to generate system characteristics. Therefore, the annealing furnace is satisfactorily simulated 
numerically. For further details, consult the references cited here.

The results generated by the simulation may be used for the design and optimization of the 
system. Different materials, coil sizes, and heat treatment applications require different designs, 
in terms of configuration, dimensions, and heating/cooling arrangement. Different design strate-
gies may be used to obtain an acceptable or optimal design. The results obtained may also be 
employed for the modification of existing systems to improve performance.

In the example considered here, considerable improvement in the process and the product 
was achieved simply by controlling the flow rate   m of the flue gases entering the furnace. This 
controls the heat input because the heat released by combustion at the burners depends on the 

FIGURE 5.43 Comparison between the numerical simulation results and the temperature measurements of 
the control thermocouple. (Adapted from Jaluria, 1984.)



291Acceptable Design of a Thermal System

flow rate. The control thermocouple is set to follow a given temperature cycle and this, in turn, 
controls the gas flow rate at the burners. The temperature variation in the system is a strong func-
tion of the heat input and, therefore, the desired temperature cycle for heat treatment is obtained 
in the coils. The overall result of this effort was a more uniform annealing than that obtained ear-
lier, and a consequent reduction in material wastage.

5.5.1 other lArge systems

The preceding example presents a typical practical thermal system: a large one with many interact-
ing parts and components and different flows and thermal transport processes. The sketch shown in 
Figure 5.40 is a schematic of the much more complicated industrial system, but it presents the main 
features of the thermal system under consideration. Additional subsystems that are involved due to 
safety, control, material loading, furnace top removal, etc., are important and must be included in 
the design and operation of the system. However, these are usually brought in after the essential 
thermal design of the system has been concluded.

Similarly many other thermal systems mentioned in the earlier chapters are large systems, even 
though the schematic diagrams shown indicate the main features of the system in a relatively simpli-
fied manner. An example of such a large system is the Czochralski crystal-growing process, shown 
schematically in Figure 5.45 (see also P2.1). A photograph of an industrial facility for the same 
process is shown in Figure 5.46, indicating the complexity of the system and the inclusion of many 
auxiliary arrangements for heating, feeding, control, safety, and other practical issues. However, the 
sketch in Figure 5.45 shows the main parts of the system and can be used to develop the mathemati-
cal model, using simplifications, approximations, and idealizations, and to simulate the system for 
wide ranges of the design variables and operating conditions. From these results, an acceptable 
design that meets the given requirements and constraints may be obtained. Optimization of the 
system, as well as of the operating conditions, may also be undertaken, following the determination 
of the domain of acceptable designs.

Another large system is the heat rejection system that was outlined in Example 5.6. The design 
problem involves a water body, which may be a natural one such as a lake or a constructed cool-
ing pond, the condensers of the power plant, and the water pumping system consisting of pumps 
and piping network, as considered in Example 5.8. The requirements for a successful design involve 
both the recirculation, which raises the temperature at the intake, and the thermal effects on the 

FIGURE 5.44 Comparison between the numerical simulation results and the temperature measurements in 
the steel coils. (Adapted from Jaluria, 1984.)
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FIGURE 5.45 Schematic of the Czochralski crystal-growing process.

FIGURE 5.46 An industrial facility for the Czochralski crystal-growing process. (From Ferrofluids Corp.)
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body of water. Thus, the heat transfer and flow in the water body have to be modeled and coupled 
with the condensers and the pumping system. Design variables include the locations and dimensions 
of the inlet/outlet channels, as well as the dimensions and geometry of the pond itself. Operating 
conditions such as discharge temperature and flow rate must also be considered. Various flow con-
figurations may be considered to curb the effects of recirculation (see Figure 5.47). For instance, the 
outlet may be moved as far away as possible from the inlet, or a wall may be placed as an impedi-
ment between the two. Computer simulations of the cooling pond, including the heat transfer to 
the surroundings and the flow due to intake and discharge, and of the pumping system are used to 
provide the necessary inputs for design and optimization. Because recirculation effects are reduced, 
but pumping costs increased, as the separation between the intake and discharge is increased, a 
minimization of the cost for acceptable temperature rise at the intake may be chosen as the objective 
function. Clearly, the design of the system is a major undertaking and involves many subsystems 
that make up the overall system. Over the years, the power industry has developed strategies to 
design and optimize such systems. Natural lakes, cooling ponds, rivers, and even the sea have been 
considered to minimize the recirculation, while maintaining low costs.

The design process is fundamentally the same for large and small systems. The basic approach 
presented in this chapter, as well as in the earlier chapters, can easily be applied to a wide vari-
ety of systems using the principles of modeling, simulation, design, and optimization presented in 
this book. However, additional aspects pertaining to safety, control, input/output, etc., need to be 
included in industrial systems before the prototype is developed and tested.

5.5.2 inverse problems

As discussed in detail in this chapter, one of the most important aspects in design of a thermal 
system is the choice of operating conditions and design parameters in order to achieve the desired 
thermal process. Thus, the result is known, whereas the conditions and parameters are not. As men-
tioned earlier, this is an inverse problem, which involves finding the conditions that would lead to a 

FIGURE 5.47 The flow system for power plant heat rejection to a body of water: (a) Top view, (b) front view.
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given result. As may be expected, several different conditions could lead to the same outcome. Thus, 
the solution of an inverse problem is not unique, though the domain of uncertainty may be reduced 
through optimization and other techniques. In most cases, the direct solution, with specified condi-
tions, is solved and the results are used to develop a scheme to converge to a solution of the inverse 
problem in a fairly narrow domain.

An example of an inverse problem is the manufacturing process discussed in Example 5.9 for 
annealing of steel. A sketch of the desired time-dependent temperature variation, along with an accept-
able envelope, was shown in Figure 5.41. The thermal system is the furnace for the batch annealing of 
steel sheets rolled up into cylindrical coils, as shown in Figure 5.40. The boundary conditions, particu-
larly the time-dependent flow of flue gases from the blast furnace, need to be determined to achieve 
the desired temperature variation with time. This problem was numerically modeled, as discussed 
earlier, and the dependence of the temperature distributions on the boundary conditions was estab-
lished. This information was used to solve the inverse problem to determine the temporal variation of 
a temperature sensor located at the base of the furnace that controls the flow rate of the hot gases in 
order to achieve the desired annealing process. Figure 5.43 showed the variation of this control ther-
mocouple with time that would result in achieving the desired result. The calculated results were also 
confirmed by actual experimental variation needed to obtain the desired result.

Similarly, inverse solutions are needed for a wide range of design problems. Optimization is used 
to narrow the domain of uncertainty and obtain an essentially unique solution. The literature is replete 
with such inverse problems and the methodologies developed may be used to select various parameters 
to achieve the desired result and thus obtain an acceptable design (Ozisik, 2000; Orlande, 2012).

5.5.3 uncertAinties

An important consideration that arises in actual practice is that the design parameters and operating 
conditions are subject to uncertainties due to unforeseen variations. These must be considered for 
a practical solution because the failure of a given thermal system can be dangerous and expensive. 
The review paper by Lin et al. (2010) presents a systematic strategy for the modeling and optimi-
zation of a thermal system including the effects of uncertainties. An impingement type chemical 
vapor deposition reactor, which involves impingement of the reacting gases on a heated surface and 
deposition of a film resulting from chemical reactions, is taken as an example. Some of the major 
uncertainties that arise in this process are:

Uncertainties in Operating Conditions

• Inlet flow rate or velocity
• Temperature of deposition surface or heat flux input
• Mass fractions of reactive gases at inlet
• Initial conditions
• Environmental conditions

Uncertainties in System Design

• Dimensions of the system and components
• Location of inlet and heated surface
• Geometry, configuration, and symmetry
• Material and gas properties

The design and optimization with uncertainties is based on reliability and, thus, on the per-
centage failure rate of the design. Reliability-based design optimization (RBDO) algorithms are 
generally employed, with chosen distribution of uncertainty in the parameters. Requirements on 
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deposition rate and quality may be used for design and optimization for this system. Probabilistic 
constraints are established, with respect to either normally or non-normally distributed random 
variables. Then the acceptable and optimal solutions are obtained, subject to the allowable level 
of failure probability. The failure is usually brought down to less than 0.13%, which is the com-
monly accepted level in RBDO. Due to the uncertainties, the acceptable or optimal design moves 
away from the one obtained for deterministic conditions, to satisfy this condition. Uncertainties 
are important in the design of most thermal systems because variations in operating conditions and 
in the fabrication of the system are common. These are particularly critical in the manufacture of 
microscale and nanoscale devices. Variations in the operating conditions or in the system hardware 
can have a significant effect on the product. However, this aspect has only recently been brought into 
detailed consideration for thermal systems.

5.6 SUMMARY

This chapter presents the synthesis of various design steps needed to obtain an acceptable design for 
a thermal system. Employing the basic considerations involved in design, as outlined in the earlier 
chapters, an overview of the design procedure is presented. Starting with the problem statement and 
the basic concept for the system, the various steps involved in design were given as initial design, 
modeling, simulation, evaluation, iterative redesign, and convergence to an acceptable design. 
Several of these aspects, particularly modeling and simulation, were presented in detail earlier 
and are applied in this chapter. Two ingredients in the design process that had not been discussed 
adequately earlier are the development of an initial design and different design strategies. These are 
presented in some detail in this chapter.

Initial design is an important element in the design process and is considered in terms of different 
methods that may be adopted to obtain a design that is as close as possible to an acceptable design. 
A range of acceptable designs may be obtained by changing the design variables, starting with the 
initial design values, in a domain specified by the constraints. The development of an initial design 
may be based on existing systems, selection of components to satisfy the given requirements and 
constraints, use of a library of designs from previous efforts, and current engineering practice for 
the specific application. In this way, the effort exerted to obtain an appropriate initial design is con-
siderably reduced by building on available information and earlier efforts.

The main design strategy presented earlier was based on starting with an initial design and pro-
ceeding with an iterative redesign process until a converged acceptable design is obtained. This sys-
tematic approach is used quite extensively in the design of thermal systems. However, several other 
strategies are possible and are employed. In particular, extensive results on the system behavior and 
response to a variation in the design variables (for given operating conditions) as well as to different 
operating conditions (for selected designs) may form the basis for obtaining an acceptable design. Such 
strategies, though not as systematic as the previous one, are nevertheless popular because extensive 
results can often be obtained easily from numerical simulation. These strategies are also well-suited 
to systems with a small number of parts and those with only a few design variables. The methods to 
track the iterative redesign process and to study the convergence characteristics are also discussed.

In order to illustrate the coupling of the different aspects and steps involved in the design pro-
cess, several important areas of application are considered and a few typical thermal systems that 
arise in these areas are considered as examples. This discussion is important for understanding the 
design process because the various steps involved in design had been discussed earlier as separate 
items. It is important to understand how these are brought together for an actual thermal system and 
how the overall process works.

Finally, this chapter presents additional considerations that are often important in the design and 
successful implementation of a practical thermal system. Included in this list are safety issues, con-
trol of the system, environmental effects, structural integrity of the system, material selection, costs 
involved, availability of facilities, governmental regulations, and legal issues. These considerations 



296 Design and Optimization of Thermal Systems

are important and must usually be included in the final design. A detailed discussion of these aspects 
is beyond the scope of this book. However, several of these aspects are included in the design pro-
cess by a suitable choice of constraints for an acceptable design. The application of this process to 
large practical systems is outlined.
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PROBLEMS

Note: Appropriate assumptions, approximations, and inputs may be employed to solve the design 
problems in the following set. As seen in the examples given in this chapter, a unique solution is not 
obtained for an acceptable design in many of these problems, and the range in which the solution 
lies may be given wherever possible.

 5.1 A refrigeration system is needed to provide 10 kW of cooling at 0°C, with the ambient at 
25°C. Obtain a workable or acceptable design to achieve these requirements, assuming that 
a variation of ±5°C in both temperature levels is permissible. You may choose any appropri-
ate fluid, component efficiencies in the range 75% to 90%, and a suitable thermodynamic 
cycle for the purpose.

 5.2 Develop an acceptable design for a cooling system, using vapor compression, to achieve  
0.5 ton of cooling at −10°C, with the ambient temperature as high as 40°C. The use of CFCs 
is not permitted because of their environmental effect. The efficiency of the compressor 
may be assumed to lie between 75% and 85%. Discuss any sensors that you might need for 
temperature control.

 5.3 A heat pump is to be designed to obtain a heat input of 2 kW into a region that is at 25°C, 
as shown in Figure P5.3. The ambient temperature may be as low as 0°C. Obtain an accept-
able design to satisfy these requirements, using efficiencies in the range 80% to 90% for the 
components. The only constraint is that the working fluid should not undergo freezing.

 5.4 For the casting process considered in Problem 3.7, briefly discuss the simulation of the 
process and the anticipated results from the simulation. Develop a workable or acceptable 
design for a thermal system to achieve the desired heating.

 5.5 In an oven, the support for the walls is provided by long horizontal bars, of length L and 
square in cross-section, attached to two vertical walls, as shown in Figure P5.5. A crossflow 
of ambient air, at velocity V and temperature Ta, cools the bars. The walls may be assumed 
to be at uniform temperature Tw . We can vary Ta, the material of the supporting bars, and the 

FIGURE P5.3
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width H of the bars. The temperature at the midpoint A, TA, must be less than a given value 
Tmax due to strength considerations.
a. Develop a suitable mathematical model for this system, giving the governing equa-

tions and the relevant boundary conditions.
b. Sketch the expected temperature distribution in the bar.
c. What are the fixed quantities, requirements, and design variables in the problem?
d. Discuss the simulation of the system and obtain an acceptable design for this 

application.

 5.6 In the energy storage system consisting of concentric cylinders, considered in Problem 3.1, 
L and R2 are given as fixed, while R1 can be varied over a given range, (R1)min < R1 < (R1)max. 
The approximations are the same as those given before. The metal pieces are to be heated 
without exceeding a maximum temperature Tmax and interest lies in storing the maximum 
amount of energy.
a. Formulate the corresponding design problem, focusing on quantities that can be 

varied.
b. Simulate the system to determine the dependence of energy stored on the design 

variables.
c. Obtain an acceptable design.

 5.7 If in the problem considered in Example 5.3, the hot water requirements are changed to 
50°C to 75°C, determine the effect on the final results. Also, vary the ambient temperature 
to 30°C and determine the range of acceptable designs.

 5.8 A solar energy power system is to be designed to operate between 90°C, at which hot water 
is available from the collectors, and 25°C, which is the ambient temperature, in order to 
deliver 200 kW of power. Using any appropriate fluid and thermodynamic cycle, obtain an 
acceptable design for this process. Assume that boilers, compressors, and turbines of effi-
ciency in the range 70% to 80% are available for the purpose.

 5.9 A cold storage room of inner dimensions 4 m × 4 m × 3 m and containing air is to be 
designed. The outside temperature varies from 40°C during the day to 20°C at night. The 
outside heat transfer coefficient is given as 10 W/(m2·K) and that at the inner surface of 
the wall as 20 W/(m2·K). A constant energy input of 4 kW may be assumed to enter the air 
through the door, as shown in Figure P5.9. A refrigerator system is used to extract energy 
from the enclosure floor. What are the important design variables in this problem? Develop 
a simple model for simulating the system and obtain the refrigeration capacity needed. The 
energy extracted by the refrigerator need not be constant with time. Also, determine the 
values of the other design variables to maintain a temperature of 5°C ± 2°C in the storage 
room. The wall thickness must not exceed 15 cm, and it is desirable to have the smallest 
possible refrigeration unit. Also, suggest any improvements that may be incorporated in 
your mathematical model for greater accuracy.

FIGURE P5.5
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 5.10 A piece of electronic equipment is to be designed to obtain satisfactory cooling of the com-
ponents. The available air space is 0.45 m × 0.35 m × 0.25 m. The distance between any two 
boards must be at least 5 cm. The total number of components is 100, with each dissipating 
20 W. The dimensions of a board must not exceed 0.3 m × 0.2 m. The heat transfer coef-
ficient may be taken as 20 W/(m2·K) if there is only one board. With each additional board, 
it decreases by 1 W/(m2·K). Develop a suitable model for design of the system and obtain 
the minimum number of boards needed to satisfy the temperature constraint of 100°C in an 
ambient at 20°C. How can your model be improved for greater accuracy?

 5.11 In Example 5.4, the use of hollow mandrels is suggested as an improvement in the design. 
Consider this change and determine the effect on the simulation and the design. However, the 
thickness of the wall of the mandrel should not be less than 0.5 mm from strength consider-
ations. Also, consider the circulation of hot fluid through the mandrel to impose a higher tem-
perature at the inner boundary of the plastic. Determine the effect of this change on the design.

 5.12 In the cooling system for electronic equipment considered in Example 5.5, determine the 
effect on the design of allowing the board height to reach 0.2 m and of increasing the con-
vective heat transfer coefficient to 40 W/(m2·K) by improving the cooling process. Consider 
the two changes separately, taking the remaining variables as fixed. Discuss the implica-
tions of these results with respect to the design of the system.

 5.13 In a condenser, water enters at 20°C and leaves at temperature To. Steam enters as saturated 
vapor at 90°C and leaves as condensate at the same temperature, as shown in Figure P5.13. 
The surface area of the heat exchanger is 2 m2 and a total of 250 kW of energy is to be 
transferred in the heat exchanger. The overall heat transfer coefficient U is given by

 


0.05 0.2
U

m

m
=

+

  where m is the water mass flow rate in kg/s and U is in kW/(m2·K). Obtain the algebraic 
equation that gives the water flow rate m. Solve this equation by the Newton-Raphson 
method, starting with an initial guess between 0.5 and 0.9 kg/s. Also, calculate the outlet 
temperature To for water. Take the specific heat and density of water as 4.2 kJ/(kg·K) and 
1000 kg/m3, respectively. What are the main assumptions made in this model?

FIGURE P5.9

FIGURE P5.13
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 5.14 In a counter-flow heat exchanger, the cold fluid enters at 20°C and leaves at 60°C. Its flow 
rate is 0.75 kg/s and the specific heat is 4.0 kJ/(kg·K). The hot fluid enters at 80°C with a flow 
rate of 1.0 kg/s. Its specific heat is 3.0 kJ/(kg·K). The overall heat transfer coefficient U is 
given as 200 W/(m2·K). Calculate the outlet temperature of the hot fluid, the total rate of heat 
transfer Q, and the area A needed. What are the possible design variables in this problem, if 
the cold fluid conditions are fixed?

 5.15 In a counter-flow heat exchanger, the cold fluid enters at 15°C. Its flow rate is 1.0 kg/s and the 
specific heat is 3.5 kJ/(kg·K). The hot fluid enters at 100°C at a flow rate of 1.5 kg/s. Its spe-
cific heat is 3.0 kJ/(kg·K). The overall heat transfer coefficient U is given as 200 W/(m2·K). It 
is desired to heat the cold fluid to 60°C ± 5°C. Outline a simple mathematical model for this 
system, giving the main assumptions and approximations. What are the design variables in 
the problem? Calculate the outlet temperature of the hot fluid, the total heat transfer rate q, 
and the area A needed.

 5.16 In a counter-flow heat exchanger, cold water enters at 20°C and hot water at 80°C, as shown 
in Figure P5.16. The two flow rates are equal and denoted by   m in kg/s. The specific heat 
is also given as the same for the cold and hot water streams and equal to 3.0 kJ/(kg·K). The 
value of the overall heat transfer coefficient U in kW/(m2·K) is given as

 


1
0.1

0.2
UA m

= +

  where A is the surface area in square meters. Write down the relevant mathematical model 
and, employing the Newton-Raphson method for one equation, determine the value of  
  m that results in a heat transfer rate of 300 kW. Start with an initial guess of m between 3 
and 3.5 kg/s. Determine the sensitivity of the mass flow rate to the overall heat transfer rate 
by varying the latter from its given value of 300 kW.

 5.17 Water at 40°C flows at   m kg/s into a condenser that has steam condensing at a constant 
temperature of 110°C. The UA value of the heat exchanger is given as 2.5 kW/K and the 
desired total heat transfer rate is 120 kW. The specific heat at constant pressure Cp for 
water may be taken as 4.2 kJ/(kg·K). Write the equation(s) to calculate m and, using any 
simulation approach, determine the appropriate value of   m for the given heat transfer 
rate. If the total heat transfer rate varies as 120 ± 20 kW, determine the corresponding 
variation in m.

 5.18 A heat exchanger is to be designed to heat water at 1.0 kg/s from 15°C to 75°C. A parallel-
flow heat exchanger is to be used and the hot fluid is water at 100°C. Take the specific heat 
as 4200 J/(kg·K) for both fluids. The mass flow rate of the hot fluid must not exceed 4 kg/s. 
The diameter of the inner pipe must not exceed 0.1 m and the length of the heat exchanger 
must be less than 100 m. Obtain an initial, acceptable design for this process and give the 
dimensions of the heat exchanger. Give a sketch of the temperature variation in the two fluid 
streams.

FIGURE P5.16
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 5.19 A condenser is to be designed to condense steam at 100°C to water at the same temperature, 
while removing 300 kW of thermal energy. A counter-flow heat exchanger is to be employed. 
Water at 15°C is available for flow in the inner tube and the overall heat transfer coefficient 
U is 2 kW/m2K. The temperature rise of the cooling water must not be greater than 50°C, 
the inner tube diameter must not exceed 8 cm, and the length of the heat exchanger must 
not exceed 20 m. Obtain an acceptable design and give the corresponding mass flow rates, 
water temperature at the exit, and heat exchanger dimensions.

 5.20 Choose a design parameter Y to follow the convergence of iterative redesign of a refrigera-
tion system. Give reasons for your choice and sketch its expected variation as the compres-
sor is varied to change the exit pressure.

 5.21 Decide on a design parameter Y to study the convergence of an iterative design procedure 
for a shell and tube heat exchanger. If the design variables, such as tube and shell diameters, 
are varied to reach an acceptable design, how would you expect the chosen criterion Y to 
vary?

 5.22 Take the refrigeration system considered in Example 5.1. If the storage facility is to be main-
tained in the temperature range of 0°C to 5°C, while the outside temperature range and the 
total thermal load remain unchanged, redesign the system to achieve these requirements.

 5.23 Develop the initial, acceptable design for the problem considered in Example 5.2 if the 
maximum temperature obtainable from the heat source is only 290°C.

 5.24 Redesign the solar energy storage system considered in Example 5.3 if the total amount of 
energy to be stored is halved, while the remaining requirements remain the same. Also, 
choose a design parameter Y that may be used to examine the convergence of the redesign 
process, giving reasons for your choice.

 5.25 Redesign the heat exchanger considered in Example 5.7 for the requirements that the outer 
tube diameter be less than 6.0 cm and the inner tube diameter be greater than 2.0 cm, keep-
ing the remaining conditions unchanged.

 5.26 Redesign the heat exchanger in Example 5.7 to obtain a total length of less than 75.0 m, 
while keeping the outer tube diameter greater than 3.0 cm. No constraints are specified on 
the inner tube.

 5.27 For a fluid flow system similar to the one considered in Example 5.8, take the design values 
of P1, P2, H, A, B, and C as 470, 700, 135, 10, 20, and 5, respectively, in the units given ear-
lier. Simulate this system, employing the Newton-Raphson method. Study the effect on the 
total flow rate of varying the zero-flow pressure values (470 and 700 in the preceding) and 
the height (135) by ±20%. Find the maximum and minimum flow rates.

 5.28 Determine the effect of varying the heat transfer coefficient to 100 W/(m2 · K) and the equi-
librium temperature Te to 15°C in Example 5.6. Compare the results obtained with those 
presented earlier and discuss the implications for the design of a heat rejection system. What 
do such changes mean in actual practice?

 5.29 A plastic (PVC) plate of thickness 2 cm is to be formed in the shape of an “N”. For this pur-
pose, it must be raised to a uniform temperature of 200°C and held at this temperature for 
15 sec to complete the process. The temperature must not exceed the melting temperature, 
which is 300°C for this material. Develop a conceptual design and a mathematical model 
for this process. Obtain an acceptable design to achieve the desired temperature variation.

 5.30 The surface of a thick steel plate is to be heat treated to a depth of 2.5 mm. A constant heat 
flux input of 106 W/m2 is applied at the surface. The required temperature for heat treat-
ment is 560°C, and the maximum allowable temperature in the material is 900°C. Can this 
arrangement be used to achieve an acceptable design? If so, determine the time at which the 
heat input must be turned off. Can you suggest a different or better design?

 5.31 For the preceding problem, suggest a few conceptual designs and choose one as the most 
appropriate. Justify your choice.
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6 Economic Considerations

6.1 INTRODUCTION

Among the most important indicators of the success of an engineering enterprise are the profit 
achieved and the return on investment. Therefore, economic considerations play a very impor-
tant role in the decision-making processes that govern the design of a system. It is generally not 
enough to make a system technically feasible and to obtain the desired quality of the product. 
The costs incurred must be considered to make the effort economically viable. It is necessary to 
find a balance between the product quality and the cost, because the product would not sell at an 
excessive price even if the quality were exceptional. For a given item, there is obviously a limit 
on the price that the market will bear. As discussed in Chapter 1, the sales volume decreases with 
an increase in the price. Therefore, it is important to restrain the costs even if this means some 
sacrifice in the quality of the product. However, in some applications, the quality is extremely 
important and much higher costs are acceptable, as is the case, for instance, in racing cars, rocket 
engines, satellites, and defense equipment. Similarly, a poor-quality product even at a low price 
is not acceptable. The key aspect here is finding the proper balance between quality and cost for 
a given application.

Even if it can be demonstrated that a project is technically sound and would achieve the desired 
engineering goals, it may not be undertaken if the anticipated profit is not satisfactory. Because most 
industrial efforts are directed at financial profit, it is necessary to concentrate on projects that prom-
ise satisfactory return; otherwise, investment in a given company would not be attractive. Similarly, 
a large initial investment may make it difficult to raise the funds needed, and the project may have 
to be abandoned. Decisions at various stages of the design are also affected by economic consider-
ations. The choice of materials and components, for instance, is often guided by the costs involved. 
The use of copper, instead of gold and silver, in electrical connections, despite the advantages of the 
latter in terms of corrosion resistance, is an example of such a consideration. The characteristics and 
production rate of the manufactured item are also affected by the market demand and the associated 
financial return.

Economic factors, though crucial in design and optimization, are not the only nonengineering 
ingredients in decision making. As mentioned earlier, several additional nontechnical aspects such 
as environmental, safety, legal, and political issues arise and may influence the decisions made by 
industrial organizations. However, several of these can also be considered as additional expenses 
and may again be cast in economic terms. For instance, pollution control may involve additional 
facilities to clean up the discharge from an industrial unit. The choice of forced draft cooling tow-
ers over natural draft ones may be made because of local opposition to the latter due to undesirable 
appearance, resulting in greater expense. Even political and legal concerns are often translated in 
terms of money and are included in the overall costs. Indeed, litigation has been one of the major 
hurdles in the expansion of the nuclear power industry. Providing transportation, housing, educa-
tion, day care, and other facilities to workers satisfies important social needs, but these can again be 
treated as economic issues because of the additional expenses incurred.

Because of the crucial importance of economic considerations in most engineering decisions, 
it is necessary to understand the basic principles of economics and to apply these to the evaluation 
of investments, in terms of costs, returns, and profits. An important concept that is fundamental to 
economic analysis is the effect of time on the worth of money. The value of money increases as time 
elapses due to interest added on to the principal amount. An amount paid today is of greater value 
than the same amount paid 10 years later due to interest and this dependence on time must be taken 
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into account. Similarly, inflation reduces the value of money because prices go up with time, decreas-
ing the purchasing power of money. As we have often heard from our parents, what a dollar could buy 
50 years ago is many times more than what it can buy today. Consequently, we generally consider 
economic aspects in terms of constant dollars at a given time, say 2000, in order to compare costs and 
returns. This involves bringing all the payments, expenditures, and returns to a common point in time 
so that the overall financial viability of an engineering enterprise can be evaluated.

This chapter first presents the basic principles involved in economic analysis, particularly the 
calculation of interest, the consequent variation of the worth of money with time, and the methods 
to shift different financial transactions to a common time frame. Different forms of payment, such 
as lumped sum and series of equal payments, and different methods of calculating interest that are 
used in practice are discussed. Taxes, depreciation, inflation, and other important factors that must 
generally be included in economic analysis are discussed. Thus, a brief discussion of economic 
analysis is presented here in order to facilitate consideration of economic factors in design and 
optimization. For further details on economic considerations, textbooks on the subject may be con-
sulted. Some of the relevant books are those by Riggs and West (1986), Collier and Ledbetter (1988), 
Blank and Tarquin (2017), Thuesen and Fabrycky (2000), White et al. (2012), Newnan et al. (2017), 
Park (2012), and Sullivan et al. (2005).

An important task in the design of systems is the evaluation of different alternatives from a 
financial viewpoint. These alternatives may involve different designs, locations, procurement of raw 
materials, strategies for processing, and so on. Many of the important economic issues outlined in 
this chapter play a significant role in such evaluations. A few typical cases are included for illustra-
tion. The chapter also discusses the important issue of cost evaluation, considering different types 
of costs incurred in typical thermal systems.

6.2 CALCULATION OF INTEREST

A concept that is of crucial importance in any economic analysis is that of the worth of money as 
a function of time. The value increases with time due to interest accumulated, making the same 
payment or loan at different times leads to different amounts at a common point in time. Similarly, 
inflation erodes the value of money by reducing its buying capacity as time elapses. Both interest 
and inflation are important in analyzing and estimating costs, returns, and other financial transac-
tions. Let us first consider the effect of interest on the value of a lumped sum, or given amount of 
money, as a function of time.

6.2.1 simple interest

The rate of interest i is the amount added or charged per year to a unit in the local currency, 
such as $1, of deposit or loan, respectively. This is known as the nominal rate of interest, and it is 
usually a function of time, varying with the economic climate and trends in the financial market. 
Frequently, the interest rate is given as a percentage, indicating the amount added per 100 of the 
local monetary unit. The total amount of the loan or deposit is known as the principal. If the interest 
is calculated only on the principal over a given duration, without considering the change in invest-
ment due to accumulation of interest with time and without including the interest with the principal 
for subsequent calculations, the resulting interest is known as simple interest. Then, the simple 
interest on the principal sum P invested over n years is simply Pni, and the final amount F consisting 
of the principal and interest after n years is given by

 = +F P ni(1 ) (6.1)

Therefore, an investment of $1000 at 10% simple interest would yield $100 at the end of each 
year. At the end of 5 years, the total amount becomes $1500. The simple interest is very easy to 
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calculate, but is seldom used because the interest on the accumulated interest can be substantial. In 
addition, one could invest the accumulated interest separately to draw additional interest. Therefore, 
interest on the interest generated is usually included in the calculations, and this is known as com-
pound interest.

6.2.2 compounD interest

The interest may be calculated several times a year and then added to the amount on which 
interest is computed in order to determine the interest over the next time period. This pro-
cedure is known as compounding and is frequently carried out monthly when the resulting 
amount, which includes the principal and the accumulated interest, is determined for calculat-
ing the interest over the next month. Compounding may also be done yearly, quarterly, daily, 
or at any other chosen frequency. For yearly compounding, the sum F after 1 year is P(1 + i), 
which becomes the sum for calculating the interest over the second year. Therefore, the sum 
after 2 years is P(1 + i)2, after 3 years P(1 + i)3, and so on. This implies that for yearly com-
pounding, the final sum F after n years is given by the expression

 = +F P i n(1 )  (6.2)

Clearly, a considerable difference can arise between simple and compound interest as the dura-
tion of the investment or loan increases and as the interest rate increases. Figure 6.1 shows the result-
ing sum F for an investment of $100 as a function of time at different interest rates, for both simple 
interest and annual compounding of the interest. While simple interest yields a linear increase in 
F with time, compound interest gives rise to a nonlinear variation, with the deviation from linear 
increasing as the interest rate or time increases. It is because of the considerable difference that can 
arise between simple and compound interest that the former is rarely used. In addition, different 
frequencies of compounding are often employed to yield wide variations in total interest.

If the interest is compounded m times a year, the interest on a unit amount in the time between 
two compoundings is i/m. Then the final sum F, which includes the principal and interest, is obtained 
after n years as

 = +



F P

i

m

mn

1  (6.3)

FIGURE 6.1 Variation of the sum F, consisting of the principal and accumulated interest, as a function of the 
number of years n, for simple interest and for annual compounding at different rates of interest.
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Therefore, for a given lumped sum P, the final sum F after n years may be calculated from 
Equation (6.3) for different frequencies of compounding over the year. Monthly compounding, for 
which m = 12, and daily compounding, for which m = 365, are very commonly used by financial 
institutions.

It can be easily seen that a substantial difference in the accumulated interest arises for different 
compounding frequencies, particularly at large interest rates. For instance, an investment of $1000 
becomes $2000 after 10 years at a simple interest of 10%, due to the accumulation of interest. The 
same investment after the same duration becomes $2593.74 if yearly compounding is employed, 
$2707.40 if monthly compounding is used, and $2717.91 if daily compounding is used. Therefore, 
a higher compounding frequency leads to a faster growth of the investment and is preferred when 
large financial transactions are involved.

6.2.3 continuous compounDing

The number of times per year that the interest is compounded may be increased beyond monthly 
or even daily compounding to reflect the financial status of a company or an investment at a given 
instant. The upper limit on the frequency of compounding is continuous compounding, which 
employs an infinite number of compounding periods over the year. Thus, the interest is determined 
continuously as a function of time and the resulting sum at any given instant is employed in calculat-
ing the interest for the next instant. Then the total amount at a given instant is known, and invest-
ments and other financial transactions can be undertaken instantly based on the current financial 
situation.

As shown in the preceding section, the sum F after a period of n years with a nominal interest 
rate of i compounded m times per year is given by Equation (6.3). For continuous compounding, the 
frequency of compounding approaches infinity, i.e., m → ∞, which gives

 = +















→∞
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1

Therefore, taking the natural logarithm of both sides
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where ln represents the natural logarithm. Here, ln(1 + i/m) is expanded as a Taylor series in terms 
of the variable i/m and m is allowed to approach infinity. Therefore, from this equation, the sum F, 
for continuous compounding, is given by

 =F Peni (6.4)

If continuous compounding is used, an investment of $1000 for 10 years would yield $2718.28, 
which is greater than the amounts obtained earlier with other compounding frequencies. Continuous 
compounding is commonly used in business transactions because the market varies from instant to 
instant and monetary transactions occur continually, making it necessary to consider the instanta-
neous value of money in decision making.

6.2.4 eFFective interest rAte

It is often convenient and useful to express the compounded interest in terms of an effective, 
or equivalent, simple interest rate. This allows one to calculate the resulting interest and to 
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compare different investments more easily than by using the compound interest formula, such as 
Equation (6.3). The effective interest rate is also useful in analyzing economic transactions with 
different compounding frequencies, as seen later. If ieff represents the effective simple interest 
for a given compounding scheme, the sum F, which includes the principal and interest at the end 
of the year, is simply

 = +F P i(1 )eff  (6.5)

Then ieff is obtained from Equation (6.3), for interest being compounded m times per year, as

 = − = +



 −i

F

P

i

m

m

1 1 1eff  (6.6)

Similarly, for continuous compounding ieff = ei – 1.
It is also possible to obtain an equivalent interest rate over a number of years n. Then, from 

Equation (6.1),

 = +F P ni(1 )eff  (6.7)

which gives
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The effective interest rate, therefore, allows an easy calculation of the total interest obtained on a 
given investment, as well as that charged on a loan, making it simple to compare different financial 
alternatives. It is common for financial institutions to advertise the effective interest rate, or yield, 
paid over the duration of an investment.

Example 6.1

Calculate the resulting sum F for an investment of $100 after 1, 2, 5, 10, 20, and 30 years at a 
nominal interest rate of 10%, using simple interest as well as yearly, monthly, daily, and continu-
ous compounding. From these results, calculate the effective interest rates over a year and also 
over 10 years.

SOLUTION

The resulting sum F for a given investment P is obtained for simple interest, compounding m times 
yearly and for continuous compounding from the following three equations, respectively, given in 
the preceding sections:

 

= +

= +





=

(1 )

1

F P ni

F P
i
m

F Pe

mn

ni

Therefore, the resulting sum F for an investment of $100 at a nominal interest rate of 10%, i.e., 
i = 0.1, after n years with different compounding frequencies, may be calculated. The results 
obtained are shown in Table 6.1. It is obvious that large differences in F arise over long periods of 



308 Design and Optimization of Thermal Systems

time, with continuous compounding yielding the largest amount. Simple interest, which considers 
the interest only on the initial principal amount, yields a considerably smaller amount because 
interest on the accumulated interest is not taken into account. Consequently, simple interest is not 
appropriate for most financial transactions and is generally not used. In addition, the difference 
between continuous and daily compounding is small. However, even this effect can be quite sig-
nificant if large investments, expenditures, and payments are involved.

The effective interest rate ieff is given by the equation

 = − 1effi
F
P

Therefore, ieff may easily be obtained from Table 6.1 by using the calculated values of F after 
1 year for the given investment of $100. It is seen that ieff is equal to the nominal interest rate 
i = 0.1 for simple interest and for yearly compounding, as expected. For monthly, daily, and 
continuous compounding, ieff is 0.1047, 0.1052, and 0.1052 (10.47%, 10.52%, and 10.52%), 
respectively.

The effective interest rates for yearly, monthly, daily, and continuous compounding over a 
period of 10 years may similarly be calculated using the equation

 = −





1
1effi

n
F
P

Using the values given in Table 6.1, the effective interest rates for yearly, monthly, daily, and con-
tinuous compounding are obtained as 15.937%, 17.070%, 17.179%, and 17.183%, respectively, 
which are much higher than the nominal interest rate of 10%. These effective rates may be used 
to calculate the interest or sum after 10 years from Equation (6.7) with n = 10.

6.3 WORTH OF MONEY AS A FUNCTION OF TIME

It is seen from the preceding discussion that the value of money is a function of time. In order to 
compare or combine amounts at different times, it is necessary to bring these all to a common point 
in time. Once various financial transactions are obtained at a chosen time, it is possible to compare 
different financial alternatives and opportunities in order to make decisions on the best course of 
action. Different costs, over the expected duration of a project, and the anticipated returns can then 
be considered to determine the rate of return on the investment and the economic viability of the 
enterprise. Two approaches that are commonly used for bringing all financial transactions to a com-
mon time frame are the present and future worth of an investment, expenditure, or payment.

TABLE 6.1
Effect of Compounding Frequency on the Resulting Sum for an Investment  
of $100 after Different Time Periods at 10% Nominal Interest Rate
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6.3.1 present worth

As the name suggests, the present worth (PW) of a lumped amount given at a particular time in the 
future is its value today. Thus, it is the amount that, if invested at the prevailing interest rate, would 
yield the given sum at the future date. Let us consider Equation (6.2), which gives the resulting sum 
F after n years at a nominal interest rate i. Then P is the present worth of sum F at the end of the 
given duration of n years. Therefore, the present worth of a given sum F may be written, for yearly 
compounding, as

 = = + =−P F i F P F i nnPW (1 ) ( )( / , , ) (6.9a)

where P/F is known as the present worth factor and is given by

 = + −P F i n/ (1 )  (6.9b)

This notation follows the scheme used in many textbooks on engineering economics; see, for 
example, Collier and Ledbetter (1988) and Stoecker (1989). In Equation (6.9a), the applicable inter-
est rate i and the number of years n are included in the parentheses along with the present worth 
factor.

If the interest is compounded m times yearly, Equation (6.3) may be used to obtain the PW as

 = = 
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where the present worth factor P/F is given by
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Similarly, for continuous compounding

 = −P F e ni/  (6.11)

Therefore, the present worth factor P/F may be defined and calculated for different frequencies 
of compounding. The PW of a given lumped amount F representing a financial transaction, such as 
a payment, income, or cost, at a specified time in the future may then be obtained from the preced-
ing equations.

The PW of the resulting sums shown in Table 6.1 for different duration and frequency of com-
pounding is $100. Therefore, the present worth of $1983.74 after 30 years with monthly compounding 
at 10% interest is $100, because the latter amount will yield the former if it is appropriately invested. In 
design, a specific amount in the future is commonly given and its PW is determined using the applica-
ble interest rate and compounding frequency. An example of such a calculation is the expected expen-
diture on maintenance and repair of an industrial facility at a given time in the future. This financial 
transaction is then put in terms of the present in order to consider it along with other expenses.

The concept of PW is useful in evaluating different financial alternatives because it allows all trans-
actions to be considered at a common time frame. It also makes it possible to estimate the expenses 
associated with a given system, financial outlay needed, and return on the investment, all these being 
usually based on the expected duration of the project. At the end of useful life of the system, it will be 
disposed or sold. This expense or financial gain is in the future and, therefore, it is usually brought to the 
present time frame, using the concept of PW, to include its effect in the overall financial considerations 
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of the system. It is also possible to base such financial considerations on a point of time in the future, 
for which the concept of future worth, outlined in the following section, is used.

6.3.2 Future worth

The future worth (FW) of a lumped amount P, given at the present time, may similarly be deter-
mined after a specified period of time. Therefore, the FWs of P after n years with an interest rate of 
i, compounded yearly or m times yearly, are given, respectively, by the following equations:

 = = + =F P i P F P i nnFW (1 ) ( )( / , , ) (6.12a)

 ( )= = +
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where F/P is known as the future worth factor or compound amount factor. For continuous com-
pounding, F/P = eni. Therefore, the FW of a given lumped sum today may be calculated at a speci-
fied time in the future if the compounding conditions and the interest rate are given.

Again, the FW of $100 after different time periods and with different compounding frequen-
cies, at a 10% nominal interest rate, may be obtained from Table 6.1. Using these results, the FW 
of $1200 after 10 years of daily compounding at 10% interest is 12 × 271.79 = $3261.48. Similarly, 
the FW for other lumped sums may be calculated for a specified future date, interest rate, and 
compounding. Table 6.2 shows the effect of interest rate on the FW with monthly compounding. 
As expected, the effect increases as the duration increases, resulting in almost a 20-fold difference 
between the FWs for 5% and 15% interest rates after 30 years.

As with PW, the concept of FW may be employed to bring all the relevant financial transactions to 
a common point in time. Frequently, the chosen time is the end of the design life of the given system. 
Therefore, if a telephone switching system is designed to last for 15 years, the end of this duration 
may be chosen as the point at which all financial dealings are considered. Once the net profit or 
expenditure is determined at this point, it can be easily moved to the present, if desired. The financial 
evaluation of a given design or system is independent of the time frame chosen for the calculations. 
Whether the present or the future time is employed is governed largely by convenience and by the 
time at which data are available. Clearly, if most of the data are available at the early stages of the 
project, it is better to use PW because the interest rates are better known close to the present. In addi-
tion, the duration of a given enterprise may not be specified or a definite time in the future may not be 
clearly indicated, making it necessary to use the PW as the basis for financial analysis and evaluation.

TABLE 6.2
Effect of Interest Rate on the Future Worth of $100 with Monthly 
Compounding
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Example 6.2

The design of the cooling system for a personal computer requires a fan. Three different manu-
facturers are willing to provide a fan with the given specifications. The first one, Fan A, is at $54, 
payable immediately on delivery. The second one, Fan B, requires two payments of $30 each at 
the end of the first and second years after delivery. The last one, Fan C, requires a payment of $65 
at the end of 2 years after delivery. Because a large number of fans are to be purchased, the price 
is an important consideration. Consider three different interest rates, 6%, 8%, and 10%. Which 
fan is the best buy?

SOLUTION

In order to compare the costs of the three fans, the expenditure must be brought to a common 
time frame. Choosing the time of delivery for this purpose, the PW of the expenditures on the 
three fans must be calculated. The cost of Fan A is given at delivery and, therefore, its PW is $54. 
For the other two fans, the PWs at an interest rate of 6% are

 
= +
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= + =
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Fan B: PW (30)( / ,6%,1) (30)( / ,6%,2)
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Fan C: PW (65)( / ,6%,2)
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$57.85
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Therefore, Fan A is the cheapest one at this interest rate.
At 8% interest rate, a similar calculation yields the PW of the cost for Fan B as $53.50 and that 

for Fan C as $55.73. Therefore, Fan B is the cheapest one at this rate. At 10% interest rate, the 
corresponding values are $52.07 for Fan B and $53.72 for Fan C. Again, Fan B is the cheapest, 
but even Fan C becomes cheaper than Fan A. This example illustrates the use of PW to choose 
between different alternatives for system design.

6.3.3 inFlAtion

Inflation refers to the decline in the purchasing power of money with time due to increase in the 
price of goods and services. This implies that the return on an investment must be considered along 
with the inflation rate in order to determine the real return in terms of buying power. Similarly, 
labor, maintenance, energy, and other costs increase with time and this increase must be consid-
ered in the economic analysis of an engineering enterprise. For example, if the wages of a given 
worker increase from $10 per hour to $11 per hour, while the price of a loaf of bread goes from 
$1 to $1.10, the worker can still buy the same amount of bread and does not see a real increase 
in income. In order to obtain a real increase in income, the pay increase must be greater than the 
inflation rate. Thus, the buying power for a person may increase or decrease with time, depending 
on the rate of increase in income and the inflation rate. For industrial investments, it is not enough 
to have a rate of return that keeps pace with the inflation. The return must be higher to make a 
project financially attractive.

Inflation is often obtained from the price trends for groups of items that are of particular interest 
to a given industry or section of society. The most common measure of prices is the Consumer Price 
Index (CPI), obtained by the U.S. Department of Labor by tracking the prices of about 400 different 
goods and services. The current base year is 1983, at which point the CPI is assigned a value of 100. 
Table 6.3 gives the CPI from 1983 to 2018, along with the percent change from the previous year. 
The CPI is frequently used as a measure of the inflation rate. Note that the increase rate fluctuates 
from year to year. It represents the general trends in inflation, not the specific change for a particular 
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item, situation, or application. Similarly, other cost measures, such as the Construction Cost Index 
and the Building Cost Index, representing cost of construction in terms of materials and labor, 
respectively, are employed to determine the inflation rate for the construction industry. The large 
inflation rates in the late 1970s and early 1980s significantly hampered the growth of the economy 
and have decreased to about 3% in recent years.

If the inflation rate is denoted by j, then the interest rate i must be equal to j for the buying power 
to remain unchanged, i.e., the future worth FW of a principal amount P must equal P(1 + j)n. If i > j, 
there is an increase in the buying power. Denoting this real increase in buying power by ir, we may 
write by equating FW amounts,

 = + = + +FW P i P j in n
r

n(1 ) (1 ) (1 )  (6.13)

Therefore,

 = +
+

−i
i

j
r

1
1

1 (6.14)

This implies that, as expected, ir = i if j = 0, ir = 0 if i = j, and ir is positive for i > j. From this 
equation, we can also calculate the interest rate i needed to yield a desired real rate of increase in 
purchasing power, for a given inflation rate, as i = (1 + j) × (1 + ir) – 1. For example, if the inflation 
rate is 5% and the interest rate is 10%, the real interest rate, which gives the increase in the buying 
power, is (1.1/1.05) – 1 = 0.0476, or 4.76%. Similarly, if an 8% real return is desired with the same 
inflation rate, the interest rate needed is (1.05)(1.08) – 1 = 0.134 or 13.4%. Different compounding 
frequencies may also be considered by replacing (1 + i)n in Equation (6.13) by (1 + i/m)mn or by 
employing the effective interest rate, as illustrated in the following example.

Example 6.3

An engineering firm has to decide whether it should withdraw an investment that pays 8% inter-
est, compounded monthly, and use it on a new product. It would undertake the new product if 
the real rate of increase in buying power from the current investment is less than 4%. The rate of 
inflation is given as 3.5%. Calculate the real rate of increase in buying power. Will the company 
decide to go for the new product? What should the yield from the current investment be if the 
company wants a 5% rate of increase in buying power?

TABLE 6.3
Consumer Price Index (CPI)
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SOLUTION

The real rate of increase in buying power ir is given by the equation

 = +
+

−1
1

1effi
i
j

r

where j is the inflation rate and the effective interest rate ieff is given by

 = +



 −1 1effi

i
m

m

Here, the nominal interest rate is given as 8%. Therefore, for monthly compounding,

 = +



 − =1

0.08
12

1 0.083eff

12

i

This gives the value of ir as

 = − =1.083
1.035

1 0.0464ir

Therefore, the real increase in purchasing power from the present investment is 4.64%. Because 
this is not less than 4%, the firm will continue this investment and not undertake development 
of the new product. However, if the inflation rate were to increase, the real rate will decrease 
and the company may decide to go for the new product.

To obtain a 5% real rate of increase in buying power from the current investment, the effective 
interest rate ieff is governed by the equation

 = + + −(1 )(1 ) 1effi i jr

which gives

 = − =(1.05)(1.035) 1 0.087effi

The nominal interest rate i may be obtained from the relationship between i and ieff, given in the 
preceding, as

 = + − = − =12[(1 ) 1] 12(1.087 1) 0.0835eff
1/12 1/12i i

Therefore, a nominal interest rate of 8.35%, compounded monthly, is needed from the current 
investment to yield a real rate of increase in buying power of 5%.

6.4 SERIES OF PAYMENTS

A common circumstance encountered in engineering enterprises is that of a series of payments. 
Frequently, a loan is taken out to acquire a given facility and then this loan is paid off in fixed 
payments over the duration of the loan. Recurring expenses for maintenance and labor may be 
treated similarly as a series of payments over the life of the project. Both fixed and varying 
amounts of payments are important, the latter frequently being the result of inflation, which 
gives rise to increasing costs. The series of payments is also brought to a given point in time for 
consideration with other financial aspects. As before, the time chosen may be the present or a 
time in the future.



314 Design and Optimization of Thermal Systems

6.4.1 Future worth oF uniForm series oF Amounts

Let us consider a series of payments, each of amount S, paid at the end of each year starting with the 
end of the first year, as shown in Figure 6.2. The future worth of this series at the end of n years is 
to be determined. This can be done easily by summing up the FWs of all these individual payments. 
The first payment accumulates interest for n – 1 years, the second for n – 2 years, and so on, with 
the second-to-last payment accumulating interest for 1 year and the last payment accumulating no 
interest. Therefore, if i is the nominal interest rate and yearly compounding is used, the future worth 
F of these series of payments is given by the expression

 = + + + + + + + + +− − −F S i i i in n n[(1 ) (1 ) (1 ) (1 ) 1]1 2 3  (6.15)

Therefore, summing this geometric series, which has n terms and a factor of (1 + i), we have
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where F/S is often known as the series future worth factor or the series compound amount factor. 
It yields the FW of a series of payments of equal amount S when S is multiplied by this factor. The 
amount S of a series of payments to pay off an amount F due at a future date may also be calculated 
from Equation (6.16).

Different payment frequencies may similarly be considered. If m payments are made yearly, with 
compounding also done at this frequency, the FW is given by the expression
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Therefore, the cumulative value of a series of payments on a future date, or the amount of each 
payment needed for achieving a given FW, may be calculated for different compounding frequen-
cies. Other cases, where the payment and compounding schedules are different, are also possible 
and are discussed later.

6.4.2 present worth oF uniForm series oF Amounts

The present worth of a series of equal amounts, paid at the end of the year for a number of 
years n starting at the end of the first year, as shown in Figure 6.2, is also obtained easily 
from the corresponding expression for the future worth by using the present worth factor P/F. 

FIGURE 6.2 A uniform series of annual payments and locations of the present and future time frames, 
shown on the time coordinate axis in terms of number of years n.
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Therefore, for payments made at the end of each year and with annual compounding, the pres-
ent worth P is given by

 = = + −





= + −
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where P/S is the series present worth factor.
Similarly, if m payments are made each year with the same compounding frequency, the PW is 

obtained as
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This is an important relationship because it yields the payment needed at the end of each month, 
year, or some other chosen time period, provided the interest compounding follows the same fre-
quency, in order to pay off a loan taken at the present time. Therefore, if a company takes a loan 
to acquire a facility today, the payments at a chosen frequency over the duration of the loan can be 
calculated. These payments are then part of the expenses that are considered along with the income 
to obtain the profit.

The amount S of the uniform series of payments needed to pay off a loan taken now depends 
on the amount and duration of the loan, and on the rate of interest. This is given by the following 
expressions for yearly compounding and for compounding done m times a year, respectively:
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where S/P is known as the capital recovery factor because it involves paying off the capital invested 
in the facility. It can be easily shown that the amount S of the series of payments decreases as the 
duration of the loan is increased and also as the interest rate is decreased. As expected, the total 
interest on the loan increases if the frequency of compounding is increased.

The uniform series of payments covers both the principal, or capital, and the accumulated 
interest. At the early stages of the loan, much of the payment goes toward the interest because the 
bulk of the capital accumulates interest. Near the end of the duration of the loan, very little capital 
is left and thus the interest is small, with most of the payment going toward paying off the capital. 
Therefore, the amount of unpaid capital decreases with time. It is often important to obtain the 
exact amount of outstanding loan at a given time so that a full payment may be made in case the 
financial situation of the company improves or if the current financial status of the company is 
to be determined for acquisitions, mergers, or other financial dealings. Note that this is the loan 
left in terms of the worth of money at a given time, not in terms of its PW. The calculation of the 
unpaid balance of the capital is demonstrated in a later example.
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Example 6.4

In a food-processing system, the refrigeration and storage unit is to be purchased. A new unit can 
be obtained by paying $100,000 on delivery and five annual payments of $25,000 at the end of 
each year, starting at the end of the first year. A used and refurbished unit can be obtained by pay-
ing $60,000 at delivery and 10 annual payments of $20,000 at the end of each year. The salvage 
value of the new unit is $75,000 and that of the used one is $50,000, both being disposed of at 
the end of 10 years. The interest rate is 9%, compounded annually. Which alternative is financially 
more attractive?

SOLUTION

This problem requires bringing all the expenses and income to a common point in time. Choosing 
the delivery date as the present, we can move all the financial transactions to this time frame. 
Therefore, the present worth of the expenditure on a new unit is
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The PW of the expenditure on the used unit is
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Therefore, the new unit has a smaller total expense and is preferred. If salvage values were not con-
sidered, the used unit would be cheaper. This example illustrates the use of time value of money 
and various economic factors to evaluate financial transactions in order to choose between alter-
natives and make other economic decisions. It must be noted that computer programs can easily 
be developed for such calculations so that variations in duration, interest rate, payments, salvage, 
etc., can efficiently be carried out to help in the decision-making process.

6.4.3 continuous compounDing in A series oF Amounts

The concept of continuous compounding, presented earlier in Section 6.2.3, may also be applied to 
a series of lumped payments. Then Equation (6.15) may be replaced by

 ( ) ( ) ( ) ( )= + + + + +
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This yields a higher future worth than that given by Equation (6.17), because continuous com-
pounding is applied to the series of lumped amounts, rather than a finite compounding frequency. 
Similarly, if the annual payment amount S is divided into m equal amounts and applied uniformly 
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over the year, with each amount drawing interest as soon as it is invested, the future worth of the 
series of payments becomes
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which gives

 =
+



 −

=
+



 −

F
S

m

i

m
i

m

S

i

m
i

mn mn

1 1 1 1
 (6.24)

If now m is allowed to approach infinity, (1 + i/m)mn will approach ein, as shown in Section 6.2.3. 
This yields
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Therefore, continuous compounding may be applied to a series of lumped payments or the pay-
ments themselves may be taken as a continuous flow, yielding additional factors that may be used 
for calculating the future worth or the present worth. This approach considers the payment and the 
accumulation of interest as a continuous flow, the worth of a given investment or financial transac-
tion being obtained as a continuous function of time and thus providing the flexibility needed for 
making instantaneous economic decisions in a changing marketplace.

6.4.4 chAnging Amount in series oF pAyments

The amount in a series of payments may not be a constant, as considered previously, but may change 
with time. Such a variation may be the result of rising cost of labor, inflation, increasing rental 
charges, transportation costs, and so on. Because future changes in costs and expenditures are not 
easy to predict, a fixed amount of change C is often employed to consider such changes. Then the 
present or future worth of a series of amounts with a given annual increase C may be determined. A 
typical series of payments with a fixed increase in the amount is shown in Figure 6.3(a). This series 
may be considered as a combination of a series of uniform amounts, shown in Figure 6.3(b), and a 
gradient series, in which the amount is zero at the end of the first year and then increases by C each 
year, as shown in Figure 6.3(c). Because we have already considered the case of uniform amounts, 
let us consider the gradient case of Figure 6.3(c).

The PW of the gradient series shown in Figure 6.3(c) is given by the equation
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This series may be summed to yield
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where P/C is the increment present worth factor, which gives the PW of a series of amounts increas-
ing by a fixed quantity each year. Then this expression, along with Equation (6.18) for a series of 
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uniform amounts, may be used to obtain the PW of a series of increasing amounts, shown in 
Figure 6.3(a). If the frequency of the payments is the same as the compounding frequency per year, 
but not annual compounding, Equation (6.27) may easily be modified by replacing i with i/m and n 
with mn, where m is the number of times compounding is done over the year. Table 6.4 summarizes 
many of the frequently used factors for economic analysis.

6.4.5 shiFt in time

If the first payment is made at the very onset of a loan, it effectively reduces the loan by the first 
payment amount. Therefore, payment usually starts at the end of the first time period. However, in 
some cases, such as payment for labor and utilities, payment is started immediately so that the pay-
ments are made at the beginning of each time period, which may be a day, month, year, etc. Then, 
the FW is obtained by simply adding an additional time period for the accumulation of interest for 
each payment. This implies multiplying the series in Equation (6.15) by (1 + i). Therefore, for annual 
payments and compounding, with payments made at the beginning of each year, the FW is

 = + + −





F S i
i

i

n

(1 )
(1 ) 1  (6.28)

Similarly, for m payments each year, with each payment made at the beginning of each period 
and compounding done m times per year, the FW becomes
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FIGURE 6.3 Sketches showing (a) a series of payments with a fixed amount of increase each year; (b) a 
series of uniform amounts; and (c) a gradient series of amounts.
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6.4.6 DiFFerent Frequencies

We have considered several different compounding frequencies and payment schedules in the 
foregoing discussion. However, we assumed that the time period between the payments and that 
between compounding were the same, i.e., both were annual, quarterly, monthly, and so on. In 
actual practice, the two may be different, with the payment schedule based on convenience as 
monthly, quarterly, etc., whereas the interest is compounded more frequently or even continuously. 
In all such cases, the common approach is to determine the equivalent interest rate, as discussed in 
Section 6.2.4, and to use this rate for the subsequent calculations.

Let us consider a simple example to illustrate this procedure. If the interest is compounded 
monthly, whereas the uniform amount S is paid quarterly over n years, the equivalent or effective 
interest rate ieff is obtained by equating the FWs after a year as

 +
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Then the FW or PW of the series of amounts is determined using the effective interest rate ieff. 
Therefore, the PW of this series of payments becomes
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Similarly, other frequencies of compounding and of the series may be considered, employing the 
preceding procedure to obtain the effective interest rate, which is then employed to calculate the 
relevant interest factors.

TABLE 6.4
Interest Factors
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6.4.7 chAnges in scheDule

The payment or withdrawal schedule for a given financial transaction is generally decided at the onset 
on the basis of the duration and the prevailing interest rate. However, changes in the needs or financial 
situation of a company may require adjustments in this schedule. For instance, the company may have 
problems meeting the payment and may want to reduce the amount by extending the duration of the loan. 
An improvement in the financial status of the company may make it possible to increase the payment 
amount and thus pay off the loan earlier. Significant changes in the interest rate may also require adjust-
ments in the series of payments. Unexpected changes in inflation may make it necessary to increase the 
withdrawals to meet expenses. Acquisitions and other financial decisions could also affect the conditions 
within the company and, in turn, the strategy for payment of a loan or expenditure on a facility.

In all such cases that require a change in the schedule while the financial transaction is in prog-
ress, the best approach is to determine the worth of the loan or investment at the time of the change 
and then consider the new or changed conditions. For instance, if at the end of 5 years in a loan 
of 15 years, it is decided to accelerate payments so that the loan is paid off in 5 more years, the 
financial worth of the remaining loan at this point may be calculated and the new payment amount 
determined using the new duration and remaining loan. Because a lump sum may be moved easily 
from one time to another, using Equation (6.9) through Equation (6.12), all the pertinent amounts 
are obtained at the time when the change occurs and the calculations for the new payment or with-
drawal schedule carried out. The following example illustrates the basic approach in such cases.

Example 6.5

A company acquires a packaging facility for $250,000. It pays $30,000 as down payment on 
delivery of the facility and takes a loan for the remaining amount. This loan is to be paid in 
10 years, with monthly payments starting at the end of the first month. The rate of interest is 10%, 
compounded monthly. Calculate the monthly payment. After 5 years, the financial situation of the 
company is much better and the company wants to pay off the loan. Calculate the amount it has to 
pay at the end of 5 years to take care of the remaining loan. Also, calculate the monthly payment 
if the company wants to pay off the loan in the next 2 years instead.

SOLUTION

The monthly payment S that the company must pay toward the loan is obtained from Equation (6.20b), 
which gives
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where P is the present worth of the loan, being $250,000 – $30,000 = $220,000. In addition, the 
interest rate i = 0.1, number of years n = 10, and compounding frequency m = 12 for monthly 
compounding. Therefore,
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This is the monthly payment needed to pay the loan in 10 years.
The future worth FP of these monthly payments at the end of 5 years is calculated from 

Equation (6.17) with n = 5 as
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The future worth FL of the loan after 5 years is given by Equation (6.12b) with n = 5 as

 ( )= +



 = + =1 220,000 (1 0.1/12) $361,967.9760F P

i
m

L

mn

Therefore, to pay off the loan at the end of 5 years, the company must pay

 − = − =$361,967.97 $225,134.35 $136,833.62F FL P

This implies that at the end of 5 years, which is half the duration of the loan, the amount needed 
to pay off the loan is almost 62% of the original loan. As mentioned earlier, the early payments go 
largely toward the interest and the outstanding loan decreases very slowly.

If the company wants to pay off the remaining loan in 2 more years, rather than the full amount 
now, the current value of the unpaid loan, $136,833.62, is taken as the PW at this point in time 
from the preceding calculation. Monthly payments beyond this point in order to pay off this loan 
can be calculated from the formula given in Equation (6.20b). Then, i = 0.1, n = 2, and m = 12, 
and we obtain
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Therefore, a monthly payment of $6,314.18 will pay off the remaining loan in 2 more years and a 
payment of $136,833.62 will pay off the loan in full at this stage. Other situations can similarly be 
considered and payments needed to pay off the loan can be calculated at various points in time.

6.5 RAISING CAPITAL

An important activity in the operation and growth of an industrial enterprise is that of raising capi-
tal. The money may be needed for replacing or improving existing facilities, establishing a new line 
of products, acquiring a new industrial unit, and so on. For example, the establishment of Saturn 
cars as a new division in General Motors represented a major investment for which raising capital 
was a critical consideration. Similarly, replacing existing injection molding machines with new 
and improved ones requires additional capital that may see a return in terms of higher productivity 
and thus greater profit. Though companies generally plan for routine replacement and upgrading of 
facilities, using internal funds for the purpose, new ventures and major expansions usually involve 
raising capital from external sources. A company may raise capital by many methods. For relatively 
small amounts, money may be borrowed from banks, the loan often being paid off as a series of 
payments over a chosen duration as discussed earlier. Among the most common means for raising 
large sums of money are bonds and stocks issued by the company.

6.5.1 bonDs

A bond is issued with a specific face value, which is the amount that will be paid by the company at 
the maturity of the bond, and a fixed interest rate to be paid while the bond is in effect. For instance, 
if a bond with a face value of $1000 is issued for a duration of 10 years with an interest rate of 8% 
paid quarterly, an interest of $1000 × 0.08/4 = $20 is paid after every 3 months for the duration of the 
bond and $1000 is paid at maturity after 10 years. The company raises capital by selling a number of 
these bonds. The initial price of the bond, as well as the price at any time while the bond is in effect, 
may be greater or smaller than the face value, depending on the prevailing interest rate.

If the interest rate available in the market is higher than that yielded by the bond, the selling price 
of the bond drops below its face value because the same interest is obtained by investing a smaller 
amount elsewhere. Similarly, if the prevailing interest rate is lower than that paid by the bond, the 
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seller of the bond can demand a price higher than the face value because the yield is larger than that 
available from other investments. If the selling price equals the face value, the bond is said to be 
sold at par. The stability of the company, the general economic climate in the country, the financial 
needs of the seller, etc., can play a part in the final sale price of a bond. The company that issued 
the bond to raise capital is generally not involved and continues to pay the dividend on the bond as 
promised.

In order to determine the appropriate current price of a bond, the basic principle employed is that 
the total yield from the bond equals that available from investment of the amount paid for the bond 
at the prevailing interest rate. If Pc is the current price to be paid for the bond, Pf is the face value 
of the bond, ib is the interest rate on the bond paid m times a year, ic is the current interest rate also 
compounded m times per year, and n is the number of years to the maturity of the bond, we may write
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where the FW of the investments is used as a basis for equating the two. The first term on the left-
hand side is the face value paid at maturity. The second term gives the FW of the series of dividend 
payments from the bond, invested at the prevailing interest rate. This implies that the dividend yield 
from the bond is assumed to be invested immediately to obtain the current interest rate. The right-
hand side simply gives the FW of the current price of the bond invested at the prevailing interest 
rate, which is assumed to remain unchanged over the remaining duration of the bond. Therefore, 
this equation may be written as
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It is easy to see that if ib = ic, Pf = Pc. Similarly, for ib > ic, it can be shown that Pc > Pf, and for 
ib < ic, Pc < Pf . Therefore, as the prevailing interest rate goes up or down, the selling price of the 
bond correspondingly goes down or up. This variation occurs because the yield of a bond is fixed, 
whereas the interest rate for an investment fluctuates due to the economic climate.

Frequently, the dividend is paid semiannually or quarterly, making m = 2 or 4, respectively. 
The frequencies of dividend payments and compounding may also be different. Such cases can 
easily be handled by the use of the effective interest rate ieff, as illustrated in the following 
example.

Example 6.6

An industrial bond has a face value of $1000 and has 6 years to maturity. It pays dividends at the 
rate of 7.5% twice a year. The current interest rate is 5%, compounded monthly. Calculate the sale 
price of the bond.

SOLUTION

The current sale price Pc of the bond is governed by Equation (6.33), which is written as
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if the frequencies of interest payment by the bond and compounding are the same. Here the face 
value Pf = $1000, the current interest rate ic = 0.05, compounding frequency is 12, and the interest 
rate of the bond ib = 0.075. However, the number of times per year the bond pays interest is two. 
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Because the frequency of compounding is different from the frequency at which the interest from 
the bond is paid, we need to determine the effective interest rate over a 6-month period so that a 
common frequency of two per year may be used. Therefore,
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which gives the effective interest rate over half a year as 0.0505. This effective interest rate is used 
in the equation given earlier for the sale price of the bond. Thus,
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Here, the effective interest rate is used to obtain the same frequency as that of the dividends that 
are paid every 6 months, i.e., m = 2. This equation may be solved to obtain the sale price Pc. The 
resulting value of Pc is $1125.34. Because the current interest rate is lower than that paid by the 
bond, a sale price higher than the face value of the bond is obtained, as expected.

6.5.2 stocks

Another important means used by industry to raise capital is by selling stock in the company. Stocks 
may be sold at the start of a company, when it goes public with its offering, or additional amounts 
may be offered at later stages to raise capital for new enterprises. The company obtains money only 
from such initial or additional stock offerings and not from later trading of the stocks on the various 
stock exchanges. Each stockholder thus shares the ownership of the company with other stockhold-
ers and the governing board is generally comprised of prominent stockholders and their nominees. 
Even though the company does not receive money from future trading of its stock, the stockholders 
are obviously interested in the worth of their stock. The progress and well-being of the company is 
judged by the value of its stock. In addition, if further stocks are offered, the demand, value, and 
number will depend on the current stock price. If the company wants to borrow money from other 
sources, or if it wants to acquire or merge with another company, the value of its stock is an impor-
tant measure of its worth.

Because of all these considerations, considerable efforts are directed at avoiding a decrease in 
stock prices and at increasing their worth. Dividends are also paid depending on the profit made 
by the company. At the end of the year, the board of directors may decide that a dividend will 
be paid, as well as the rate of payment. However, very often companies simply invest the profits 
in the business or give additional stocks to the stockholders. Therefore, the long-term yield of 
a stock is much harder to determine than for a bond because the prices fluctuate, depending on 
the market, and the dividends are usually not fixed. However, stocks are very important for the 
company as well as for investors.

In order to determine the return on a stock, the initial price Ps, the final sale price, and the divi-
dend, if any, must be considered. The dividends are assumed to be invested immediately at the pre-
vailing interest rate, as done for the dividends from bonds, and the resulting total amount at the time 
when the final sale is made is calculated. Then the FW of the stock Fs consists of the sale price and 
the resulting amount from the dividends. The FW of any commission paid to the broker and other 
expenses Fc is subtracted to yield the final return from the stock. The rate of return rs is then com-
puted over the number of years n for which the stock is held as

 ( )= − − r F F P nPs s c s s/ ,

which may also be expressed as a percentage rate of return.
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6.6 TAXES

The government depends heavily on taxes to finance its operations and to provide services. Most 
of this revenue comes from income taxes, which are levied on individuals as well as on companies. 
Because the income tax may vary from one location to another, states and cities with lower income 
taxes are popular locations for companies. In recent years, several organizations have moved their 
head offices from the Northeast (United States) to the Midwest and South in order to reduce the tax 
burden. Taxes on the facilities, through real estate taxes and other local taxes, are also important 
in deciding on the location of an establishment. An example of this is a company moving from 
New York to New Jersey to take advantage of the lower state and city taxes. Another interesting 
aspect is that various states, and even the federal government, may provide incentives to expand 
certain industries by giving tax breaks. The growth and use of solar energy systems were initially 
spurred, to a large extent, by tax incentives given by the government.

6.6.1 inclusion oF tAxes

It is necessary to include taxes in the evaluation of the overall return on the investment in an engi-
neering enterprise and also for comparing different financial alternatives for a venture. As men-
tioned earlier, two main forms of taxation are of concern to an engineering company: income tax 
and real estate, or property, tax.

6.6.1.1 Income Tax
The overall profit made by a given company is the income that is taxed by the federal, state, and 
local governments. Though the federal taxation rate remains unchanged with location, the state and 
local taxes are strongly dependent on the location, varying from close to zero to as high as 20% 
across the United States. However, the federal tax may vary with the size of the company and the 
nature of the industry. Therefore, the tax bite on the profit of a company is quite substantial, gener-
ally being on the order of 40%–50% for typical industrial establishments.

Because the amount paid in taxes is lost by the company, diligent efforts are made to reduce this 
payment by employing different legal means. Certainly, locating and registering the company at a 
place where the local taxes are low is a common approach. Similarly, providing bonuses and addi-
tional benefits to the employees, expanding and upgrading facilities, and acquisition of new facilities 
or enterprises increase the expenses incurred and reduce the taxes owed by the company. Therefore, 
if a company finds itself with a possible profit of $6 million at the end of the year, it may decide to 
give away $1 million in bonuses to the employees, spend $1 million on providing additional health 
or residential amenities, $2 million on upgrading existing manufacturing facilities, and $2 million on 
acquiring a small manufacturing establishment that makes items of interest to the company. Thus, the 
net profit is zero and the company pays no taxes, while it improves its manufacturing capability and 
gains the goodwill of its employees, not to mention their well-being and efficiency. Such a move would 
also make the company more competitive and could result in an increase in the price of its stock.

6.6.1.2 Real Estate and Local Taxes
Taxes are also levied on the property owned by the company. These may simply be real estate taxes 
on the value of the buildings and land occupied by the company or may include charges by the local 
authorities to provide services, such as access roads, security, and solid waste removal. All these 
are generally included as expenses in the operation of the company. Different alternatives involve 
different types of expenses and, therefore, the design of the system may be affected by these taxes. 
For instance, a system that involves a smaller floor area and, therefore, a smaller building and lower 
real estate taxes is more desirable than one that requires a larger floor area. Similarly, the raw mate-
rials needed and the resulting waste are important in determining expenses for transportation and 
disposal, possibly making one system more cost effective than another.
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6.6.2 DepreciAtion

An important concept with respect to the calculation of taxes is that of depreciation. Because a given 
facility has a finite useful life, after which it must be replaced, it is assumed to depreciate in value as 
time elapses until it is sold or discarded at its salvage value. In essence, an amount is allowed to be 
put aside each year for its replacement at the end of its useful life. This amount is the depreciation 
and is taken as an expense each year, thus reducing the taxes to be paid by the company.

The federal government allows several approaches to calculating depreciation. The simplest is 
straight-line depreciation, in which the facility is assumed to depreciate from its initial cost P to its 
salvage value Q at a constant rate. Therefore, the depreciation D in each year is given by

 = −
D

P Q

n
 (6.34)

where n is the number of years of tax life, which is the typical life of the facility in question based 
on guidelines available from the Internal Revenue Service. This approach allows a constant deduc-
tion from the income each year for the facility. The book value of the item is the initial cost minus 
the total depreciation charged up to a given point in time. Therefore, the book value B at the end of 
the jth year is given by

 ( )= − −B P
j

n
P Q  (6.35)

In actual practice, most facilities depreciate faster in the initial years than in later years, as 
anyone who has ever bought a new car knows very well. This is largely because of the lower desir-
ability and unknown maintenance of the used item. As time elapses and the wear and tear are 
well-established, the depreciation usually becomes much smaller. Different distributions are used 
to represent this trend of greater depreciation rate in the early years. These include the sum-of-years 
digits (SYD), the declining balance, and the modified accelerated cost recovery methods.

In the SYD method, the depreciation D for a year n1 under consideration is given by
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where the denominator is the sum n(n + 1)/2 of the digits representing the years, i.e., 1, 2, 3, …, n. 
The numerator is the digit corresponding to the given year when the digits are arranged in reverse 
order, as n, n–1, n–2, and so on. By using this calculation procedure, the depreciation is larger than 
that obtained by the linear method in the early years and smaller in the later years. If the fractional 
depreciation Df is defined as Df = D/(P – Q), the straight-line depreciation and the SYD methods 
give its value, respectively, as
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Figure 6.4 shows the fractional depreciation as a function of time for an item with a 15-year tax 
life, using these two approaches. Therefore, the deduction for depreciation is larger for the SYD 
method in early years, resulting in lower taxes, while the depreciation is smaller near the end of the 
tax life. However, because the value of money increases with time due to interest, it is advantageous 
to have a greater tax burden later in the life of the facility rather than at the early stages.

In the declining balance method, the depreciation Dj in the jth year is taken as a fixed fraction f 
of the book value of the item at the beginning of the jth year. Therefore, the depreciation in the first 
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year is fP, giving a book value, or worth of the item, as (1 − f) P at the beginning of the second year. 
Similarly, the book value at the beginning of the third year is (1 − f)2P, and so on. This implies that 
the book value after n years is (1 − f)nP. Therefore, if the salvage value Q after n years is set equal 
to the book value, we can obtain f from the resulting equation as

 = − 



f

Q

P

n

1
1/

 (6.38)

Also, the book value at the beginning of the jth year is P(1 − f)j−1. This gives the depreciation Dj in 
the jth year as

 = − −D fP fj
j(1 ) 1 (6.39)

Therefore, an accelerated write-off is obtained in the early years.
In the modified accelerated cost recovery method, the depreciation D is calculated from the 

equation

 =D rP (6.40)

where r is termed the recovery rate and is obtained from tabulated values, as given in terms of 
percent in Table 6.5. The item is assumed to be put in service at the middle point of the first year. 
Therefore, only 50% of the first year depreciation is used for the first year and a half-year deprecia-
tion is used for the year n + 1, where n is the total life of the item. The value of the item is assumed 
to be completely depreciated by the end of its useful life. The method starts out with the declining 
balance method and switches to the straight line method in later years.

Taxes must be included as an unavoidable part of any economic analysis. Property and other 
local taxes are included as expenditures and the income taxes are applied on the profit. Besides 
affecting the overall return on the investment, taxes may also influence the strategy for expenditures 
in the company. Increasing the spending on upgrading the facilities and on employee benefits were 
mentioned earlier as two possibilities. In addition, if two alternative facilities are available for a 
specific purpose, the selection may be influenced by the depreciation allowed and the correspond-
ing effect on taxes.

FIGURE 6.4 Variation of the fractional depreciation Df with the number of years under consideration n1 for 
the linear and SYD depreciation calculation methods.
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6.7 ECONOMIC FACTOR IN DESIGN

It is evident from the preceding discussions and examples that economic considerations play an 
important role in the planning, execution, and success of an engineering enterprise. Decisions on 
the upgrading of existing facilities, new ventures and investments, and the completion of ongoing 
projects are all strongly influenced by the underlying financial implications. Similarly, economic 
issues are addressed at various stages during the design of a thermal system and may affect the deci-
sions concerning the selection of components, materials, dimensions, etc., of the system. Though 
economic considerations can influence the system design in many ways, the most important one 
relates to the evaluation of a potential investment or cost. Therefore, if two alternative methods are 
available to achieve a desired function or goal, an evaluation of the investment may be undertaken 
to determine which alternative is the preferred one. This determination may be based on the lowest 
cost or the highest return, depending on the particular application under consideration.

6.7.1 cost compArison

As discussed earlier, in the design process, it is common to make a decision between different 
alternatives, each of which satisfies the given requirements. For instance, different types and makes 
of heat exchangers are often available to transfer the desired amount of energy from one particu-
lar fluid to another. Similarly, different types of pumps may be employed for transporting water 
from one location to another. Different materials may be used for a given item in the system. In 
such cases, the choice is often made by comparing all the relevant costs. However, because of the 
time value of money, the costs must be compared on a similar basis with respect to time. Several 
approaches may be adopted for such cost comparisons, the most common being present worth, 
annual costs, and life-cycle savings. A detailed discussion follows.

6.7.1.1 Present Worth Analysis
If two alternatives for achieving a given function have the same time period of operation, a compari-
son may conveniently be made on the basis of the PW of all costs. Then, initial cost, salvage value, 

TABLE 6.5
Recovery Rates r (%) Used in Modified Accelerated Cost Recovery Method 
for Calculating Depreciation
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and maintenance costs are all brought to the common time frame of the present. If the items lead to 
savings or benefits, these may also be included in the comparison. Similarly, expenses on upgrading 
or refurbishing the item, if incurred during the period of operation, may be included. The following 
example illustrates the use of PW analysis to choose between two alternatives.

Example 6.7

A manufacturing system that is being designed needs a laser welding machine. Two machines, A 
and B, both of which are suitable for the manufacturing process, are being considered. The appli-
cable costs in U.S. dollars are given as

A B
Initial cost $20,000 $30,000
Annual maintenance cost 4,000 2,000
Refurbishing cost at end of 3 years 3,000 0
Annual savings 500 1,000
Salvage value 500 3,000

The useful life is 6 years for both machines, and the rate of interest is 8%, compounded annually. 
Determine which machine is a better acquisition.

SOLUTION

This illustration is typical of alternatives that frequently arise in the design of thermal systems. The 
machine with the lower initial cost has a larger maintenance cost and a smaller salvage value. It 
also needs to be refurbished at the end of 3 years. The savings provided by improvement in quality 
and in productivity are higher for the machine with the larger initial cost. Therefore, if only initial 
cost is considered, machine A is cheaper. However, the added expenses for maintenance and 
refurbishing, as well as lower salvage value and savings, may make machine B a better investment.

The PW of the expenses, minus the benefits or savings, for the two machines are calculated as

 

= + − +
−

= + + − =
= + − −
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P S P F

P S P F

A

B

(PW) 20000 [4000 500]( / , 8%, 6) (3000)( / , 8%, 3)
(500)(P/F, 8% 6)

20000 [3500](4.623) 3000(0.794) 500(0.63) $38,246.50
(PW) 30000 [2000 1000]( / , 8%, 6) (3000)( / , 8%, 6)

30000 [1000](4.623) 3000(0.63) $32,732.37

where the various factors, along with the interest rate and time period, are indicated within paren-
theses. Therefore, machine B is a better investment because the total costs are less by $5,514.13 
on a PW basis. An economic decision based on this cost comparison leads to the selection of 
machine B over machine A. Unless other considerations, such as the availability of funds, are 
brought in, machine B is chosen for the desired application.

As mentioned earlier, even though such calculations can easily be carried out for economic 
analysis, in most practical situations, computer programs are developed so that all the given 
inputs may be entered to obtain the desired results conveniently and efficiently. Computational 
environments such as Matlab are particularly well-suited for developing interactive programs 
that may be used in the design process to obtain results on total expenditures, profits, payments, 
sales, etc.

6.7.1.2 Annual Costs
All the costs may also be considered on an annual basis for comparison. Thus, the initial cost, 
salvage value, savings, and additional expenses are put in terms of an annual payment or benefit. 
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This approach is particularly appropriate if the time periods of the two alternatives are differ-
ent. Considering the preceding example of laser welding machines, the annual costs for the two 
machines are calculated as
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[4000 500] 20000/( / , 8%, 6) 500/( / , 8%, 6)

(3000)(P/F, 8%, 3)/( / , 8%, 6)

[3500] 20000/4.623 500/7.336 2381.5/4.623 $8273.31

[2000 1000] 30000/( / , 8%, 6) 3000/( / , 8%, 6)

[1000] 30000/4.623 3000/7.336 $7080.51

Here, the refurbishing cost for machine A is first converted to its PW and then to the annual cost. 
The PW of the total costs, calculated earlier, could also be employed to calculate annual costs using 
the factor P/S, i.e., CA = (PW)A/(P/S). As before, machine B is a better investment because the annual 
costs are lower. Similarly, the FW of the total costs at the end of the useful life of the facility may 
be used for selecting the better option.

6.7.1.3 Life-Cycle Savings
It is obvious that the comparison between any two alternatives is a function of the prevailing inter-
est rate and the time period considered. Depending on the values of these two quantities, one or the 
other option may be preferred. The life-cycle savings considers the difference between the PW of 
the costs for the two alternatives and determines the conditions under which a particular alternative 
is advantageous. Life-cycle savings, or LCS, is given by the expression
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where n is the time period, i is the interest rate, and n1 is the time when refurbishing is done.
Using the values given earlier for the laser cutting machines, the LCS is obtained as $5514.13. 

Now, if either n is varied, keeping i fixed, or i is varied, keeping n fixed, the LCS changes, indicat-
ing the effect of these parameters on the additional cost of using machine A. If the LCS is positive, 
the costs are higher for machine A and savings are obtained if machine B is used. Therefore, LCS 
represents the savings obtained by using machine B.

Figure 6.5(a) shows that the LCS decreases with the interest rate, becoming zero at an interest 
rate of about 23.25% for the given time period of 6 years. This interest rate is sometimes referred 
to as the return on investment. If the prevailing interest rate is less than the return on investment, 
the LCS is positive and a greater return is obtained with machine B, because the costs for machine 
A are larger. If the actual interest rate is larger than the return on investment, machine A is a better 
choice. This implies that as long as the prevailing interest rate is less than the return on investment, 
the additional initial cost of machine B is recovered.

From Figure 6.5(b), the LCS is seen to increase with the number of years n, at the given interest 
rate of 8%, becoming zero at around 2.55 years. The time at which the LCS becomes zero is often 
termed as the payback time. If the actual time period is less than this payback time, the LCS is nega-
tive and machine A is recommended. For time periods larger than the payback time, machine B is 
preferred because positive savings are obtained due to larger costs for machine A. This implies that 
if the time period is greater than the payback time, there is enough time to recover the additional 
initial expense on machine B.
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6.7.2 rAte oF return

In the preceding section, we discussed cost comparisons for different courses of action in order to 
choose the least expensive one. These ideas can easily be extended to evaluate potential investments 
and to determine the most profitable investment. Thus, net present worth, payback period, and rate 
of return are commonly used methods for evaluating investments.

The net present worth approach calculates the benefits and the costs at time zero using the pre-
vailing interest rate i or a minimum acceptable return on capital. Therefore, the following expres-
sion may be used for the net present worth (NPW):

 
= −
= −

+ −
P S i n

P F i n

NPW Present worth of benefits Present worth of costs
[Annual income Annual costs]( / , , )

[Salvage value]( / , , ) Initial cost

Preference is given to the project with the largest positive net present worth.
The payback period is the time needed to fully recover the initial investment in the enterprise. 

The prevailing interest rate may be used to obtain a realistic time period for recovery, as outlined 
in the preceding section. Therefore, in the above expression for the NPW, the value of n at which 
the NPW becomes zero is the payback time. If the NPW is set equal to zero, the resulting nonlinear 
equation may be solved by iteration to determine n. Root solving techniques given in Chapter 4 may 
be used to simplify the calculations. The investment with a shorter payback period is preferred.

The rate of return is an important concept in choosing different alternatives in the design process 
and in the consideration of the economic viability of an investment. Sometimes, the time value of 
money is not considered and the annual profit and expenses are employed, taking depreciation as an 
expense, to calculate the return. However, a more useful and widely used approach for calculating 
the rate of return is one that is similar to the concept of return on investment presented earlier. The 
rate of return is treated as an interest rate and is the rate at which the net present worth is zero. Thus, 
this rate of return, which is also known as discounted cash flow or internal rate of return, indicates 
the return on the investment as well as repayment of the original investment. All the costs and 
incomes are considered to calculate the rate of return, which is the interest rate at which the income 
and the costs balance out. The following example illustrates these calculations.

FIGURE 6.5 Variation of life-cycle savings (LCS) with interest rate and number of years for the problem 
considered in Example 6.7. The time period is held constant at 6 years for the first case and the interest rate is 
held constant at 8% for the second case.
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Example 6.8

Two plastic-forming facilities, A and B, are suitable for a plastic recycling system. The following 
financial data are given for the two facilities:

A B
Initial cost $50,000 $80,000
Annual income 26,000 36,000
Annual maintenance and other costs 11,000 15,000
Salvage value 10,000 20,000

The life of the facilities is given as 5 years. Calculate the rates of return for the two cases. Also, include 
the effect of taxes, assuming a tax rate of 50% and using the straight-line method for depreciation.

SOLUTION

The equation to calculate the rate of return ir is obtained by setting the NPW equal to zero to yield

 − + − =P S i n P F i nr r[Annual income Annual costs]( / , , ) [Salvage value]( / , , ) Initial cost 0

The unknown in this equation is the rate of return ir, which is distinguished from the prevailing 
interest rate i. For machine A, we have
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Similarly, the corresponding equation for machine B may be written. Therefore, two algebraic, 
nonlinear equations are obtained for the two cases and may be solved to obtain ir. Because of 
the nonlinearity of the equation, iteration is needed, using root solving methods as discussed 
in Chapter 4, to determine ir. The rates of return for the two cases are obtained as 19.05% and 
15.16%, respectively, indicating that machine A is a better investment.

Taxes may also be included in the calculation for the rate of return by using the depreciation of 
the facility. For machine A, the annual profit is $26,000 – $11,000 = $15,000. If the income tax rate 
is 50%, a tax of $7500 has to be paid. However, if depreciation is included, the taxes are reduced. 
Using the straight-line method, the annual depreciation is (50,000 – 10,000)/5 = $8000. With this 
depreciation, the annual income becomes $7000, and the income tax is $3500. Similarly, for machine 
B, the income tax is calculated with depreciation as $4500. The income tax is an additional expense 
that reduces the rate of return. Adding the income tax to the annual costs, the rates of return for the 
two machines, A and B, are obtained as 9.86% and 7.79%, respectively. Therefore, the return after 
taxes is much lower and may even change the preferred alternative, depending on the depreciation.

Therefore, if the design of a thermal system involves selection of a component, such as a heat 
exchanger, pump, or storage tank, or of the materials to be employed, the rate of return on the 
investment may be used to choose the best alternative. In addition, the calculated rate of return may 
be used to decide whether the given investment should be undertaken at all or if another course of 
action should be pursued.

It is seen from the preceding example that the rate of return on an investment depends on the 
various costs, income, salvage value, time period, and depreciation. The return must be greater than 
the prevailing interest rate to make an investment worthwhile. If expenditures have to be under-
taken as part of the project, cost comparisons may be used to select the least expensive course of 
action. The time value of money must be considered in order to obtain realistic costs or returns. The 
NPW and the payback period may also be employed, depending on circumstances. For machines 
A and B, the NPW is calculated as $13,071.01 and $12,024.95, respectively, using the expression 
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given previously. Similarly, the payback period is obtained for the two cases as 3.53 and 3.98 years, 
respectively. Thus, all criteria point to machine A as the better investment.

6.8 APPLICATION TO THERMAL SYSTEMS

The preceding sections have presented economic analyses to take the time value of money into 
account for a variety of financial transactions. Comparisons of costs and income were also dis-
cussed, including the effects of inflation, taxes, depreciation, and salvage. As seen in some of the 
examples, these considerations are important in deciding whether a given project is financially 
viable and in choosing between different alternatives that are otherwise similar.

Economic aspects are also important in the design of thermal systems and are employed at vari-
ous stages. Some of the important decisions based on economic considerations are

1. Whether to proceed with the project
2. Whether to modify existing systems or to develop new ones
3. Whether to design system parts and subsystems, such as heat exchangers and solar collec-

tors, or to buy them from manufacturers
4. Which conceptual designs, materials, components, and configurations to use
5. Which heating and cooling methods, energy source, etc., to use
6. Effect of adjusting design variables to use standard items available in the market

Clearly, many decisions based on financial considerations pertain to the direction of the project 
and are made at high levels of management. However, many decisions are also made during the 
design process, particularly those covered by items 4 through 6 in the preceding list. The choice 
between various acceptable components and materials is made largely because of costs involved. 
Long-term energy costs would affect the decision on the energy source, such as electricity or natural 
gas. Costs are also invoked in the adjustment of design variables for the final design. In most cases, 
the output or performance is balanced against the cost so that an optimal design that maximizes the 
output/cost ratio is obtained. We have seen in Chapter 5 that a domain of acceptable designs that 
satisfy the given requirements and constraints is generally obtained. Costs then become an impor-
tant factor in choosing the best or optimal design from this domain.

Cost evaluation involves determining the different types of costs incurred in the manufacture 
of a given product. It also concerns maintenance and operating costs of the system. This informa-
tion is used in establishing the sale price of the product, in reducing manufacturing costs, and in 
advertising the product. The two main types of costs in manufacturing are fixed and variable. The 
former are essentially independent of the amount of goods produced, whereas the latter vary with 
production rate. Examples of these costs are

1. Fixed costs: Investment costs; equipment procurement; establishment of facilities; expenses 
on technical, management, and sales personnel; etc.

2. Variable costs: Labor, maintenance, utilities, storage, packaging, supplies and parts, raw 
materials, etc.

Estimating costs is a fairly complicated process and is generally based on information available on 
costs pertaining to labor, maintenance, materials, transportation, manufacturing, etc., as applicable 
to a given industry. Estimates have been developed for the time taken for different manufacturing 
processes and may be used to obtain the costs incurred in producing a given item (Dieter, 2000). 
Similarly, overhead charges may be applied to direct labor costs to take care of various fixed costs. 
Again, these charges depend on the industry and the company involved. Costs of different materials 
and components, such as blowers, pumps, fans, air conditioners, and heat exchangers, are also avail-
able from the manufacturers as well as from retailers. The costs obviously vary with the size, quality, 
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and capacity of the equipment. In many cases, the cost versus size data may be curve fitted, using 
techniques given in Chapter 3, to simplify the calculations and facilitate the choice of a suitable item. 
Several such expressions are considered in the chapters on optimization.

Maintenance and operating costs for a system that has been designed are also not easy to esti-
mate. Tests on prototype and actual systems are generally used to estimate the rate of consumption 
of energy. Accelerated tests are often carried out to determine the expected maintenance and service 
costs. Companies that manufacture thermal systems, such as refrigerators, air conditioners, auto-
mobiles, and plastic extruders, usually provide cost estimates regarding energy consumption and 
servicing. Such information is also provided by independent organizations and publications such as 
Consumer Reports, which evaluate different products and rate these in terms of the best performance-
to-cost ratio. The sale price of a given system, as well as its advertisement, are strongly affected by 
such estimates of costs. Many of these aspects play an important role in system optimization.

6.9 SUMMARY

This chapter discusses financial aspects that are of critical importance in most engineering endeav-
ors. Two main aspects are stressed. The first relates to the basic procedures employed in economic 
analysis, considering the time value of money; the second involves the relevance of economic con-
siderations in the design of thermal systems. Therefore, calculations of PW and FW of lumped 
amounts as well as of a series of uniform or increasing payments, for different frequencies of com-
pounding the interest, are discussed. The effects of inflation, taxes, depreciation, and different 
schedules of payment on economic analysis are considered. Methods of raising capital, such as 
stocks and bonds, are discussed. The calculation procedures outlined here will be useful in analyz-
ing an enterprise or project in order to determine the overall costs, profits, and rate of return. This 
would allow one to determine if a particular effort is financially acceptable.

An important consideration, with respect to the design of thermal systems, is choosing between 
different alternatives based on expense or return on investment. Such a decision could arise at dif-
ferent stages in the design process and could affect the choice of conceptual design, components, 
materials, geometry, dimensions, and other design variables. Costs are very important in design and 
often form the basis for choosing between different options that are otherwise acceptable. Different 
methods for comparing costs are given and may be used to judge the superiority of one approach 
over another. Obviously, cost comparisons may indicate that a design that is technically superior 
is too expensive and may lead to a solution that is somewhat inferior but less expensive. Therefore, 
trade-offs have to be made to balance the technical needs of the project against the financial ones.

The economic analysis of the design could also indicate whether it is financially better to design 
a component of the system or to purchase it from a manufacturer. It could guide the modifications in 
existing systems by determining if the suggested changes are financially appropriate. The implemen-
tation of the final design is also very much dependent on the expenditures involved, funds available, 
and financial outlook of the market. All these considerations are time-dependent because the eco-
nomic climate may vary within the company, the relevant industry, and the global arena. Therefore, 
economic decisions are made based on existing conditions as well as projections for the future. 
The analyses needed for such decisions are presented in this chapter along with several examples 
to illustrate the basic ideas involved. Such financial considerations are particularly important in the 
optimization of the system because we are often interested in maximizing the output per unit cost.
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PROBLEMS

 6.1 A steel plant has a hot rolling facility for steel sheets that is to be sold to a smaller com-
pany at $15,000 after 10 years. What is the PW of this salvage price if the interest is 8%, 
compounded annually? Also, calculate the PW for an interest rate of 12% with annual com-
pounding. Will the PW be larger or smaller if the compounding frequency were increased 
to monthly? Explain the observed behavior.

 6.2 A chemical company wants to replace its hot water heating and storage system. One buyer 
offers $10,000 for the old system, payable immediately on delivery. Another buyer offers 
$15,000, which is to be paid 5 years after delivery of the old system. If the current interest 
rate is 10%, compounded monthly, which offer is better financially?

 6.3 A company wants to put aside $150,000 to meet its expenditure on repair and maintenance 
of equipment. Considering yearly, quarterly, monthly, and daily compounding, deter-
mine the total annual interest the company will get in these cases if the nominal interest 
rate is 7.5%.

 6.4 For nominal interest rates of 8% and 12%, calculate the effective interest rates for yearly, 
quarterly, monthly, daily, and continuous compounding.

 6.5 A company acquires a manufacturing facility by borrowing $750,000 at 8% nominal inter-
est, compounded daily. The loan has to be paid off in 10 years with payments starting at 
the end of the first year. Calculate the effective annual rate of interest and the amount of the 
annual payment.

 6.6 In the preceding problem, calculate the amount of the loan left after four and also after eight 
payments. Also, calculate the total amount of interest paid by the company over the duration 
of the loan.

 6.7 A food processing company wants to buy a facility that costs $500,000. It can obtain a loan 
for 10 years at 10% interest or for 15 years at 15% interest. In both cases, yearly payments 
are to be made starting at the end of the first year.
a. Which alternative has a lower yearly payment?
b. What is the loan amount paid off after 5 years for the two cases? Calculate the 

amounts needed to pay off the entire loan at this time.
 6.8 A company makes a profit of 10%. Calculate the real profit in terms of buying power for 

inflation rates of 4%, 6%, and 8%.
 6.9 A firm wants to have an actual profit of 8% in terms of buying power. If the inflation 

rate is 11%, calculate the profit that must be achieved by the firm in order to achieve 
its goal.

 6.10 A small chemical company wants to obtain a loan of $120,000 to buy a plastic recycling 
machine. It has the option of a loan at 6% interest for 10 years or a loan at 8% for 8 years, 
with monthly compounding and payment in both cases. Calculate the monthly payments in 
the two cases, assuming that the first payment is made at the end of the first month. Also, 
calculate the total interest paid in the two options.
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 6.11 A $1000 bond has 4 years to maturity and pays 8% interest twice a year. If the current inter-
est is 6% compounded annually, calculate the sale price of the bond. Repeat the problem if 
the current interest is compounded daily.

 6.12 A $5000 bond has 5 years to maturity and it pays 7% interest at the end of each year. If it is 
sold at $4500, calculate the current nominal interest.

 6.13 A pharmaceutical company wants to acquire a packaging machine. It can buy it at the cur-
rent price of $100,000 or rent it at $18,000 per year. The rental payments are to be made at 
the beginning of each year, starting on the date the machine is delivered. If the interest rate 
is 10%, compounded annually, and if the machine becomes the property of the company 
after 10 yearly payments, which option is better economically?

 6.14 In the preceding problem, if the machine has a salvage value of $15,000 at the end of 
10 years for the option of buying the facility, will the conclusions change? If the interest rate 
is 20%, with salvage, how will the results change?

 6.15 An industrial concern wants to procure a manufacturing facility. It can buy an old machine 
by paying $50,000 now and ten yearly payments of $2000 each, starting at the end of the 
first year. It can also buy a new machine by paying $100,000 now and five yearly pay-
ments of $1000 each, starting at the end of the sixth year. The salvage value is $10,000 and 
$20,000 in the two cases, respectively. The nominal interest rate is 10%. Which is the better 
option, assuming that the performance of the two machines is the same?

 6.16 As a project engineer involved in the design of a manufacturing facility, you need to acquire 
a polymer injection-molding machine. Two options are available from two different compa-
nies. The first one, option A, requires 15 payments of $8000 per year, paid at the beginning 
of each year and starting immediately. The second one, option B, requires eight payments 
of $15,000 per year, paid at the end of each year and starting at the end of the first year. 
Determine which option is better economically if the interest rate is 8%. Also, calculate the 
amounts needed to pay off the loan after half the number of payments have been made in 
the two options.

 6.17 A company needs 1000 thermostats a year for a factory that manufactures heating equip-
ment. It can buy these at $10 each from a subcontractor, with payment made at the begin-
ning of each year for the annual demand. It can also procure a facility at $75,000, with 
$2000 needed for maintenance at the end of each year, to manufacture these. If the facility 
has a life of 10 years and a salvage value of $10,000 at the end of its life, which option is 
more economical? Take the interest rate as 8% compounded annually.

 6.18 In the preceding problem, calculate the annual demand for thermostats at which the two 
options will incur the same expense.

 6.19 You have designed a thermal system that needs a plastic part in the assembly. You can either 
buy the required number of parts from a manufacturer or buy an injection-molding machine 
to produce these items yourself. The number of items needed is 2000 every year. In the first 
option, you have to pay $12 per item for the yearly consumption at the beginning of each 
year. The chosen life of the project is 10 years. For the other option, you can lease a machine 
for $20,000 each year, paid at the end of each year for 10 years. The maintenance of the 
machine and raw materials cost $1000 at the end of the first year, $2000 at the end of the 
second year, and increasing by $1000 each year, until the last payment of $9000 is made at 
the end of the ninth year. Provide the payment schedule for the second option and determine 
which option is better financially. Take the interest rate as 10%, compounded annually.

 6.20 A manufacturer of electronic equipment needs 10,000 cooling fans over a year. The 
company can buy these for $20 each, payable on delivery at the beginning of each year, 
or at $24, payable 2 years after delivery. Which is the better financial alternative if the 
interest rate is 9% compounded daily? Also, calculate the results if the interest rate 
drops to 8%.
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 6.21 A gas burner needed for a furnace can be purchased from three different suppliers. The first 
supplier wants $100 for each burner, payable on delivery. The second supplier is willing to 
take payments of $55 each at the end of 6 months and the year. The third supplier claims 
that its deal is the best and asks for $110 at the end of the year. The current interest rate is 
8.5%, compounded continuously. Because a large number of burners are to be bought, it is 
important to get the best financial deal. Whom would you recommend? Would your recom-
mendation change if the interest rate were to go up, say to 12%?

 6.22 A company acquires a manufacturing facility for $300,000, to be paid in 15 equal annual 
payments starting at the end of the first year. The rate of interest is 8%, compounded annu-
ally. After six payments, the company is in good financial condition and wants to pay off 
the loan in four more equal annual payments, starting with the end of the seventh year, as 
shown in Figure P6.22. Calculate the first and the last payment (at the end of the tenth year) 
made by the company.

 6.23 An industry takes a loan of $200,000 for a machine, to be paid off in 10 years by annual 
payments beginning at the end of the first year. The rate of interest is 10%, compounded 
monthly. At the end of five payments, the company finds itself in a good financial situation 
and management decides to pay off the loan in the following year, as shown in Figure P6.23. 
How much does it have to pay at the end of the sixth year to end the debt? Also, calculate 
the amount of the annual payment in the first 5 years.

 6.24 A company is planning to buy a machine, which requires a down payment of $150,000 and has 
a salvage value of $30,000 after 10 years. The cost of maintenance is covered by the manufac-
turer up to the end of 3 years. For the fourth year, the maintenance cost is $1000, paid at the 
end of the year. These costs increase by $1000 each year until the end of the tenth year, when 
the company pays for the maintenance of the facility and sells it, as shown in Figure P6.24. The 
rate of interest is 10%, compounded annually. Find the PW of buying and maintaining 
the machine over 10 years. If the company wants to take out a fixed amount annually from its 
income to cover the entire expense, calculate this amount, starting at the end of the first year.

FIGURE P6.22

FIGURE P6.23
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 6.25 A manufacturing company wants to buy a welding machine, which costs $10,000. The cost 
of maintenance is zero in the first year, $500 in the second year, and increases by $500 
each year until the eighth year when the company pays the maintenance expense and sells 
the facility for $2000. The maintenance expense is paid at the end of each year. The rate 
of interest is 9%, compounded annually. Find the PW of acquiring and maintaining this 
machine over 8 years.

 6.26 A company is considering the purchase and operation of a manufacturing system. The ini-
tial cost of the system is $200,000 and the maintenance costs are zero at the end of the first 
year, $5000 at the end of the second year, $10,000 at the end of the third year, and continue 
to increase by $5000 each year. If the life of the system is 15 years, find the PW of buying 
and maintaining it over this period. Also, find the uniform annual amount that the system 
costs the company each year, starting after the first year. Take the interest rate as 10% com-
pounded annually.

 6.27 An industrial firm wants to acquire a laser-cutting machine. It can buy a new one by paying 
$150,000 now and six yearly payments of $20,000 each, starting at the end of the fifth year. 
It can also buy an old machine by paying $100,000 now and 10 yearly payments of $15,000, 
starting at the end of the first year. At the end of 10 years, the salvage value of the new 
machine is $80,000 and that of the old one is $60,000. Which is the better purchase for the 
firm, if the interest rate is 12% compounded annually? Use life-cycle savings. Repeat the 
calculation for a 10% interest rate.

 6.28 Using the data given in Example 6.7, choose between the two machines for interest rates 
of 4%, 6%, and 10%. Compare the results obtained with those given in the example and 
discuss the implications of the observed trends.

 6.29 Again using the data given in Example 6.7, study the effects of the useful lives of the 
machines on their economic viability. Consider useful life durations of 4, 8, and 10 years. 
Discuss the implications of the results obtained in making appropriate choices in the design 
process based on costs.

 6.30 Calculate the rates of return for the two facilities given in Example 6.8 as functions of the 
useful lives of the facilities. Take the life as 4, 6, and 8 years, and calculate the correspond-
ing rates of return with and without taxes at the rate of 50% of the profit taken into account. 
Compare these with the earlier results and comment on their significance in the design 
process.

 6.31 A loan of $5000 is taken from a bank that charges a nominal interest rate i, compounded 
monthly. A monthly payment of $200, starting at the end of the first month, is needed for 
36 months to pay off the loan. Write down the equation for calculating the value of i. Using 
root solving methods of Chapter 4, with Matlab, obtain the value of i.

FIGURE P6.24
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 6.32 If the loan is $20,000, the monthly payment $600, and the duration 4 years in the preceding 
problem, calculate the value of i, using the approach developed earlier. Compare the result 
obtained with that in the preceding problem and comment on the difference.

 6.33 A bond of $1000 yields 8% interest annually and has 7 years to maturity. It is sold for 
$500 due to prevailing higher interest rate i. Calculate the interest rate i, using any suitable 
method.

 6.34 A firm needs to borrow $50,000 to undertake improvements in its existing facilities. For the 
repayment of the loan, the firm wishes to pay only $1000 each month, beginning at the end 
of the first month. Considering possible interest rates of 8%, 10%, and 12%, determine the 
time required to pay off the loan for these three cases. Also, determine the amount of the 
last payment.
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7 Problem Formulation 
for Optimization

7.1 INTRODUCTION

In the preceding chapters, we focused our attention on obtaining a workable, feasible, or accept-
able design of a system. Such a design satisfies the requirements for the given application, without 
violating any imposed constraints. A system fabricated or assembled on the basis of this design is 
expected to perform the appropriate tasks for which the effort was undertaken. However, the design 
would generally not be the best design, where the definition of best is based on cost, performance, 
efficiency, or some other such measure. In actual practice, we are usually interested in obtaining the 
best quality or performance per unit cost, with acceptable environmental effects. This brings in the 
concept of optimization, which minimizes or maximizes quantities and characteristics of particular 
interest to a given application.

Optimization is by no means a new concept. In our daily lives, we attempt to optimize by 
seeking to obtain the largest amount of goods or output per unit expenditure, this being the 
main idea behind clearance sales and competition. In the academic world, most students try 
to achieve the best grades with the least amount of work, hopefully without violating the con-
straints imposed by ethics and regulations. The best value of various items, including consumer 
products such as televisions, automobiles, cameras, smart phones, vacation trips, and even edu-
cation, per dollar spent, is often quoted to indicate the cost effectiveness of these items. Different 
measures of quality, such as durability, finish, reliability, corrosion resistance, strength, and 
speed, are included in these considerations, often based on actual consumer inputs, as is the case 
with publications such as Consumer Reports. Thus, buyers, who may be a student (or a parent) 
seeking an appropriate college for higher education, a couple looking for a cruise, or a young 
professional searching for his first dream car, may use information available on the best value 
for their money to make their choices.

7.1.1 optimizAtion in Design

The need to optimize is similarly very important in design and has become particularly crucial in 
recent times due to growing global competition. It is no longer enough to obtain a workable system 
that performs the desired tasks and meets the given constraints. At the very least, several workable 
designs should be generated and the final design, which minimizes or maximizes an appropriately 
chosen quantity, selected from these. In general, many parameters affect the performance and cost 
of a system. Therefore, if the parameters are varied, an optimum can often be obtained in quantities 
such as power per unit fuel input, cost, efficiency, energy consumption per unit output, and other 
features of the system. Different product characteristics may be of particular interest in differ-
ent applications and the most important and relevant ones may be employed for optimization. For 
instance, weight is particularly important in aerospace and aeronautical applications, acceleration in 
automobiles, energy consumption in refrigerators, and flow rate in a water pumping system. Thus, 
these characteristics may be chosen for minimization or maximization.

Workable designs are obtained over the allowable ranges of the design variables in order to satisfy 
the given requirements and constraints. A unique solution is generally not obtained and different sys-
tem designs may be generated for a given application. We may call the region over which acceptable 
designs are obtained the domain of workable designs, given in terms of the physical variables in the 
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problem. Figure 7.1 shows, qualitatively, a sketch of such a domain in terms of variables x1 and x2, 
where these may be physical quantities such as the diameter and length of the shell in a shell-and-tube 
heat exchanger. Then, any design in this domain is an acceptable or workable design and may be 
selected for the problem at hand. Optimization, on the other hand, tries to find the best solution, one 
that minimizes or maximizes a feature or quantity of particular interest. Local extrema may be pres-
ent at different points in the domain of acceptable designs. However, only one global optimal point, 
which yields the minimum or maximum in the entire domain, is found to arise in most applications, as 
indicated in the figure. It is this optimal design that is sought in the optimization process.

7.1.2 FinAl optimizeD Design

The optimization process is expected to yield an optimal design or a subdomain in which the opti-
mum lies. The final system design is obtained on the basis of this solution. The design variables are 
generally not taken as exactly equal to those obtained from the optimal solution, but are changed 
somewhat to use more convenient sizes, dimensions, and standard items available in the market. 
For instance, an optimal dimension of 4.65 m may be taken as 5.0 m, a 8.34 kW motor as a 10 kW 
motor, or a 1.8 kW heater as a 2.0 kW heater, because items with these specifications may be readily 
available, rather than having the exact ones custom made.

An important concept that is used at this stage to finalize the design variables is sensitivity, 
which indicates the effect of changing a given variable on the output or performance of the system. 
In addition, safety factors are employed to account for inaccuracies and uncertainties in the model-
ing, simulation, and design, as well as for fluctuations in operating conditions and other unforeseen 
circumstances. Some changes may also be made due to fabrication or material limitations. Based on 
all these considerations, the final system design is obtained and communicated to various interested 
parties, particularly those involved in fabrication and prototype development.

Generally, optimization of a system applies to its hardware, i.e., to the geometry, dimensions, 
materials, and components. As discussed in Chapter 2, the hardware refers to the fixed parts of the 
system, components that cannot be easily varied and items that determine the overall specifications 
of the system. However, the system performance is also dependent on operating conditions, such 
as temperature, pressure, flow rate, and heat input. These conditions can generally be varied quite 
easily, over ranges that are determined by the hardware. Therefore, the output of the system, as 
well as the costs incurred, may also be optimized with respect to the operating conditions. Such an 
optimum may be given in terms of the conditions for obtaining the highest efficiency or output. For 
instance, the settings for optimal output from an air conditioner or a refrigerator may be given as 
functions of the ambient conditions.

FIGURE 7.1 The optimum design in a domain of acceptable designs.
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This chapter presents the important considerations that govern the optimization of a system. 
The formulation of the optimization problem and different methods that are employed to solve it 
are outlined, with detailed discussion of these methods taken up in subsequent chapters. It will be 
assumed that we have been successful in obtaining a domain of acceptable designs and are now 
seeking an optimal design. The modeling and simulation effort that has been used to obtain a work-
able design is also assumed to be available for optimization. Therefore, the optimization process is 
a continuation of the design process, which started with the formulation of the design problem and 
involved modeling, simulation, and design as presented in the preceding chapters. The conceptual 
design is kept unchanged during optimization because the acceptable designs were obtained with 
the chosen concept.

This chapter also considers special considerations that arise for thermal systems, such as the 
thermal efficiency, energy losses, and heat input rate, that are associated with thermal processes. 
Important questions regarding the implementation of the optimal solution, such as sensitivity analy-
sis, dependence on the model, effect of quantity chosen for optimization, and selection of design 
variables for the final design, are considered. Many specialized books are available on optimiza-
tion in design, for instance, those by Fox (1971), Vanderplaats (1984), Stoecker (1989), Rao (2009), 
Rhinehart (2018), Papalambros and Wilde (2017), Arora (2004), and Ravindran et al. (2006). 
Books are also available on the basic aspects of optimization, such as those by Beveridge and 
Schechter (1970), Beightler et al. (1979), and Miller (2000). These books may be consulted for fur-
ther details on optimization techniques and their application to design.

7.2 BASIC CONCEPTS

We can now proceed to formulate the basic problem for the optimization of a thermal system. 
Because the optimal design must satisfy the given requirements and constraints, the designs 
considered as possible candidates must be acceptable or workable ones. This implies that the 
search for an optimal design is carried out in the domain of acceptable designs. The conceptual 
design is kept fixed so that optimization is carried out within a given concept. Generally, differ-
ent concepts are considered at the early stages of the design process and a particular conceptual 
design is selected based on prior experience, environmental impact, material availability, etc., 
as discussed in Chapter 2. However, if a satisfactory design is not obtained with a particular 
conceptual design, the design process may be repeated, starting with a different conceptual 
design.

7.2.1 objective Function

Any optimization process requires specification of a quantity or function that is to be minimized 
or maximized. This function is known as the objective function, and it represents the aspect or 
feature that is of particular interest in a given circumstance. Though the cost, including initial and 
maintenance costs, and profit are the most commonly used quantities to be optimized, many other 
aspects are employed for optimization, depending on the system and the application. The choice of 
the objective function is of critical importance in the optimization process because the results are 
often strongly dependent on the chosen criterion. The objective functions that are optimized for 
thermal systems are frequently based on the following characteristics:

1. Weight
2. Size or volume
3. Rate of energy consumption
4. Heat transfer rate
5. Efficiency
6. Overall profit
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7. Costs incurred
8. Product quality
9. Environmental effects

10. Pressure head needed
11. Durability and reliability
12. Safety
13. System performance
14. Output delivered

The weight is of particular interest in transportation systems, such as airplanes and automo-
biles. Therefore, an electronic system designed for an airplane may be optimized in order to have 
the smallest weight while it meets the given requirements. Similarly, the size of the air condition-
ing system for environmental control of a house may be minimized in order to require the least 
amount of space. Energy consumption per unit output is particularly important for thermal systems 
and is usually indicative of the efficiency of the system. Frequently, this is given in terms of the 
energy rating of the system, thus specifying the power consumed for operation under given condi-
tions. Refrigeration, heating, drying, air conditioning, and many such consumer-oriented systems 
are generally optimized to achieve the minimum rate of energy consumption for specified output. 
Costs and profits are always important considerations and efforts are made to minimize the former 
and maximize the latter. The output is also of particular interest in many thermal systems, such as 
manufacturing processes and automobiles. However, even if one wishes to maximize the thrust, 
torque, or power delivered by a motor vehicle, cost is still a very important consideration. Therefore, 
in many cases, the objective function is based on the output per unit cost. Similarly, other relevant 
measures of performance are considered in terms of the costs involved. Environmental effects, 
safety, product quality, and several other such aspects are important in various applications and may 
also be considered for optimization.

Let us denote the objective function that is to be optimized by U, where U is a function of the n 
independent variables in the problem x1, x2, x3, …, xn. Then the objective function and the optimiza-
tion process may be expressed as

 = … →U U x x x x Un( , , , , )1 2 3 opt (7.1)

where Uopt denotes the optimal value of U. The x’s represent the design hardware variables as 
well as the operating conditions, which may be changed to obtain a workable or optimal design. 
Physical variables such as height, thickness, material properties, heat flux, temperature, pres-
sure, and flow rate may be varied over allowable ranges to obtain an optimum design, if such an 
optimum exists. A minimum or a maximum in U may be sought, depending on the nature of the 
objective function.

The process of optimization involves finding the values of the different design variables for 
which the objective function is minimized or maximized, without violating the constraints. 
Figure 7.2 shows a sketch of a typical variation of the objective function U with a design variable 
x1, over its acceptable range. It is seen that though there is an overall, or global, maximum in U(x1), 
there are several local maxima or minima. Our interest lies in obtaining this global optimum. 
However, the local optima can often confuse the true optimum, making the determination of the 
latter difficult. It is necessary to distinguish between local and global optima so that the best design 
is obtained over the entire domain.

7.2.2 constrAints

The constraints in a given design problem arise due to limitations on the ranges of the physical 
variables, and due to the basic conservation principles that must be satisfied. The restrictions on 
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the variables may arise due to the space, equipment, and materials being employed. These may 
restrict the dimensions of the system, the highest temperature that the components can safely 
attain, allowable pressure, material flow rate, force generated, and so on. Minimum values of 
the temperature may be specified for thermoforming of a plastic and for ignition to occur in an 
engine. Thus, both minimum and maximum values of the design variables may be involved as 
constraints.

Many of the constraints relevant to thermal systems have been considered in earlier chapters. 
The constraints limit the domain in which the workable or optimal design lies. Figure 7.3 shows a 
few examples in which the boundaries of the design domain are determined by constraints arising 
from material or space limitations. For instance, in heat treatment of steel, the minimum tempera-
ture needed for the process Tmin is given, along with the maximum allowable temperature Tmax at 
which the material will be damaged. Similarly, the maximum pressure pmax in a metal extrusion 
process is fixed by strength considerations of the extruder and the minimum pmin is fixed by the flow 
stress needed for the process to occur. The limitations on the dimensions W and H define the domain 
in an electronic system.

Many constraints arise because of the conservation laws, particularly those related to mass, 
momentum, and energy in thermal systems. Thus, under steady-state conditions, the mass inflow 
into the system must equal the mass outflow. This condition gives rise to an equation that must 
be satisfied by the relevant design variables, thus restricting the values that may be employed 
in the search for an optimum. Similarly, energy balance considerations are very important in 
thermal systems and may limit the range of temperatures, heat fluxes, dimensions, etc., that may 
be used. Several such constraints are often satisfied during modeling and simulation because the 
governing equations are based on the conservation principles. Then the optimization process has 
already considered these constraints. In such cases, only the additional limitations that define the 
boundaries of the design domain are left to be considered.

There are two types of constraints, equality constraints and inequality constraints. As the name 
suggests, equality constraints are equations that may be written as
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FIGURE 7.2 Global maximum of the objective function U in an acceptable design domain of the design 
variable x1.
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Similarly, inequality constraints indicate the maximum or minimum value of a function and may 
be written as
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Therefore, either the upper or the lower limit may be given for an inequality constraint. Here, the C’s 
are constants or known functions. The m equality and l inequality constraints are given for a gen-
eral optimization problem in terms of the functions G and H, which are dependent on the n design 
variables or operating conditions, x1, x2, …, xn. Thus, the constraints in Figure 7.3 may be given as 
Tmin ≤ T ≤ Tmax, Pmin ≤ P ≤ Pmax, and so on.

The equality constraints are most commonly obtained from conservation laws; e.g., for a steady 
flow circumstance in a control volume, we may write

 (mass flow rate) (mass flow rate) 0in out∑ ∑− =

FIGURE 7.3 Boundaries of the acceptable design domain specified by limitations on the variables for 
(a) heat treatment, (b) metal extrusion, and (c) cooling of electronic equipment.
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or

 0∑ ∑( ) ( )ρ − ρ =VA VA
in out  (7.4)

where ρ is the mean density of the material, V is the average velocity, A is the cross-sectional area, 
and ∑ denotes the sum of flows in and out of several channels, as sketched in Figure 7.4. Similarly, 
equations for energy balance and momentum-force balance may be written. The conservation equa-
tions may be employed in their differential or integral forms, depending on the detail needed in the 
problem.

It is generally easier to deal with equations than with inequalities because many methods are 
available to solve different types of equations and systems of equations, as discussed in Chapter 4, 
whereas no such schemes are available for inequalities. Therefore, inequalities are often converted 
into equations before applying optimization methods. A common approach employed to convert 
an inequality into an equation is to use a value larger than the constraint if a minimum is specified 
and a value smaller than the constraint if a maximum is given. For instance, the constraints may be 
changed as follows:

 ( , , , , ) becomes ( , , , , )1 1 2 3 1 1 1 2 3 1 1… ≤ … = − ∆H x x x x C H x x x x C Cn n  (7.5a)

 … ≥ … = + ∆H x x x x C H x x x x C Cn n( , , , , ) becomes ( , , , , )3 1 2 3 3 3 1 2 3 3 3 (7.5b)

where ΔC1 and ΔC3 are chosen quantities, often known as slack variables, that indicate the differ-
ence from the specified limits. Though any finite values of these quantities will satisfy the given 
constraints, generally the values are chosen on the basis of the characteristics of the given problem 
and the importance of the constraint. Frequently, a fraction of the actual limiting value is used 
as the slack to obtain the corresponding equation. For instance, if 200°C is given as the limiting 
temperature for a plastic, a deviation of, say, 5% or 10°C may be taken as acceptable to convert the 
inequality into an equation.

7.2.3 operAting conDitions versus hArDwAre

It was mentioned earlier that the process of optimization might be applied to a system so that the 
design, given in terms of the hardware, is optimized. Much of our discussion on optimization will 
focus on the system so that the corresponding hardware, which includes dimensions, materials, 
geometry, components, etc., is varied to obtain the best design with respect to the chosen objective 
function. However, it is worth reiterating that once a system has been designed, its performance and 
characteristics are also functions of the operating conditions. Therefore, it is generally possible to 
obtain conditions under which the system performance is optimum. For instance, if we are inter-
ested in the minimum fuel consumption of a motor vehicle, we may be able to determine a speed, 

FIGURE 7.4 Inflow and outflow of material and energy in a fixed control volume.
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such as 88 km/h (55 miles/h), at which this condition is met. Similarly, the optimum setting for an 
air conditioner, at which the efficiency is maximum, may be determined as, say, 22.2°C (72°F), or 
the revolutions per minute of a motor as 125 for optimal performance.

The operating conditions vary from one application to another and from one system to the next. 
The range of variation of these conditions is generally fixed by the hardware. Therefore, if a heater 
is chosen for the design of a furnace, the heat input and temperature ranges are fixed by the specifi-
cations of the heater. Similarly, a pump or a motor may be used to deliver an output over the ranges 
for which these can be satisfactorily operated. The operating conditions in thermal systems are 
typically specified in terms of the following variables:

1. Heat input rate
2. Temperature
3. Pressure
4. Mass or volume flow rate
5. Speed, revolutions per minute (rpm)
6. Chemical composition

Thus, imposed temperature and pressure, as well as the rate of heat input, may be varied over the 
allowable ranges for a system such as a furnace or a boiler. The volume or mass flow rate is chosen, 
along with the speed (rpm), for a system like a screw extruder, a diesel engine, or a gas turbine. The 
chemical composition is important in specifying the chosen inlet conditions for a chemical reactor, 
such as a food extruder where the moisture content in the extruded material is an important variable.

It is useful to determine the optimum operating conditions and the corresponding system perfor-
mance. The approach to optimize the output or performance in terms of the operating conditions is 
similar to that employed for the hardware design and optimization. The model is employed to study 
the dependence of the system performance on the operating conditions and an optimum is chosen 
using the methods discussed here.

7.2.4 mAthemAticAl FormulAtion

We may now write the basic mathematical formulation for the optimization problem in terms of 
the objective function and the constraints. We will first consider the formulation in general terms, 
followed by a few examples to illustrate these ideas. The various steps involved in the formulation 
of the problem are

1. Determination of the design variables, xi where i = 1, 2, 3, …, n
2. Selection and definition of the objective function, U
3. Determination of the equality constraints, Gi = 0, where i = 1, 2, 3, …, m
4. Determination of the inequality constraints, Hi ≤ or ≥ Ci, where i = 1, 2, 3, . . l
5. Conversion of inequality constraints to equality constraints, if appropriate

The selection of the design variables xi and of the objective function U is extremely important 
for the success of the optimization process, because these define the basic problem. The number 
of independent variables determines the complexity of the problem and, therefore, it is important 
to focus on the dominant variables rather than consider all that might affect the solution. As the 
number of independent variables is increased, the effort needed to solve the problem increases 
substantially, particularly for thermal systems, because of their generally complicated, nonlinear 
characteristics. Consequently, optimization of thermal systems is often carried out with a relatively 
small number of design variables that are of critical importance to the system under consideration. 
Optimization may also be done considering only one design variable at a time, with the different 
variables being alternated, as we advance toward the optimal solution.
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Similarly, the selection of the objective function demands great care. It must represent the 
important characteristics and concerns of the system and of the application for which it is intended. 
However, it must also be sensitive to variations in the design parameters; otherwise, a clear optimal 
result may not emerge from the analysis. Different aspects may be combined to define the objec-
tive function, e.g., output per unit cost, efficiency per unit cost, profit per unit solid waste, and heat 
rejected per unit power delivered.

The constraints are obtained from the conservation laws and from limitations imposed by the 
materials employed; space and weight restrictions; environmental, safety, and performance consid-
erations; and requirements of the application. If there are no constraints at all, the problem is termed 
unconstrained and is much easier to solve than the corresponding constrained problem. Efforts are 
usually made to reduce the number of constraints or eliminate these by substitution and algebraic 
manipulation to simplify the problem.

Therefore, the general mathematical formulation for the optimization of a system may be  
written as

 … →U x x x x Un( , , , , )1 2 3 opt (7.6a)

with

 … = = …G x x x x i mi n( , , , , ) 0, for 1,2,3, ,1 2 3  (7.6b)

and

 … ≤ ≥ = …H x x x x C i li n i( , , , , ) or , for 1,2,3, ,1 2 3  (7.6c)

If the number of equality constraints m is equal to the number of independent variables n, the 
constraint equations may simply be solved to obtain the variables and there is no optimization prob-
lem. If m > n, the problem is overconstrained and a unique solution is not possible because some 
constraints have to be discarded to obtain a solution. If m < n, an optimization problem is obtained. 
This is the case considered here and in the following chapters. The inequality constraints are gener-
ally employed to define the range of variation of the design parameters.

7.3 OPTIMIZATION METHODS

Several methods may be employed for solving the mathematical problem given by Equation (7.6) 
to optimize a system or a process. Each approach has its limitations and advantages over the 
others. Thus, for a given optimization problem, a certain method may be particularly appropri-
ate while some of the others may not even be applicable. The choice of method largely depends 
on the nature of the equations representing the objective function and the constraints. It also 
depends on whether the mathematical formulation is expressed in terms of explicit functions 
or if numerical solutions or experimental data are to be obtained to determine the variation 
of the objective function and the constraints with the design variables. Because of the compli-
cated nature of typical thermal systems, numerical solutions of the governing equations and 
experimental results are often needed to study the behavior of the objective function as the 
design variables are varied and to monitor the constraints. However, in several cases, detailed 
numerical results are generated from a mathematical model of the system or experimental data 
are obtained from a physical model, and these are curve fitted to obtain algebraic equations to 
represent the characteristics of the system. Optimization of the system may then be undertaken 
based on these relatively simple algebraic expressions and equations. The commonly used meth-
ods for optimization and the nature and type of equations to which these may be applied are 
outlined in the following sections.
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7.3.1 cAlculus methoDs

The use of calculus for determining the optimum is based on derivatives of the objective function 
and of the constraints. The derivatives are used to indicate the location of a minimum or a maxi-
mum. At a local optimum, the slope is zero, as sketched in Figure 7.5, for U varying with a single 
design variable x1 or x2. The equations and expressions that formulate the optimization problem 
must be continuous and well-behaved, so that these are differentiable over the design domain. An 
important method that employs calculus for optimization is the method of Lagrange multipliers. 
This method is discussed in detail in the next chapter. The objective function and the constraints 
are combined through the use of constants, known as Lagrange multipliers, to yield a system of 
algebraic equations. These equations are then solved analytically or numerically, using the methods 
presented in Chapter 4, to obtain the optimum as well as the values of the multipliers.

The range of application of calculus methods to the optimization of thermal systems is somewhat 
limited because of complexities that commonly arise in these systems. Numerical solutions are often 
needed to characterize the behavior of the system and implicit, nonlinear equations that involve 
variable material properties are frequently encountered. However, curve fitting may be employed 
in some cases to yield algebraic expressions that closely approximate the system and material char-
acteristics. If these expressions are continuous and easily differentiable, calculus methods may be 
conveniently applied to yield the optimum. These methods also indicate the nature of the functions 
involved, their behavior in the domain, and the basic characteristics of the optimum. In addition, the 
method of Lagrange multipliers provides information, through the multipliers, on the sensitivity of 
the optimum with respect to changes in the constraints. In view of these features, it is worthwhile 
to apply the calculus methods whenever possible. However, curve fitting often requires extensive 
data that may involve detailed experimental measurements or numerical simulations of the system. 
Because this may demand a considerable amount of effort and time, particularly for thermal sys-
tems, it is generally preferable to use other methods of optimization that require relatively smaller 
numbers of simulations.

7.3.2 seArch methoDs

As the name suggests, these methods involve selection of the best solution from a number of work-
able designs. If the design variables can only take on certain fixed values, different combinations of 
these variables may be considered to obtain possible acceptable designs. Similarly, if these variables 
can be varied continuously over their allowable ranges, a finite number of acceptable designs may 
be generated by changing the variables. In either case, a number of workable designs are obtained, 
and the optimal design is selected from these. In the simplest approach, the objective function is cal-
culated at uniformly spaced locations in the domain, selecting the design with the optimum value. 

FIGURE 7.5 Maximum or minimum in the objective function U, varying with a single independent variable 
x1 or x2.
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This approach, known as exhaustive search, is not very imaginative and is clearly an inefficient 
method to optimize a system. As such, it is generally not used for practical systems. However, the 
basic concept of selecting the best design from a set of acceptable designs is an important one and 
is used even if a detailed optimization of the system is not undertaken. Sometimes, an unsystematic 
search, based on prior knowledge of the system, is carried out instead.

Several efficient search methods have been developed for optimization and may be adopted for 
optimizing thermal systems. Because of the effort involved in experimentally or numerically simu-
lating typical thermal systems, particularly large and complex systems, it is important to minimize 
the number of simulation runs or iterations needed to obtain the optimum. The locations in the 
design domain where simulations are carried out are selected in a systematic manner by considering 
the behavior of the objective function. Methods such as dichotomous, Fibonacci, univariate, and 
steepest ascent search start with an initial design and attempt to use a minimum number of itera-
tions to reach close to the optimum, which is represented by a peak or the lowest point, as sketched 
in Figure 7.5.

The exact optimum is generally not obtained even for continuous functions because only a 
finite number of iterations are used. However, in actual engineering practice, components, mate-
rials, and even dimensions are not available as continuous quantities but as discrete steps. For 
instance, a heat exchanger would typically be available for discrete heat transfer rates such as 
50, 100, 200 kW, etc. The cost may be assumed to be a discrete distribution rather than a con-
tinuous variation (see Figure 7.6). Similarly, the costs of items such as pumps and compressors 
are discrete functions of the size. Different materials involve distinct sets of properties and not 
continuous variations of thermal conductivity, specific heat, or other thermal properties. Search 
methods can easily be applied to such circumstances, whereas calculus methods demand continu-
ous functions. Consequently, search methods are extensively used for the optimization of thermal 
systems. The basic strategies and their applications to thermal systems are discussed in Chapter 9.

7.3.3 lineAr AnD DynAmic progrAmming

Programming as applied here simply refers to optimization. Linear programming is an important 
optimization method and is extensively used in industrial engineering, operations research, and 
many other disciplines. However, the approach can be applied only if the objective function and the 
constraints are all linear. Large systems of variables can be handled by this method, such as those 
encountered in air traffic control, transportation networks, and supply and utilization of raw materi-
als. However, as we well know, thermal systems are typically represented by nonlinear equations. 
Consequently, linear programming is not particularly important in the optimization of thermal sys-
tems, though it is applicable in a few cases and some problems may be linearized to use this method. 
A brief outline of the method is given in Chapter 10.

FIGURE 7.6 Variation of cost as a discrete function with (a) heat transfer rate in a heat exchanger, and 
(b) size of an item such as a fan or pump.
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Dynamic programming is used to obtain the best path through a series of stages or steps to 
achieve a given task, for instance, the optimum configuration of an assembly line, the best path 
for the flow of hot water in a building, and the best layout for transport of coal in a power plant. 
Therefore, the result obtained from dynamic programming is not a point where the objective func-
tion is optimum but a curve or path over which the function is optimized. Figure 7.7 illustrates the 
basic concept by means of a sketch. Several paths can be used to connect points A and B. The opti-
mum path is the one over which a given objective function, say, total transportation cost, is mini-
mized. Multiple solutions are possible and additional considerations, such as safety, convenience, 
availability of items, etc., are used to choose the best design. Clearly, there are a few circumstances 
of interest in thermal systems where dynamic programming may be used to obtain the best layout to 
minimize losses and reduce costs. Some of these considerations are discussed in Chapter 10.

7.3.4 geometric progrAmming

Geometric programming is an optimization method that can be applied if the objective function and 
the constraints can be written as sums of polynomials. The independent variables in these polyno-
mials may be raised to positive or negative, integer or noninteger exponents, e.g.,

 = + + +−U ax bx cx x d1
2

2
1.2

1 2
0.5  (7.7)

Here, a, b, c, and d are constants, which may also be positive or negative, and x1 and x2 are the 
independent variables. Curve fitting of experimental data and numerical results for thermal systems 
often leads to polynomials and power-law variations, as seen in Chapter 3. Therefore, geometric 
programming is useful in the optimization of thermal systems if the function to be optimized and 
the constraints can be represented as sums of polynomials. If the method is applicable in a particu-
lar case, the optimal solution and even the sensitivity of the solution to changes in the constraints 
are often obtained directly and with very little computational effort. The method is discussed in 
detail in Chapter 10.

However, it must be remembered that unless extensive data and numerical simulation results are 
available for curve fitting, and unless the required polynomial representations can be obtained to 
the desired accuracy level, geometric programming cannot be used for common thermal systems. 
In such cases, search methods provide an important approach that is widely used for large and 
complicated systems.

7.3.5 other methoDs

Several other optimization methods have been developed in recent years because of the strong need 
to optimize systems and processes. Many of these are particularly suited to specific applications 
and may not be easily applied to thermal systems. Among these are shape, trajectory, and structural 

FIGURE 7.7 Dynamic programming for choosing the optimum path from the many different paths to go 
from point A to point B.
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optimization methods, which involve specialized techniques for finding the desired optimum. 
Frequently, finite-element solution procedures are linked with the relevant optimization strategy. 
Iterative shapes, trajectories, or structures are generated, starting with an initial design. For mono-
tonically increasing or decreasing objective functions and constraints, a method known as monoto-
nicity analysis has been developed for optimization. This approach focuses on the constraints and 
the effects these have on the optimum.

Several other methods and associated approaches have been developed and employed in recent 
years to facilitate the optimization of a wide variety of processes and systems. Though initially 
directed at linear problems, these approaches have been modified to include the optimization of 
nonlinear problems such as those of interest in thermal systems. Among the methods that may 
be mentioned are genetic algorithms (GAs), artificial neural networks (ANNs), fuzzy logic, and 
response surfaces. The first three are based on artificial intelligence approaches, as discussed later 
in Chapter 11. A brief discussion is included here, while the fourth method, response surfaces, is 
discussed in some detail in the following.

GAs are search methods used for obtaining the optimal solution and are based on evolutionary 
techniques that are similar to evolutionary biology, which involves inheritance, learning, selection, 
and mutation. The process starts with a population of candidate solutions, called individuals, and 
progresses through generations, with the fitness, as defined on the basis of the objective function, 
for each individual being evaluated. Then multiple individuals are selected from the current genera-
tion based on the fitness and modified to form a new population. This new population is used in 
the next iteration and the algorithm progresses toward the desired optimal point (Goldberg, 1989; 
Mitchell, 1998; Holland, 2002; Sheppard, 2018).

ANNs are interconnected groups of processing elements, called artificial neurons, similar to 
those in the central nervous system of the body and studied as neuroscience. The characteristics of 
the processing elements and the interconnections determine the processing of information and the 
modeling of simple and complex processes. Functions are performed in parallel and the networks 
have both nonadaptive and adaptive elements, which change with the input/output and the problem. 
Thus, nonlinear, distributed, parallel, local processing, and adaptive representations of systems are 
obtained (Jain and Martin, 1999).

Fuzzy logic allows one to deal with inherently imprecise concepts, such as cold, warm, very, and 
slight, and is useful in a wide variety of thermal systems where approximate, rather than precise, 
reasoning is needed (Ross, 2004). It can be used for control of systems and in problems where a 
sharp cutoff between two conditions does not exist.

The preceding three approaches are available in toolboxes developed by MathWorks and can 
thus be used easily with Matlab, along with several other optimization techniques. Many are based 
on the natural world such as particle swarm optimization (PSO), which uses a flock of birds search-
ing for food as the basis for the optimization strategy.

Another approach, which has found widespread use in engineering systems, including thermal 
systems, is that of response surfaces. As mentioned earlier, response surface or surrogate models 
are approximate models that reduce the simulation effort by using the responses at intelligently 
selected points. The basic approach is similar to curve fitting, discussed in Chapter 3. The response 
surface methodology (RSM) comprises a group of statistical techniques for empirical model build-
ing, followed by the use of the model in the design and development of new products and also in 
the improvement of existing designs (Box and Draper, 1987, 2007). RSM is used when only a small 
number of computational or physical experiments can be conducted due to the high costs (monetary 
or computational) involved. Response surfaces are fitted to the limited data collected and are used 
to estimate the location of the optimum. RSM gives a fast approximation to the model, which can 
be used to identify important variables, visualize the relationship of the input to the output, and 
quantify trade-offs between multiple objectives. This approach has been found to be valuable in 
developing new processes and systems, optimizing their performance, and improving the design 
and formulation of new products (Myers and Montgomery, 2016).
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Figure 7.8(a) shows graphically the relation between the response or output and two design 
variables x1 and x2. Note that for each value of x1 and x2, there is a corresponding value of 
the response. These values of the response may be perceived as a surface lying above the 
x1 − x2 plane, as shown in the figure. It is this graphical perspective of the problem that has 
led to the term response surface methodology. If there are two design variables, then we have 
a three-dimensional space in which the coordinate axes represent the response and the two 
design variables. When there are N design variables (N > 2), we have a response surface in the  
N + 1-dimensional space.

Optimization of the process is straightforward if the graphical display shown in Figure 7.8(a) 
could be easily constructed. However, in most practical situations, the true response function is 
unknown and thus the methodology consists of examining the space of design variables, empirical 

 

FIGURE 7.8 (a) Typical response surface showing the relation between the response or output and the design 
variables x1 and x2. (b) Results for a practical thermal system, the chemical vapor deposition process for fab-
rication of thin films. The response is the percentage working area (PWA), which gives the percentage area 
of acceptable film thickness, and the inflow velocity V and deposition surface temperature T are the two vari-
ables. The optimum is shown on the response surface and also on the constant PWA contours.
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statistical modeling to develop an approximating relationship (response function) between the 
response and the design variables, and optimization methods for finding the values of the design 
variables that produce optimal values of the responses. As an example, Figure 7.8(b) shows the 
results for a practical thermal system. This is the chemical vapor deposition system in which a thin 
film is deposited on a heated surface at temperature T due to the inflow of reacting gases at velocity 
V into the reactor. This figure shows the percentage working area (PWA) of the surface that has a 
film of acceptable thickness as the response to the two variables T and V. The resulting optimum 
point that maximizes the percentage working area is also shown on the response curves, as well on 
constant response contours.

The method normally starts with a lower-order model, such as linear or second order. If the 
second-order model is inadequate, as judged by checking against points not used to generate the 
model, simulations are performed at additional design points and the data used to fit the third-order 
model. Then the resulting third-order model is checked against additional data points not used to 
generate the model. If the third-order model is found to be inadequate, then a fourth-order model is 
fit based on the data from additional simulations and then tested, and so on. A typical second-order 
model for the response, z, is

 =β + β + β + β + β + βz x y xy x y0 1 2 3 4
2

5
2 (7.8)

Similarly, a third-order model for the response, z, is
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where the β’s are coefficients to be determined from the data and x, y are the two independent design 
variables. Once the response surface has been generated, visual inspection can be used to locate the 
region where the optimum is located and a closer inspection can then be used to accurately deter-
mine the location of the optimum. Calculus can also be used to identify the minimum or maximum. 
Both local and global optimum locations can generally be identified. However, because a limited 
number of data points are used in order to generate the response surface, the surface approximates 
the actual behavior and the results are similarly approximate, though for many practical problems 
this is quite adequate.

7.4 OPTIMIZATION OF THERMAL SYSTEMS

We have considered the basic formulation for optimization, as well as different methods that are 
available for solving these problems. Several physical problems have been mentioned as examples to 
illustrate the general approach. Let us now briefly consider these aspects as related to the optimiza-
tion of thermal systems.

7.4.1 importAnt consiDerAtions

Thermal systems are mainly concerned with energy and fluid flow. Therefore, the objective func-
tion is frequently based on energy consumption, which involves considerations of energy transport 
and losses, efficiency of the system and its components, energy exchange with the environment, 
fuel consumed, etc. A useful objective function is the rate of energy consumption per unit output, 
where the output may be power delivered, heat removed, products manufactured, and so on. The 
design that requires the least amount of energy per unit output is then the optimum. Similarly, the 
system that delivers the largest output per unit energy consumption is optimum. Because energy 
consumption can be expressed in terms of cost, this objective function can also be considered as 
the output per unit cost.
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Similar considerations often apply to fluid flow, where again it is important to minimize the 
energy consumed. This frequently implies minimizing the flow rate, pressure head, and fluid leak-
age or loss, particularly if a closed system is needed for preserving the purity and if the fluid is 
expensive. A lower pressure head generally translates into lower cost of the pumping system and is 
desirable. Therefore, some of the physical quantities that are often maximized in thermal systems 
may be listed as

1. Efficiency
2. Output per unit energy, or fuel, consumption
3. Output per unit cost
4. Heat removal rate in electronic systems
5. Heat exchange rate

whereas the quantities that are minimized may be listed as

1. Energy losses
2. Energy input for cooling systems
3. Pressure head for fluid flow
4. Flow rate of fluid
5. Fluid leakage or loss
6. Rate of energy or fuel consumed per unit output

In thermal systems, the constraints arise largely from the conservation laws for mass, momen-
tum, and energy, and from limitations of the material, space, and equipment being used, as discussed 
earlier. However, these usually lead to nonlinear, multiple, coupled, partial differential equations, 
with complicated geometries and boundary conditions in typical systems of practical interest. Other 
complexities may also arise due to the material characteristics, combined thermal transport mecha-
nisms, etc., as discussed in earlier chapters.

The main problem that arises due to these complexities is that the simulation of the system for 
each set of conditions requires a considerable amount of time and effort. Therefore, it is usually 
necessary to minimize the number of simulation runs needed for optimization. For relatively simple 
thermal systems, numerical or experimental simulation results may be used, with curve fitting, to 
obtain algebraic expressions and equations to characterize the behavior of the system. Then the 
optimization problem becomes straightforward and many of the available methods can be used 
to extract the optimum. Unfortunately, this approach is possible in only a few simple, and often 
impractical, circumstances. For common practical systems, numerical modeling is employed to 
obtain the simulation results, as needed, to obtain the optimum. Experimental data are also used 
if a prototype is available, but again such data are limited because experimental runs are generally 
expensive and time consuming.

7.4.2 DiFFerent ApproAches

Several different optimization methods have been mentioned earlier and will be discussed in 
detail in later chapters. Some of these have only limited applicability with respect to thermal sys-
tems. Search methods constitute the most important optimization strategy for thermal systems. 
Many different approaches have been developed and are particularly appropriate for different 
problems. However, the underlying idea is to generate a number of designs, which are also called 
trials or iterations, and to select the best among these. Effort is made to keep the number of tri-
als small, often going to the next iteration only if necessary. This is a very desirable feature with 
respect to thermal systems because each trial may take a considerable amount of computational 
or experimental effort.



355Problem Formulation for Optimization

Search methods may also be combined with other methods in order to accelerate convergence or 
approach to the optimum. For instance, calculus methods may be used at certain stages to narrow 
the domain in which the optimum lies. Trials for the search method are then used to provide infor-
mation for extracting the derivatives and other relevant quantities. Prior knowledge on the optimum 
for similar systems may also be used to develop heuristic rules to accelerate the search.

7.4.3 DiFFerent types oF thermAl systems

As we have seen in the preceding chapters, thermal systems cover a very wide range of applications. 
Different concerns, constraints, and requirements arise in different types of systems. Therefore, 
the objective function and the nature of the constraints would generally vary with the application. 
Though costs and overall profit or return are frequently optimized, other quantities are also of inter-
est and are used. Let us consider some of the common types of thermal systems and discuss the 
corresponding optimization problems.

1. Manufacturing systems. The objective function is typically the number of items produced 
per unit cost. It could also be the amount of material processed in heat treatment, casting, 
crystal growing, extrusion, or forming. The number of solder or welding joints made, length 
of material cut in gas or laser cutting, or the length of optical fiber drawn may also be used, 
depending on the application. Again, the output per unit cost or the cost for a given output 
may also be used as the objective function. The constraints are often given on the tempera-
ture and pressure due to material limitations. Conservation principles and equipment limita-
tions restrict the flow rates, cutting speed, draw speed, etc. It is important to note that product 
quality is often of critical importance in this area. The quality may be defined in terms of 
defects, uniformity, microstructure, and other characteristics of the product.

2. Energy systems. The amount of power produced per unit cost is the most important mea-
sure of success in energy systems and is, therefore, an appropriate quantity to be opti-
mized. The overall thermal efficiency is another important variable that may be optimized. 
Most of the constraints arise from conservation laws. However, environmental and safety 
considerations also lead to important limitations on items such as the water outlet tempera-
ture and flow rate from the condensers of a power plant to a cooling pond or lake. Material 
and space limitations will also provide some constraints on the design variables.

3. Electronic systems. The rate of thermal energy removed from the system as well as this 
quantity per unit cost are important design requirements and may, thus, be used as objective 
functions. The cost of the system may also be minimized while ensuring that the tempera-
ture requirements of the components are satisfied. The pressure head needed for the coolant 
flow is another important aspect and may be taken as an objective function to be minimized 
or as a constraint on the final design. The weight and volume are important considerations 
in portable systems and in systems used in planes and rockets. These may also be chosen 
for optimization. Besides the constraints due to conservation principles, space and material 
limitations generally restrict the temperatures, fluid flow rates, and dimensions in the system.

4. Transportation systems. The torque, thrust, or power delivered are important consider-
ations in these systems. Therefore, these quantities, or these taken per unit cost, may be 
maximized. This feature may also be taken as the output per unit fuel consumed. The costs 
for a given output in thrust, acceleration, etc., may also be chosen for minimization. The 
thermal efficiency of the system is another important aspect that may be maximized. The 
constraints are largely due to material, weight, and size limitations, besides those due to 
conservation laws. Thus, the temperature, pressure, dimensions, and fuel consumption rate 
may be restricted within specified limits.

5. Heating and cooling systems. The amount of heat removed or provided per unit cost is a 
good measure of the effectiveness of these systems and may be chosen for maximization. 
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The system cost as well as the operating cost, which largely includes the energy costs, 
may be minimized while satisfying the requirements. The thermal efficiency of the 
system may be maximized for optimum performance. Besides those due to conserva-
tion laws, most of the constraints arise due to space limitations. Weight constraints are 
important in mobile systems. Fluid properties lead to constraints on the temperature and 
pressure in the system.

6. Heat transfer and fluid flow equipment. The rate of heat transfer and the total flow rate 
are important considerations in these systems. These quantities may be used for optimi-
zation. The heat transfer or flow rate per unit equipment, or operating, costs may also be 
considered. The resulting temperature of a fluid being heated or cooled, the efficiency 
of the equipment, energy losses, etc., may also be chosen as objective functions. Space 
limitations often provide the main constraints on dimensions. Constraints due to weight 
are also important in many cases, particularly in automobiles. Conservation laws provide 
constraints on temperatures and flow rates.

The foregoing discussion serves to illustrate the diversity of the objective function and the con-
straints in the wide range of applications that involve thermal systems. Even though costs and profit are 
important concerns in engineering systems, other quantities such as output, efficiency, environmental 
effect, etc., also provide important considerations that may be used effectively in the optimization 
process. Clearly, the preceding list is not exhaustive. Many other objective functions, constraints, and 
applications can be considered, depending on the nature and type of thermal system being optimized.

7.4.4 exAmples

Example 7.1

An important problem in power generation is heat rejection. As discussed in Chapter 5, bodies of 
water such as lakes and ponds are frequently used for cooling condensers. The distance x between 
the inflow at point A into the cooling pond and outflow at point B, as shown in Figure 7.9, is an 
important variable that determines the performance and cost of the system. If x increases, the 
cost increases because of increased distance for pumping the cooling water. As x decreases, the 
hot water discharged into the lake can recirculate to the outflow, raising the temperature there. 
This effect increases the temperature of the cooling water entering the condensers of the power 
plant. This, in turn, raises the temperature at which heat rejection occurs and thus lowers the 
thermal efficiency of the plant, as is well-known from thermodynamics. Therefore, an increase in 
x increases the cost of the piping and pumps, while a decrease in x increases the cost of power 
generation by lowering the thermal efficiency. If the objective function U is taken as cost per unit 
of generated power, we may write

 = − =U x F x F x U x F x F x( ) ( ) ( ) or ( ) ( )/ ( )1 2 1 2  (7.10)

FIGURE 7.9 Heat rejection from a power plant to a cooling pond, with x as the distance between the inflow 
and outflow.
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where F1(x) and F2(x) are costs related to piping and efficiency of the system, respectively. This 
implies that an optimum distance x may be obtained for minimum costs per unit output.

This is actually a very complicated problem because the model involves turbulent, mul-
tidimensional flow, complex geometries, varying ambient conditions, and several combined 
modes of heat transfer. The problem has to be solved numerically, with many simplifications, to 
obtain the desired inputs for design and optimization. Some simple problems were considered 
in Chapter 5. Constraints due to conservation principles are already taken into account in the 
numerical simulation. However, limitations on x due to the shape and size of the pond define an 
acceptable design domain. If the numerical simulation results are curve fitted to yield expressions 
of the form

 ( ) = + −U x Ax Bx Cxa b c (7.11)

where A, B, C, a, b, and c are constants obtained from curve fitting, calculus methods can easily 
be applied to determine the optimum. However, this is a time-consuming process because ade-
quate data points are needed and a more appropriate approach would be search methods where 
x is varied over the given domain and selective simulation runs are carried out at chosen locations 
to determine the optimum, as discussed in Chapter 9. This has been an important problem for the 
power industry for many years and has resulted in many different designs to obtain the highest 
efficiency-to-cost ratio.

Example 7.2

In an automobile, the drag force on the vehicle due to its motion in air increases with its speed V. 
The engine efficiency η also varies with the speed due to the higher revolutions per minute of the 
engine and increased fuel flow rate. The efficiency initially increases and then decreases at large 
V due to the effect on the combustion process. These two variations are sketched qualitatively in 
Figure 7.10. If the cost per mile of travel is taken as the objective function U, then we may write

 1
2

( ) ( ) ( )= +U V AF V
B

F V
 (7.12)

where F1(V) represents the drag force and F2(V) represents the engine efficiency. An increase in 
drag force increases the cost, and an increase in efficiency reduces the cost. The constants A and 
B represent the effect of these quantities on the cost.

Again, this is a complicated numerical simulation problem because of the transient, three-
dimensional problem involving turbulent flow and combustion. The constraints due to the 

FIGURE 7.10 Dependence of engine efficiency and drag force on the speed V of an automobile.
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conservation principles are already accounted for in the simulation. The physical limitations on 
the speed V, say, from 0 to 200 km/h for common vehicles, may be used to define the domain. 
If the simulation results are curve fitted with algebraic expressions, we may use calculus meth-
ods, as dU/dV = 0, to obtain the optimum. Search methods are more appropriate because only 
a limited number of simulations are needed at chosen values of V to extract the optimum.

Example 7.3

In a metal extrusion process, the total cost for a given amount of extruded material may be taken 
as the objective function U. This cost includes the capital or equipment cost A, the cost of the 
die subsystem, and the cost of the arrangement for applying the extrusion force. For the metal 
extrusion process sketched in Figure 7.11, the independent variables are taken as x1 = d/D and 
x2 = V2/V1. Then, the objective function may be written as

 ( , ) ( ,  ) ( , )1 2 1 1 2 2 1 2 1 2 1 2= + + = + +U x x A F x x F x x A Bx x Cx xn m (7.13)

where F1 and F2 represent the costs for the die and for applying the extrusion force. Possible 
expressions from curve fitting to represent these are also given, with B, C, n, and m as constants. 
A constraint that arises from mass balance is given by
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This constraint may be included in the analysis or may have to be brought in separately if an 
expression, such as Equation (7.13), is given for U. The ranges of x1 and x2 due to limitations on 
the forces exerted are used to define the design domain. This problem can be solved by calculus 
methods as well as by geometric programming. The effect of temperature T on the process may 
also be included in the optimization process.

Example 7.4

In many processes, such as optical fiber drawing, hot rolling, continuous casting, and extrusion, 
the material is cooled by the flow of a cooling fluid, such as inert gases in optical fiber drawing, 
at velocity V1, while the material moves at velocity V2, as shown in Figure 7.12. Numerical simu-
lation may be used to obtain the temperature decay with distance for different values of these 
variables, as shown qualitatively in Figure 7.13. The temperature decay increases with increasing 
V1 because of accelerated cooling, but decreases with increasing V2 because the time available for 
heat removal in the cooling section of length L decreases at higher speed. The exit temperature 
must drop below a given value T2.

FIGURE 7.11 A metal extrusion process.
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Numerical simulation may be used to solve this combined conduction convection problem 
and obtain the inputs needed for design and optimization of the cooling system. If the cost per unit 
length of processed material is taken as the objective function U, we may write

 ( ) ( )
( ) ( )+U V V

F V
F V

F,  = V1 2
1 2

2 2
3 1  (7.15)

where the function F1 represents the costs for feeding and pickup of the material, F2 represents the 
productivity, and F3 represents the cost of the inert gas and the flow arrangement. Limitations on 

FIGURE 7.12 Cooling of a heated moving rod by the flow of inert gases.

FIGURE 7.13 Dependence of temperature decay with distance x on (a) the velocity V1 of inert gases and 
(b) velocity V2 of the heated moving rod in Example 7.4.
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V1 and V2 due to physical considerations define the domain. Constraints due to mass and energy 
balances are part of the model. Search methods can be used for obtaining the optimum values 
of V1 and V2. Calculus methods and geometric programming may be applicable if the simulation 
results are curve fitted to obtain closed-form expressions for the preceding functions.

7.4.5 consiDerAtion oF the seconD lAw oF thermoDynAmics

We have already considered the first law of thermodynamics, which states that energy cannot be cre-
ated or destroyed, leading to the conservation of energy. However, in dealing with thermal systems, 
an important consideration is the second law of thermodynamics, which brings in the concepts of 
entropy and maximum useful work that can be extracted from a system. Entropy is used extensively 
in analyzing thermal processes and systems, and in defining ideal processes that are isentropic, 
i.e., in which the entropy does not change. Isentropic efficiencies are based on this ideal behavior, 
as has been mentioned earlier and as is well-known from a study of thermodynamics. However, a 
concept that is finding increasing use in recent years for the analysis, design, and optimization of 
thermal processes and systems is that of exergy.

Exergy is defined as the maximum theoretical useful work, involving shaft or electrical work, 
that can be obtained from a system as it exchanges heat with the surroundings to attain equilibrium. 
Similarly, it is the minimum theoretical useful work needed to change the state of matter, as in a 
refrigerator. Therefore, exergy is a measure of the availability of energy from a thermal system. 
Exergy is generally not conserved and can be destroyed, e.g., in the uncontrolled expansion of a 
pressurized gas. For a specified environment, exergy may be treated as an extensive property of the 
system, which can thus be characterized by the exergy contained by the system. Exergy can also be 
transferred between systems. The main purpose for an exergy analysis is to determine where and 
how losses occur so that energy may be used most effectively. This leads to an optimization of the 
process and thus of the system.

Several papers have focused on exergy analysis and the use of the second law of thermodynamics 
for the optimization of thermal systems; see, for instance, Bejan (1982, 1995), Bejan et al. (1996), 
and Dincer et al. (2014). Similar to the conservation of mass and energy, exergy balance equations 
may be written for closed systems and control volumes. The destruction of exergy due to friction 
and heat transfer is included in the balance. An efficiency, known as exergetic efficiency and based 
on the second law, may then be employed to give a true measure of the behavior of a thermal sys-
tem. Such an efficiency can be defined for compressors, pumps, fans, turbines, heat exchangers, and 
other components of thermal systems. Then a maximization of this efficiency would result in the 
optimization of the system in order to extract the maximum amount of useful work from it. Thus, 
exergy may also be used as a basis for optimization and for obtaining the most cost-effective system 
for a given application.

The second law aspects can also be included in the analysis and design of thermal systems by 
considering irreversibilities that arise due to heat transfer and friction. As just mentioned, these 
effects lead to the destruction of exergy, which may also be looked on as the generation of entropy. 
Therefore, the local and overall generation of entropy may be determined. This can be done for 
different types of flows and heat transfer mechanisms, finally obtaining the entropy generation in 
a given process or system. A minimization of the generated entropy leads to an optimum system 
based on thermal aspects alone. For further details on this approach, the references given in the 
preceding paragraph may be consulted.

7.5 PRACTICAL ASPECTS IN OPTIMAL DESIGN

There are several important aspects associated with the optimization process and with the imple-
mentation of the optimal design obtained. These considerations are common to all the different 
approaches and address the practical issues involved in optimization. Because our interest lies in an 
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optimum design that is both feasible and practical, it is necessary to include the following aspects in 
the overall design and optimization of thermal systems.

7.5.1 choice oF vAriAbles For optimizAtion

Several independent variables are generally encountered in the design of a thermal system. A 
workable design is obtained when the design, as represented by a selection of values for these 
variables, satisfies the given requirements and constraints. The same variables, considered over 
their allowable ranges, indicate the boundaries of the domain in which the optimal design is 
sought. If only two design variables are considered, the objective function U(x1, x2) may be 
plotted as the elevation over an x1 − x2 coordinate plane to yield a surface, as discussed earlier 
and as shown in Figure 7.14(a). Then, depending on the problem, the maximum or minimum 
value of U on this surface gives the desired optimum. Because of the difficulty of drawing such 
three-dimensional representations on a two-dimensional drawing surface, the variation of U with 
x1 and with x2 may be plotted separately to determine the corresponding optima, as shown in 
Figures 7.14(b) and (c).

Clearly, it is much easier to deal with a relatively small number of independent variables, as com-
pared to the full set of variables. With just one or two variables, it is possible to visualize the varia-
tion of the objective function and it is easy to extract the optimum. Therefore, it is best to focus on 
the most important variables, as judged from a physical understanding of the system or as derived 
from a sensitivity analysis. One may start with a workable design and vary just one or two domi-
nant design variables to obtain the optimum. For instance, after a feasible design of a power plant 
is obtained, the boiler pressure may be considered as the most important design variable to seek 
an optimum in the power output per unit cost. As the pressure is increased, the objective function 
increases, with local decreases resulting from the need to go to a larger boiler or one with a different 

FIGURE 7.14 Optimum value of the objective function U (x1, x2), shown on a three-dimensional elevation 
plot and on graphs for each of the independent variables.
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design. An overall maximum may arise, as shown in Figure 7.15, with a decrease in U beyond this 
value due to the higher material and construction costs at large pressures. Thus, an optimum boiler 
pressure may be determined. Other variables, such as condenser pressure, may also be considered 
to seek the optimal design.

Similarly, Figure 7.16 shows the variation of the objective function with a dominant design vari-
able in two other cases. In the first, the objective function is the productivity per unit cost in an opti-
cal fiber drawing process and the fiber speed is the dominant variable. In the second case, the heat 
removal rate per unit cost for an electronic system is the objective function and the fan size or rating 
is the main design variable. Therefore, the optimum fiber speed and fan size may be determined by 
applying optimization techniques. In all such cases, effort is made to use the smallest number of 
variables, considering only the most crucial ones in the optimization process.

7.5.2 sensitivity AnAlysis

Several important considerations arise in the implementation of the design obtained from an opti-
mization procedure. Because a small number of dominant variables are usually employed to obtain 
the optimum, it is important to determine how the other variables would affect the optimum. In 
addition, the effect of relaxing the constraints on the results needs to be ascertained. Some changes 
in the design variables may be considered in the interest of convenience or reduced costs. All these 
aspects are best considered in terms of the sensitivity of the optimal design to the design variables 
and to the constraints.

A sensitivity analysis of a system indicates the relative importance of the different design param-
eters, as given in terms of their effect on the objective function. With this information, we could 
determine which parameters are crucial to the successful performance of the system. This would 

FIGURE 7.15 Variation of power output/cost ratio for a power plant as a function of the boiler pressure, 
showing the effect of changing the boiler size and a global maximum.

FIGURE 7.16 (a) Variation of production rate per unit cost in an optical fiber drawing system with fiber 
speed and (b) variation of heat removal rate per unit cost in an electronic system with the fan size.
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allow us to focus on the most important parameters and their critical ranges of variation. As an 
example, let us take the cost per unit output for a metal forming production system as the objective 
function U. Let us assume that it can be expressed in terms of the pressure P, feed rate V, and heat 
input Q as

 a= + +U AP
BQ

V
CQ Pb

d  (7.16)

implying that the cost increases with the imposed pressure and heat input, while the output increases 
with the feed rate. Here, the coefficients A, B, and C, and the exponents a, b, and d are constants. 
Then the partial derivative of the objective function with respect to each independent variable indi-
cates the sensitivity to that variable. These derivatives may be normalized by the values at a refer-
ence point, denoted by the subscript “ref,” to give relative sensitivities, which are more useful than 
absolute values in determining the importance of the different variables. The reference point may 
be the optimum, the average value of each variable, or any other convenient value in the design 
domain.

Thus, the relative sensitivities SP , SQ, and SV , with respect to the three variables, may be obtained 
analytically as
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Numerical values of these relative sensitivities can be obtained to determine which variables are 
crucial and which ones are of minor importance. The optimization process is then carried out using 
only the dominant variables, as discussed earlier. If the optimum has already been obtained, consid-
ering a small number of variables chosen based on physical characteristics, the sensitivity analysis 
may be used to determine if the other variables are important and if adjustments in the optimal 
design with respect to these variables would significantly improve the design.

Analytical methods for sensitivity analysis, as outlined here, are generally of limited value and 
can be used only if closed-form expressions such as the one given in Equation (7.16) characterize the 
system or are available through curve fitting. If the analytical approach is not possible, numerical 
methods may be used. The desired partial derivatives are obtained by varying the design parameters 
by a small amount, say a few percent of its value at the midpoint of its range or at any other chosen 
location, and evaluating the derivative at this point as
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where x is the independent variable under consideration. Thus, all the relevant partial derivatives 
may be obtained and normalized by the values at the chosen reference point to determine the domi-
nant variables.

An important practical consideration in the implementation of the optimal design obtained from 
the analysis is the choice of the closest dimension, size, or rating that may be available off the shelf, 
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rather than have the exact values custom made. For instance, if the optimal design yields a pipe 
diameter of 0.46 in. (1.17 cm), it would be desirable to use one with a diameter of 0.5 in. (1.27 cm) 
because of its easy availability and lower cost. Similarly, the specifications of a heater, valve, storage 
tank, pump, compressor, or heat exchanger may be adjusted to use readily available standard items. 
The sensitivity analysis is again useful in this regard because it indicates the effects of changing the 
design variables. Relatively large adjustments may be made if the design is not very sensitive to a 
given variable and small adjustments if it is.

Another important consideration is the sensitivity of the optimum to the constraints. This relates 
to the change in the optimum if a given constraint is relaxed in order to employ readily available 
items, to simplify the fabrication and assembly of the system, or to meet some other desirable goals. 
The relevant parameters are known as sensitivity coefficients and are obtained as part of the solu-
tion in the Lagrange multiplier method. In other approaches, the sensitivity coefficients are often 
derived in order to help in making adjustments in the optimal design before proceeding with its 
implementation.

7.5.3 DepenDence on objective Function: trADe-oFFs

The optimal design of the system is obtained based on a chosen objective function that is minimized 
or maximized. Several examples of important objective functions relevant to thermal systems have 
been given earlier. However, even though several features or aspects are important in most sys-
tems, only one characteristic was chosen for optimization. Because the cost, profit, input, quality, 
efficiency, output, etc., are all of particular interest, these are often used separately or in combina-
tion, for example, as output/cost, quality/cost, efficiency/input, or profit/cost. Then, other important 
features of the system such as weight, volume, thrust, flow rate, pressure, etc., are not optimized, 
even though effort is often made to bring these into the optimization process through costs, profits, 
efficiency, and outputs. It is evident that the choice of the objective function is a very important deci-
sion and is expected to play a critical role in the determination and selection of an optimal design.

Suppose a system is optimized by maximizing the output per unit cost, but the weight is also an 
important consideration. If the system were then optimized by minimizing its weight, the optimal 
design would, in general, be different. Because both aspects are important, we need to consider 
trade-offs between the two optimum designs in order to take both of these into account. This is, by 
no means, an easy exercise because the behavior of the optimum with respect to the design variables 
may have opposite trends in the two cases. For instance, use of a different, stronger composite mate-
rial may reduce the weight while increasing the cost. A smaller heating region in a glass manufac-
turing facility may reduce the cost, but it will also reduce the output.

One way of approaching such trade-offs is to assign a value to each important aspect, as dis-
cussed by Siddall (1982). The value represents the desirability of the given feature. For instance, 
a large weight is undesirable and is assigned a low value, with the value dropping to zero beyond 
a certain weight, as shown in Figure 7.17(a). Similarly, a high value is given to a large output/cost 
and a low one to a small output/cost, as shown in Figure 7.17(b). These values are obviously subjec-
tive and depend on the designer and the application. A trade-off curve may be drawn by finding 
the maximum output/cost for different weights. The weight then becomes a specification and the 
maximum output/cost is determined for each case, generating a curve such as the one shown in 
Figure 7.17(c). The optimum, which includes considerations of both features, is the point on this 
trade-off curve that has a maximum combined value for the two. This point is somewhere near the 
middle of the trade-off curve in the example shown.

7.5.4 multi-objective optimizAtion

It was mentioned earlier that optimal conditions are generally strongly dependent on the chosen 
objective function. However, as discussed in the preceding section, not one but several features or 
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aspects are typically important in most practical applications. In thermal systems, the efficiency, 
production rate, output, quality, and heat transfer rate are common quantities that are to be maxi-
mized, while cost, input, environmental effect, and pressure are quantities that need to be mini-
mized. Thus, any of these could be chosen individually as the objective function, though interest 
clearly lies in dealing with more than one objective function. The use of the trade-off curve was 
outlined in the preceding section.

A common approach to multiple objective functions is to combine them to yield a single objec-
tive function that is minimized or maximized. Examples given earlier include output/cost, quality/
cost, and efficiency/input. In heat exchangers and cooling systems for electronic equipment, it is 
desirable to maximize the heat transfer rate. However, this comes at the cost of flow rate or pressure 
head. Then heat transfer rate/pressure head could be chosen as the objective function. Similarly, 
additional aspects could be combined to obtain a single objective function, e.g., objective function 
U = quality × production rate/cost. However, the various quantities that compose the objective func-
tion should be scaled and weighted in order to base the system optimization on the importance of 
each in comparison to the others. For instance, heat transfer rate and pressure head may be scaled 
with the expected maximum values in a given instance so that both vary from 0 to 1. Other nondi-
mensionalizations are also possible, as discussed earlier in Chapters 2 and 3, to ensure that equal 
importance is given to each of these. Weights can similarly be used to increase or decrease the 
importance of a given quantity compared to the others. Derived quantities like logarithm or expo-
nential of given physical quantities may also be employed for scaling and for considering appropri-
ate ranges of the quantities. Clearly, the objective function thus obtained is not unique and different 
formulations can be used to generate different functions, which could presumably yield different 
optimal points. A few examples on this approach are given in Chapter 9.

Another approach, which has gained interest in recent years, is that of multi-objective opti-
mization. In this case, two or more objective functions that are of interest in a given problem are 
considered and a strategy is developed to trade off one objective function in comparison to the 
others (Miettinen, 1999; Deb, 2009). Let us consider a problem with two objective functions f1 

FIGURE 7.17 Typical value curves that may be used to develop a trade-off curve in optimization.
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and f2. With no loss of generality, we can assume that each of these is to be minimized because 
maximization is equivalent to minimization of the negative of the function. The values of f1 and 
f2 are shown for five designs in Figure 7.18(a), each design being indicated by a point. Design 2 
dominates Design 4 because both objective functions are smaller for Design 2 compared to 
Design 4. Similarly, Design 3 dominates Design 5. However, Designs 1, 2, and 3 are not domi-
nated by any other design. The selection of the better design is straightforward for the dominated 
cases, though not so for the others. The set of nondominated designs is termed the Pareto set, 
which represents the best collection of designs. As shown in Figure 7.18(b), the near horizontal 
or near vertical sections are omitted to obtain proper efficiency for design selection, and a Pareto 
front is obtained. Then, for any design in the Pareto set, one objective function can be improved, 
i.e., reduced as considered here, at the expense of the other objective function. The same argu-
ments apply for more than two objective functions. The set of designs that constitute the Pareto 
set represents the formal solution in the design space to the multi-objective optimization problem. 
The selection of a specific design from the Pareto set is left to the decision-maker or the engi-
neer. A large literature exists on utility theory, which seeks to provide additional insight to the 
decision-maker to assist in selecting a specific design; see Ringuest (1992).

For different concepts, such as geometrical configurations, different Pareto fronts can be 
generated, with the envelope of these yielding the desired solution, as shown in Figure 7.18(c). 

FIGURE 7.18 Multi-objective optimization with two objective functions f1 and f2, which are to be mini-
mized, showing the dominant designs, the Pareto front, and the envelope of Pareto fronts for different geo-
metric configurations.
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Many multi-objective optimization methods are available that can be used to generate Pareto solu-
tions. Various quality metrics are often used to evaluate the “goodness” of a Pareto solution obtained 
and possibly improve the method as well as the optimal solution. Examples of multi-objective opti-
mization of thermal systems are given in Chapter 9.

7.5.5 pArt oF overAll Design strAtegy

Optimization of thermal systems, as discussed here, is treated as a step in the overall design process. 
Thus, the optimization process is based on the modeling, simulation, and experimental effort under-
taken to obtain a feasible design. The requirements and constraints are also those that are specified 
for the workable design. The initial effort is directed at a workable design that satisfies the given 
requirements and constraints. A single design for the system or a number of acceptable designs may 
be generated. This completes the first phase of the overall design strategy because any one of the 
designs generated may be used for the intended application.

An objective function is then selected for optimization and an appropriate method is used to 
extract a design for which the chosen objective function is minimized or maximized. Though 
the exact optimal point is reached in only a few ideal cases, the optimization process generally 
does allow one to obtain a small region containing the optimum. The final, optimal design is 
then obtained using the practical considerations outlined in the preceding sections. The model or 
concept employed, as well as the governing equations, are the same as those used for a feasible 
design.

Therefore, optimization is an extension of the design process employed to generate a workable 
design. The main difference between the two stages concerned with workable and optimal designs 
of the system lies in the objective or purpose of the effort. In the first stage, we want to obtain any 
design that meets the given requirements and constraints so that it will perform the desired task 
satisfactorily. Several designs may be acceptable. It is also possible that no design satisfies the given 
problem, making it necessary to choose a different concept, adjust the requirements and constraints, 
or abandon the project. No consideration is given at this stage to finding the best design. In the 
second stage, it is assumed that we have succeeded in obtaining an acceptable design or a number 
of these and are now seeking a design that optimizes a chosen quantity of particular interest to the 
intended application. The optimal design is expected to be unique or close to it, i.e., the design lies 
in a small domain of the variables. The relationship between the various steps to a feasible design 
and the optimization process may thus be represented qualitatively by Figure 7.19, indicating opti-
mization as a part of the overall design effort. A similar, more detailed, schematic was also shown 
earlier in Figure 2.14.

7.5.6 chAnge oF concept or moDel

With optimization taken as the next step after obtaining a feasible design, it is clear that the optimal 
design is necessarily related to a chosen conceptual design. The model and the simulation of the 
system are based on the conceptual design, which forms the starting point of the design. If a feasible 
design is not possible with a given concept, the concept may be changed. The basic thermal process 

FIGURE 7.19 Optimization shown as a step in the overall design process.
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may also be changed if a chosen process is not crowned with success. This is a common situation 
in manufacturing where one process may be replaced by another, say forming by casting, in order 
to satisfy the problem statement. Similarly, material substitution may be used effectively to satisfy 
given needs. An electric water heater may be replaced by a gas one, an evaporative cooler by an air 
conditioning system, a natural air drying arrangement with a forced air one, and so on, in order to 
satisfy the design problem.

A change in the conceptual design is undertaken at the feasible design stage, not during optimi-
zation, because one would proceed to optimize the system only after a workable design has been 
obtained. Therefore, optimization of the system is within the chosen concept and no variation in the 
conceptual design is considered. If the conceptual design is changed, the model, simulation, feasible 
design, and optimization all change and a design process similar to the one discussed here may be 
carried out for each concept considered.

7.6 SUMMARY

This chapter introduces the basic considerations in optimization and provides the general guide-
lines for the quantitative formulation of the problem. Starting with a discussion on the importance 
and need for optimizing thermal systems, the main features of the optimization process are con-
sidered. These include the objective function, which is the quantity that is to be optimized; the 
design variables; the operating conditions; and the constraints. Commonly used objective func-
tions for thermal systems include energy or product output, cost, profit, output/cost, weight, vol-
ume, efficiency, energy consumption per unit output, and environmental impact. The constraints 
in these systems are often due to temperature and pressure limitations of materials, energy and 
mass conservation, ambient conditions, and practical limitations on variables such as flow rate, 
heat input, and dimensions. Several examples are given to illustrate the setting up of the optimiza-
tion problem because the success of the optimization process is strongly dependent on an accurate 
and satisfactory formulation.

The chapter also outlines different optimization techniques, including calculus and search 
methods, and linear, dynamic, and geometric programming. The range of application of these 
methods to thermal systems is discussed. The calculus methods are applicable only if the objec-
tive function and the constraints are given as closed-form, differentiable expressions, severely 
limiting the applicability of this approach. Similarly, linear programming is applicable when 
only linear equations are involved in the problem, a rare circumstance in thermal processes. 
Dynamic programming optimizes the objective function along a path and is useful in a few 
problems such as flow circuits and production line design. Geometric programming requires that 
the problem involve sums of polynomials and, as such, is particularly useful for thermal systems 
in which curve fitting has been used to obtain expressions to characterize the system behavior. 
Search methods are clearly the most important optimization strategy for practical thermal sys-
tems because these methods search for the optimum by iterating from one design to the next, 
keeping the number of iterations at a minimum. Because each simulation is usually expensive and 
time consuming for practical systems, efficient search procedures are particularly appropriate for 
converging to an optimal design.

Finally, this chapter discusses several important practical issues related to optimization and to 
the implementation of the optimal design obtained. The choice of independent variables and the 
need to focus on the dominant ones are discussed. Sensitivity analysis may be used in the choice 
of the critical variables and is outlined. It may also be used in making adjustments to the design 
in order to employ readily available items. Safety factors may also be incorporated in the design 
at this stage. The dependence of the optimal design on the objective function is another important 
consideration. Trade-offs are often needed to satisfy different desirable features or multiple objec-
tive functions. Optimization follows the initial design stage, which results in a feasible design and is 
thus a part of the overall design process.
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PROBLEMS

 7.1 Consider plastic extrusion at temperature T and a given pressure p. The cost varies as T a and 
as V−b, where V is the speed of the emerging plastic billet and a, b are constants. In addi-
tion, V(T) is given as a third-order polynomial. Formulate the optimization problem for this 
system and outline a method to obtain the solution for minimum cost at the given pressure 
level.

 7.2 In continuous casting, the cost varies as Lc and as V−d, where L is the length of the mold 
and V is the speed of the material. In addition, c and d are given constants. Assume that the 
solidification occurs entirely in the mold, with heat loss to the mold at convective heat trans-
fer coefficient h and mold temperature Ta. Using a simple model for the process, formulate 
the optimization problem.

 7.3 Suggest different objective functions for optimizing the thermal systems considered in 
Example 3.5 and Example 3.6. Choose the most appropriate one and give reasons for the 
choice.
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 7.4 You have learned in this chapter that the choice of the objective function is very important. 
A condenser is to be designed to condense steam to water at the same temperature, while 
removing thermal energy at the specified rate Q. A counter-flow heat exchanger is to be 
employed. Constraints on temperature rise of the colder fluid and heat exchanger dimen-
sions are given. Suggest an objective function for optimization of the heat exchanger, giving 
reasons for your choice.

 7.5 For the optimization of a stereo system, suggest three objective functions that can be used. 
Choose one and give reasons for your choice.

 7.6 A refrigeration system is to be designed to provide 5 kW of cooling at −5°C, with the 
ambient at 25°C. If the dimensions of the region that has to be cooled are fixed, list the 
design variables and requirements for an acceptable design. Suggest an objective func-
tion that may be employed for optimization. Also, give the constraints, if any, in the 
problem.

 7.7 A heat pump is being designed to supply 12 kW to a residential unit when the ambient 
temperature is approximately 0°C and the interior temperature is 20°C. Using any appro-
priate conceptual design, list the design variables, constraints, and requirements. Obtain 
an acceptable design to achieve the given requirements. If the energy consumption is to be 
minimized, formulate the optimization problem.

 7.8 A condenser is being designed to condense steam at a constant temperature of 100°C, with 
water entering at 20°C. The total energy transfer is given as 20 kW and the UA of the heat 
exchanger is given as 4 kW/K, where U is the overall heat transfer coefficient and A the 
heat transfer area. The heat loss to the environment may be taken as negligible. Clearly, 
an acceptable design may be obtained for this problem over wide ranges of the governing 
parameters. Calculate the flow rates and give an acceptable design for this process. Suggest 
a few objective functions that may be used for optimizing the system and then choose one 
to formulate the optimization problem. What optimization technique would you use to solve 
this problem?

 7.9 Example 5.1 presented the approach for obtaining an acceptable design. Is it possible to 
optimize the system in this case? If so, formulate the problem, in terms of the objective 
function, design variables, and constraints, and discuss the procedure that may be adopted 
to obtain the optimum.

 7.10 Consider the condensation soldering facility discussed in detail in Chapter 2 and sketched 
in Figure 2.4 and Figure 2.6. The dimensions of the condensation region are fixed by the 
size of the electronic components submerged in this region. The fluid choice is limited by 
temperature needed, safety, cost, and other aspects mentioned earlier. If the fluid and the 
dimensions of the condensation region are taken as fixed, what are the design variables and 
constraints? Suggest a few objective functions that may be used to optimize the system. 
Choose the one that you feel is particularly appropriate for this problem, giving reasons for 
your choice.

 7.11 An acceptable design is discussed in the coiling of plastic cords, presented in Example 5.4.  
If the system is to be optimized to minimize the manufacturing cost per cord, formu-
late the corresponding optimization problem, and give the appropriate mathematical 
expressions.

 7.12 For the thermal systems considered in Example 5.5 and Example 5.6, suggest appropriate 
objective functions for optimization. Also, list the design variables and the constraints, if 
any. Discuss the optimization strategies you would adopt for these problems.

 7.13 A circulating water loop has a heat exchanger on either side, as shown in Figure P7.13. On 
one side, steam condenses at a constant temperature of 90°C, and on the other side, a low-
boiling fluid boils at 25°C. The total energy transfer is given as 50 kW and the overall heat 
transfer coefficient U is given as 25 W/m2 ⋅ K for both heat exchangers. The capital cost of 
the heat exchangers is given as $100 per unit area (in square meters) for heat transfer and the 
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pumping cost over its useful life is 104 m in present worth, where m is the mass flow rate. If 
the total cost is to be minimized, formulate the optimization problem and outline a method 
to solve it.

 7.14 Water is to be taken from a purification unit to a storage tank by using two flow circuits as 
shown in Figure P7.14. The efficiency E of each pump, in percent, is given as

  = + −E m m32 4 0.2( )2

  and the pressure head P, in meters of water, versus mass flow rate m, in kilograms per sec-
ond, is given for the two pumps as

 = − = − P m P m20 and 10 0.5

  Either both or a single pump may be used at a given time. If the energy consumption is to be 
minimized, formulate the optimization problem and present the optimal method of filling 
the tank.

 7.15 If the combustion efficiency of the engine of an automobile varies as V n and the frictional 
force and drag on the car as V m, where V is the speed and n and m are exponents that may 

FIGURE P7.13

FIGURE P7.14
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be positive or negative, formulate the optimization problem to determine the speed at which 
the fuel consumption per unit distance traveled is minimum. What optimization technique 
would you use to solve this problem? Give reasons for your choice.

 7.16 A metal sheet of thickness 5 cm is at 1100 K at the exit of an extrusion die. It then goes 
through two thickness reductions of 30% each in two roller stations. The material speed at 
the die is 0.25 m/s, and the convective heat transfer coefficient is given as 75 W/m2 ⋅ K to 
ambient air at 300 K. The temperature rise due to frictional heating is 100 K at each roller 
station. The temperature must not fall below 900 K for hot rolling of the material. Calculate 
the allowable distance between the die and the two rolling stations. Take the density, spe-
cific heat, and thermal conductivity of the material as 8500, 325, and 80 in S.I. units, respec-
tively. Then, based on the model, suggest an appropriate objective function for optimization 
of this process and give the design variables and constraints.

 7.17 The temperature T in a furnace wall is measured as a function of time τ over a day. For τ of 
2, 3, 6, 8, 10, 15, 18, 22, and 24 hours, T is obtained as 86.5°C, 97.7°C, 102.0°C, 101.7°C, 
92.5°C, 62.3°C, 55.0°C, 67.5°C, and 80.0°C, respectively. Obtain a best fit assuming a vari-
ation of the form A sin(2πτ/24) + B cos (2πτ/24) + C, for T, where A, B, and C are constants. 
From this curve fit, find the maximum temperature in the wall over the day.



373

8 Lagrange Multipliers

8.1 INTRODUCTION TO CALCULUS METHODS

We are all quite familiar, from courses in mathematics, with the determination of the maximum or 
minimum of a function by the use of calculus. If the function is continuous and differentiable, its 
derivative becomes zero at the extremum. For a function y(x), this condition is written as

 =dy

dx
0 (8.1)

where x is the independent variable. The basis for this property may be explained in terms of the 
extrema shown in Figure 8.1. As the maximum at point A is approached, the value of the function 
y(x) increases and just beyond this point, it decreases, resulting in zero gradient at A. Similarly, the 
value of the function decreases up to the minimum at point B and increases beyond B, giving a zero 
slope at B.

In order to determine whether the point is a maximum or a minimum, the second derivative is 
calculated. Because the slope goes from positive to negative, through zero, at the maximum, the 
second derivative is negative. Similarly, the slope increases at a minimum and, thus, the second 
derivative is positive. These conditions may be written as (Keisler, 2012)

 <d y

dx
For a maximum: 0

2

2  (8.2)

 >d y

dx
For a minimum: 0

2

2  (8.3)

These conditions apply for nonlinear functions y(x) and, therefore, calculus methods are useful 
for thermal systems, which are generally represented by nonlinear expressions. However, both the 
function and its derivative must be continuous for the preceding analysis to apply.

Thus, by setting the gradient equal to zero, the locations of the extrema may be obtained and 
the second derivative may then be used to determine the nature of each extremum. There are 
cases where both the first and the second derivatives are zero. This indicates an inflection point, 
as sketched in Figure 8.1(c), a saddle point, or a flat curve, as in a ridge or valley. It must be noted 
that the conditions just mentioned indicate only a local extremum. Several such local extrema 
may arise in the given domain. Because our interest lies in the overall maximum or minimum in 
the entire domain for optimizing the system, we would seek the global extremum, which is usually 
unique and represents the largest or smallest value of the objective function. The following simple 
example illustrates the use of the preceding procedure for optimization.

Example 8.1

Apply the calculus-based optimization technique just given to the minimization of cost C for hot 
rolling a given amount of metal. This cost is expressed in terms of the mass flow rate m of the 
material as

 = +3.5
14.81.4

2.2




C m
m
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where the first term on the right-hand side represents equipment costs, which increase as the 
flow rate increases, and the second term represents the operating costs, which go down as  
m increases.

SOLUTION

The extremum is given by

 ( )( ) ( )( )= −

= − =

−

−

3.5 1.4 14.8 2.2

4.9 32.56 0

0.4 3.2

0.4 3.2



 

 

dC
dm

m m

m m

Therefore,

 = 



 =32.56

4.9
1.692

1/3.6

m

The second derivative is obtained as

 = +− −1.96 104.19
2

2
0.6 4.2



 

d C
dm

m m

which is positive because the flow rate m is positive. This implies that the optimization tech-
nique has yielded a minimum of the objective function C, as desired. Therefore, minimum cost is 
obtained at m = 1.692, and the corresponding value of C is 11.962.

The preceding discussion and the simple example serve to illustrate the use of calculus for opti-
mization of an unconstrained problem with a single independent variable. However, such simple 
problems are rarely encountered when dealing with the optimization of practical thermal systems. 
Usually, several independent variables are involved and constraints may have to be satisfied. This 
considerably complicates the application of calculus to extract the optimal solution. In addition, the 
use of calculus methods requires that any constraints in the problem must be equality constraints. 
This limitation is often circumvented by converting inequality constraints into equality ones, as out-
lined in Chapter 7. In many practical circumstances, the objective function is not readily available in 
the form of continuous and differentiable functions, such as the one given in Example 8.1. However, 
curve fitting of numerical and experimental data may be used in some cases to yield continuous 
expressions that characterize the given system and that can then be used to obtain the optimum.

Calculus methods, whenever applicable, provide a fast and convenient method to determine the 
optimum. They also indicate the basic considerations in optimization and the characteristics of the 

FIGURE 8.1 Sketches showing (a) a maximum, (b) a minimum, and (c) an inflection point in a function y(x) 
plotted against the independent variable x.
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problem under consideration. In addition, some of the ideas and procedures used for these methods 
are employed in other techniques. Therefore, it is important to understand this optimization method 
and the basic concepts introduced by this approach. This chapter presents the Lagrange multiplier 
method, which is based on the differentiation of the objective function and the constraints. The 
physical interpretation of this approach is brought out and the method is applied to both constrained 
and unconstrained optimization. The sensitivity of the optimum to changes in the constraints is 
discussed. Finally, the application of this method to thermal systems is considered.

8.2 THE LAGRANGE MULTIPLIER METHOD

This is the most important and useful method for optimization based on calculus. It can be used to 
optimize functions that depend on a number of independent variables, with and without functional 
constraints. As such, it can be applied to a wide range of practical circumstances provided the objec-
tive function and the constraints can be expressed as continuous and differentiable functions. In 
addition, only equality constraints can be considered in the optimization process.

8.2.1 bAsic ApproAch

The mathematical statement of the optimization problem was given in the preceding chapter as

 … →U x x x xn( , , , , ) Optimum1 2 3  (8.4)

subject to the constraints
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 (8.5)

where U is the objective function that is to be optimized and Gi = 0, with i varying from 1 to m, 
represents the m equality constraints. As mentioned earlier, if inequality constraints arise in the 
problem, these must be converted into equality constraints in order to apply this method. In addi-
tion, in several cases, inequality constraints simply define the acceptable domain and are not used 
in the optimization process. Nevertheless, the solution obtained is checked to ensure that these 
constraints are not violated.

The method of Lagrange multipliers basically converts the preceding problem of finding the 
minimum or maximum into the solution of a system of algebraic equations, thus providing a conve-
nient scheme to determine the optimum. The objective function and the constraints are combined 
into a new function Y, known as the Lagrange expression and defined as

 
… = … + λ … + λ …

+ + λ …
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 (8.6)

where the λ’s are unknown parameters, known as Lagrange multipliers. Then, according to this method, 
the optimum occurs at the solution of the system of equations formed by the following equations:
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When these differentiations are applied to the Lagrange expression, we find that the optimum is 
obtained by solving the following system of equations:
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If the objective function U and the constraints Gi are continuous and differentiable, a system of 
algebraic equations is obtained. Because there are m equations for the constraints and n additional 
equations are derived from the Lagrange expression, a total of m + n simultaneous equations are 
obtained. The unknowns are the m multipliers, corresponding to the m constraints, and the n indepen-
dent variables. Therefore, this system may be solved by the methods outlined in Chapter 4 to obtain 
the values of the independent variables, which define the location of the optimum, as well as the 
multipliers. Analytical methods for solving a system of algebraic equations may be employed if linear 
equations are obtained and/or when the number of equations is small, typically up to around five. For 
nonlinear equations and for larger sets, numerical methods are generally more appropriate. Matlab 
is particularly well-suited for solving large sets of linear and nonlinear algebraic equations, with the 
latter generally requiring iteration, as discussed in Chapter 4. The optimum value of the objective 
function is then determined by substituting the values obtained for the independent variables into the 
expression for U. The optimum is often represented by asterisks, i.e., x*

1, x*
2, …, x*

n, and U*.
Thus, the preceding equations, given by Equation (8.8), represent the Lagrange multiplier 

method. The physical interpretation and proof of the method are given in the next section. But the 
solution to Equation (8.8) determines the optimum and also yields the multipliers.

8.2.2 physicAl interpretAtion

In order to understand the physical reasoning behind the method of Lagrange multipliers, let us 
consider a problem with only two independent variables x and y and a single constraint G(x, y) = 0. 
Then the optimum is obtained by solving the equations
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The first two equations can be written in vector notation as

 ∇ + λ∇ =U G 0 (8.10)
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where ∇ is the gradient vector. The gradient of a scalar quantity ϕ(x,y) is defined as

 i j∇φ = ∂φ
∂

+ ∂φ
∂x y

 (8.11)

where i and j are unit vectors in the x and y directions, respectively. Therefore, ∇ϕ is a vector with 
the two partial derivatives ∂ϕ/∂x and ∂ϕ/∂y as the two components in these directions. For example, 
if the temperature T in a region is given as a function of x and y, the rate of change of T in the two 
coordinate directions is given by the components of the gradient vector ∇T. This vector is used 
effectively in heat conduction to represent the heat flux vector q, which is given as q = −k∇T from 
Fourier’s law, k being the thermal conductivity. This heat flux vector is used to determine the rate of 
heat transfer in different coordinate directions (Gebhart, 1971; Incropera and Dewitt, 2001).

8.2.2.1 Gradient Vector
Let us consider the gradient vector further in order to provide a graphical representation for the 
method of Lagrange multipliers. This discussion will also be useful in other optimization schemes 
that are based on the gradient vector. From the definition of ∇ϕ and from calculus, the magnitude 
and direction of the gradient vector, as well as a unit vector n in its direction, may be calculated as
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where |∇ϕ| is the magnitude of the gradient vector and θ is the inclination with the x-axis.
Let us now consider a ϕ = constant curve in the x-y plane, as shown in Figure 8.2 for three 

values c1, c2, and c3 of this constant. Then, from the chain rule in calculus,

 φ = ∂φ
∂

+ ∂φ
∂

d
x

dx
y

dy (8.13)

FIGURE 8.2 Contours of constant ϕ shown on an x-y plane for different values of the constant. Also shown 
is the tangent vector T, which is tangential to one such contour.
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For ϕ = constant, dϕ = 0. If this condition is used to represent movement along the curve, we get
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Therefore, the tangential vector T, shown in Figure 8.2, may be obtained by using a differential 
element dT, which is given by this relationship between dx and dy as:
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The unit vector t along the tangential direction may be obtained, as done previously for the gradient 
vector, by dividing the vector by its magnitude. Thus,
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Thus it is seen that the two vectors n and t may be represented as

 = + = − +i j i jn c d t d cand  (8.17)

where c and d represent the respective components given in the preceding equations. The relation-
ship given by Equation (8.17) applies for vectors that are normal to each other. This is shown graphi-
cally in Figure 8.3(a). Mathematically, if a dot product of two vectors that are perpendicular to each 
other is taken, the result should be zero. Applying the dot product to n and t, we get

 ( ) ( ) 0⋅ = + ⋅ − + = − + =c d d c cd cdn t i j i j  (8.18)

because i and j are independent of each other. This confirms that the two vectors t and n are 
perpendicular. Therefore, the gradient vector ∇ϕ is normal to the constant ϕ curve, as shown in 
Figure 8.3(b). This information is useful in understanding the basic characteristics of the Lagrange 
multiplier method and for developing other optimization techniques, as seen in later chapters.

FIGURE 8.3 (a) Unit vectors t and n are perpendicular to each other; (b) gradient vector ∇ϕ is normal to the 
ϕ = constant contour.
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If three independent variables are considered, a surface is obtained for a constant value of ϕ. 
Then, the gradient vector ∇ϕ is normal to this surface. Similar considerations apply for a larger 
number of independent variables. The gradient ∇ϕ may be written for n independent variables as

 ∇φ = ∂φ
∂

+ ∂φ
∂

+ ∂φ
∂

+ + ∂φ
∂

i i i i
x x x xn

n
1

1
2

2
3

3  (8.19)

where i1, i2, …, in are unit vectors in the n directions representing the n independent variables 
x1, x2, …, xn, respectively. Therefore, these unit vectors are independent of each other. Though it is 
difficult to visualize the gradient vector for more than three independent variables, the mathemati-
cal treatment of the problem is the same as that given previously for two independent variables. 
Again, the n and t unit vectors may be determined and their dot product taken to show that 
n · t = 0, indicating that ∇ϕ is perpendicular to the ϕ = constant contours or surfaces. Because of 
this property, the gradient vector represents the direction in which the dependent variable ϕ changes 
at the fastest rate, this rate being given by the magnitude of the gradient. In addition, the direction in 
which ϕ increases is the same as the direction of the vector ∇ϕ. These properties are useful in many 
optimization strategies, particularly in gradient-based search methods.

8.2.2.2 Lagrange Multiplier Method for Unconstrained Optimization
Let us first consider the unconstrained problem for two independent variables x and y. Then the 
Lagrange multiplier method yields the location of the optimum as the solution to the equation

 ∇ = ∂
∂

+ ∂
∂

=i jU
U

x

U

y
0 (8.20)

Therefore, the gradient vector, which is normal to the constant U contour, is zero, implying that the 
rate of change in U is zero as one moves away from the point where this equation is satisfied. This 
indicates a stationary point, or extremum, as shown qualitatively in Figure 8.4 for one or two inde-
pendent variables. The point may be a minimum or a maximum. It may also be a saddle point, ridge, 
or valley (see Figure 8.1). Additional information is needed to determine the nature of the stationary 
point, as discussed later. Because Equation (8.20) is a vector equation, each component may be set 
equal to zero, giving rise to the following two equations:
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x

U

y
0 and 0 (8.21)

FIGURE 8.4 The minimum and maximum in an unconstrained problem, as given by ∇U = 0.
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which may be solved to obtain x and y at the optimum, denoted as x* and y*. The optimal value U* is 
then calculated from the expression for U. The number of equations obtained is equal to the number 
of independent variables and the optimum may be determined by solving these equations.

8.2.2.3 Lagrange Multiplier Method for Constrained Optimization
The optimum for a problem with a single constraint is obtained by solving the equations

 0 and 0∇ + λ∇ = =U G G  (8.22)

The gradient vector ∇U is normal to the constant U contours, whereas ∇G is a vector normal to 
the constant G contours. The Lagrange multiplier λ is simply a constant. Therefore, this equation 
implies that the two gradient vectors are aligned, i.e., they are both in the same straight line. The 
magnitudes could be different and λ can be adjusted to ensure that Equation (8.22) is satisfied. 
However, if the two vectors are not in the same line, the sum cannot be zero unless both vectors are 
zero. This result is shown graphically in Figure 8.5 for a minimum in U. As one moves along the 
constraint, given by G = 0, in order to ensure that the constraint is satisfied, the gradient ∇G var-
ies in direction. The point where it becomes collinear with ∇U is the optimum. At this point, the 
two curves are tangential and thus yield the minimum value of U while satisfying the constraint. 
Constant U curves below the constraint curve do not satisfy the constraint and those above it give 
values of U larger than the optimum at the locations where they intersect with the constraint curve. 
Clearly, values of U smaller than that at the optimum shown in the figure could be obtained if there 
were no constraint, in which case the governing equations would be obtained from Equation (8.20).

As an example, consider an objective function U of the form

 = +U A x B ya( ) ( )b (8.23)

with a constraint of the form

 =x y E( ) ( )c d  (8.24)

This constraint may be written as the following to put it in the form given by Equation (8.22):

 = − =G x y Ec d( ) ( ) 0 (8.25)

FIGURE 8.5 Physical interpretation of the method of Lagrange multipliers for two independent variables 
and a single constraint.
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Here E, the coefficients A and B, and the exponents a, b, c, and d are assumed to be known con-
stants. Such expressions are frequently encountered in thermal systems. For example, U may be the 
overall cost and x and y the pump needed and pipe diameter, respectively, in a water flow system. 
The pressure decreases as the diameter increases, resulting in lower cost for the pump, and the 
cost for the pipe increases. This gives rise to a relationship such as Equation (8.24). Thus, contours 
of constant U may be drawn along with the constraint curve on an x - y plane, as sketched in 
Figure 8.6(a). Then the optimum is indicated by the location where the constant U contour becomes 
tangential to the constraint curve, thus aligning the ∇U and ∇G vectors. For the simple case when 
all the constants in these expressions are unity, i.e., U = x + y and G = xy – 1 = 0, the constant U 
contours are straight lines and the constraint curve is given by x = 1/y, as sketched in Figure 8.6(b). 
The optimum is at x* = 1.0 and y* = 1.0, and the optimum value U* is 2.0 for this case.

Even though only two independent variables are considered here for ease of visualization and 
physical understanding, the basic ideas can easily be extended to a larger number of variables. The 
system of equations to be solved to obtain the optimum is given by the n scalar equations derived 
from the vector equation

 ∑∇ + λ ∇ =
=

U G
i

m

i i 0
1

 (8.26)

and the m equality constraints

 = = …G i mi 0, for 1,2,3, ,  (8.27)

In most practical cases, these equations are solved analytically or numerically, using techniques 
presented in Chapter 4, to yield the multipliers and the values of the independent variables, from 
which the optimum value of the objective function is determined.

8.2.2.4 Proof of the Method
The proof of the method of Lagrange multipliers is available in most books on optimization. 
However, the mathematical analysis becomes involved as the number of independent variables and 
the number of constraints increase (Stoecker, 1989). Let us again consider the problem with two 
independent variables and a single constraint for simplicity. At the desired optimum point, the 

FIGURE 8.6 (a) Optimization of the simple constrained problem given by Equation (8.23) to Equation 
(8.25), and (b) the results when all the constants in the given expressions are unity.
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constraint must also be satisfied. If we now deviate from this point, while ensuring that the con-
straint continues to be satisfied, the change in G should be zero, i.e., from the chain rule,

 = ∂
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 + ∂

∂






=dG
G

x
dx
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y
dy 0 (8.28)

where dx and dy are the changes in x and y. Therefore, these changes are related by the following 
expression, if the condition of G = 0 is to be preserved:
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The change in the objective function U due to this deviation from the optimum is given by
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If a quantity λ is defined as
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then

 = λ ∂
∂

+ ∂
∂









dU

G

y

U

y
dy (8.32)

where λ is the Lagrange multiplier for this one-constraint problem. In order for the starting point to 
be the optimum, there should be no change in U for a differential movement from the optimum while 
satisfying the constraint G = 0, i.e., this should be a stationary point. This implies that, for the differ-
ential change in U to be zero, the quantity in the brackets in Equation (8.32) must be zero. Therefore,
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Also, from Equation (8.31),
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Then Equation (8.33) and Equation (8.34), along with the constraint equation G = 0, define the 
optimum for this problem. These are the same as the equations given earlier for the method of 
Lagrange multipliers for this single-constraint, two-independent variable problem.

8.2.3 SigniFicAnce oF the Multipliers

Let us again consider the optimization problem with two independent variables and one constraint, 
as given by Equation (8.22). Then the Lagrange multiplier may be written as

 λ = − ∇
∇
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Because the condition for the optimum is used here, all the derivatives are evaluated at the opti-
mum, as indicated by the asterisks. Now, if dot products of both the numerator and the denominator 
are taken with (dxi + dyj), the result obtained is
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where ΔU and ΔG are incremental changes in U and G from the optimum. The partial derivative is 
thus obtained for infinitesimal changes. This is similar to the expression given in Equation (8.31) 
and defines the Lagrange multiplier for this problem.

An important consideration in optimization is the effect of a change in the constraint on the 
objective function at the optimum. A parameter known as the sensitivity coefficient Sc is defined as 
the rate of change of the objective function U with the constraint G at the optimum, i.e.,

 = ∂
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S

U

G
c

*

 (8.37)

This parameter is useful in adjusting the design variables to come up with the final design, as dis-
cussed in the preceding chapter. The value of the sensitivity coefficient gives an indication of the 
level of adjustment needed in the constraint in order to employ standard sizes and readily avail-
able components (Dieter, 2000). It is seen from the definition of the sensitivity coefficient and 
Equation (8.36) for λ that the Lagrange multiplier is the negative of the sensitivity coefficient. This 
analysis can easily be extended to multiple constraints and larger numbers of independent variables. 
It can then be shown that λ1 = –(Sc)1, λ2 = –(Sc)2, …, λm = –(Sc)m, where the subscripts refer to the dif-
ferent constraint equations. Thus, the method of Lagrange multipliers not only yields the optimum 
but also the sensitivity coefficients with respect to the various constraints in the problem.

Frequently, the constraint may be written as

 = − =G x y g x y E( , ) ( , ) 0 (8.38)

where g(x, y) is a function of the two independent variables and E is a parameter; see Equation (8.25). 
This parameter could be a quantity that provides the constraint for optimization such as the total 
volume of a tank, the total length of piping in a flow system, the total heat input in a thermal system, 
etc. Then, the constraint may be expressed as

 =g x y E( , )  (8.39)

where E is an adjustable parameter. Therefore, dg = dE, which gives, from the preceding discussion,

 λ = − ∂
∂







U

E

*

 (8.40)

Thus, the Lagrange multiplier λ gives the rate of change in the objective function U with the con-
straint parameter E, at the optimum. Therefore, the values of the Lagrange multipliers obtained in a 
given problem may be used to guide slight changes in the constraints in order to choose appropriate 
sizes, dimensions, etc., that are easily available or more convenient to fabricate.

8.3 OPTIMIZATION OF UNCONSTRAINED PROBLEMS

Most of the optimization problems encountered in the design of thermal systems are constrained 
due to the conservation principles and limitations imposed by the materials used, space available, 
safety and environmental regulations, etc. However, frequently the constraints are used to obtain 
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the relationships between different design variables. If these are then substituted into the expres-
sion for the objective function, an unconstrained problem is obtained because the constraints have 
been satisfied. Sometimes, in the formulation of the optimization problem itself, the constraints are 
employed in deriving the appropriate expressions and additional constraints are not needed. Thus, 
an unconstrained problem results. Certainly, in a few cases, there are no significant constraints, and 
the problem is treated as unconstrained. Thus, the unconstrained optimization problem is of interest 
in many practical thermal systems and processes.

8.3.1 use oF grADients For optimizAtion

If there are no constraints in the problem, the optimum is given by a solution to the following vector 
equation for U(x1, x2, x3, …, xn):
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Again, it is easy to visualize the gradient vector if only two or three variables are involved, as seen 
in the preceding section. However, the basic concepts are the same and may be extended to any 
appropriate number of variables. All the components of the vector equation, Equation (8.41), must 
be zero in order that the vector be zero because all of the variables are taken as independent of each 
other. Therefore, the optimum is obtained by solving the equations
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This is similar to the condition for a stationary point given by Equation (8.1) for a single independent 
variable. The objective function must be a continuous and differentiable function of the independent 
variables in the problem and the derivatives must be continuous.

The system of equations represented by Equation (8.42) could be linear or nonlinear, though non-
linear equations are more commonly encountered for thermal systems and processes. Mathematical 
analysis may be used in simple cases to obtain the solution. Otherwise, numerical techniques are 
needed. This method is particularly useful for systems that may be characterized by algebraic 
expressions that can be readily differentiated. This situation usually arises in cases where curve 
fitting yields such expressions for characterizing the system behavior and in small, idealized, and 
simple systems. The constraints are assumed to be absent or taken care of in developing the objec-
tive function. We now consider determining whether the optimum is a minimum or a maximum.

8.3.2 DeterminAtion oF minimum or mAximum

In most cases, the physical nature of the problem would indicate whether the solution obtained is 
a maximum, a minimum, or some other stationary point. Frequently, it is known from experience 
that a minimum or a maximum exists in the given domain. For instance, it may be known that a 
minimum in the energy consumption would arise if the pressure of the compressor were varied over 
the acceptable range in a refrigeration system. Similarly, a maximum thermal efficiency is expected 
if the speed, in revolutions per minute, of a diesel engine is varied. However, in the absence of such 
information, further analysis may be carried out to determine the characteristics of the optimum.

Equation (8.2) and Equation (8.3) give the conditions for a maximum and a minimum, respec-
tively, for a single independent variable. If the second derivative is zero at the stationary point, the 
occurrence of a saddle point, inflexion point, ridge, or valley is indicated. Similar conditions may 
be derived for two or more independent variables and are given in most calculus textbooks, such as 
Keisler (2012) and Kaplan (2002), and in books on optimization, such as Beightler et al. (1979), 
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Rao (2009) and Chong and Zak (2013). For the case of two independent variables, x1 and x2, with 
U(x1, x2) and its first two derivatives continuous, these conditions are given as

If 
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Therefore, for two independent variables, the optimum may be obtained by solving ∂U/∂x1 = ∂U/∂x2 
= 0 and applying the preceding conditions. Though similar conditions may be derived for a larger 
number of variables, the analysis becomes quite involved. Therefore, in most practical circumstances, 
which involve three or more independent variables, it is more convenient and efficient to depend on the 
physical nature of the problem to determine if a minimum or a maximum has been obtained. In addi-
tion, the independent variables may be changed slightly near the optimum to determine if the value 
of the objective function increases or decreases. If the value decreases as one moves away from the 
optimum, a maximum is indicated, whereas if it increases, a minimum has been obtained.

Example 8.2

The cost C per unit mass of material processed in an extrusion facility is given by the expression

 = + +C T V
T

V T
2

3 22
2

where T is the dimensionless temperature of the material being extruded, V is the dimensionless 
volume flow rate, and C includes both capital and running costs. Determine the minimum cost.

SOLUTION

Because there are no constraints, the approach given in the preceding sections may be adopted. 
Therefore, the location of the optimum is given by the solution of the equations
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Because both T and V are positive quantities, we have
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These equations give V* = 1.6930 and T* = 0.6182. When these are substituted in the expression 
for C, we obtain C* = 5.1763. Now the second derivatives may be obtained to ascertain the nature 
of the critical point. Thus,
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Substituting the values of V and T at the stationary point, we calculate these three second deriva-
tives as 1.3544, 23.7023, and 1.2364, respectively. This gives S = 30.57. Therefore, S > 0 and 
∂2C/∂V2 > 0, indicating that the minimum cost has been obtained.

8.3.3 conversion oF constrAineD to unconstrAineD problem

It is evident from the preceding discussion that an unconstrained optimization problem is easier 
to solve, as compared to the corresponding constrained one, because the number of unknowns is 
smaller in the former case. Each constraint introduces a Lagrange multiplier as an unknown and an 
additional equation has to be satisfied. Therefore, it is desirable to convert a given constrained prob-
lem into an unconstrained one whenever possible. The constraints represent relationships between 
the various independent variables that must be satisfied. If these equations can be used to obtain 
explicit expressions for some of the variables in terms of the others, these expressions may then be 
substituted into the objective function to eliminate the constraints and thus convert the problem to 
an unconstrained one. Even if all the constraints cannot be eliminated, it is worthwhile to eliminate 
as many of these as possible in order to reduce the complexity of the problem.

Let us again consider the optimization problem represented by Equation (8.23) through 
Equation (8.25). Then, the constraint equation, Equation (8.24), may be used to express y in terms 
of x as
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Substituting this value of y into Equation (8.23), we have
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 (8.45)

Therefore, an unconstrained problem is obtained with U(x) as the objective function. The 
optimum is obtained by setting ∂U/∂x = 0, which yields the value of x. The corresponding y at 
the optimum is obtained from Equation (8.44) and the optimum value of U is obtained from 
Equation (8.45). It is easy to see that x*= y* = 1.0 and U* = 2.0 for the simple case when all the 
constants and exponents are unity.

Thus, it is desirable to reduce the number of constraints, which will also reduce the number 
of unknown variables and Lagrange multipliers, by using the constraint equations to find explicit 
expressions relating the variables. Obviously, it is not always possible to do so because the constraint 
may not yield an explicit relationship that can be used to eliminate a variable. Then, the problem 
has to be treated as a constrained circumstance. The following example illustrates the solution of a 
constrained problem by converting it into an unconstrained one. It is later solved as a constrained 
problem to indicate the difference between the two approaches.

Example 8.3

A cylindrical storage tank is to be designed for storing hot water from a solar energy collection sys-
tem. The volume is given as 2 m3 and the surface area is to be minimized in order to minimize the 
heat loss to the environment. Solve this optimization problem as an unconstrained circumstance.

SOLUTION

If r is the radius of the tank and h its height, the volume V is given by

 = πV r h2
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The surface area A is given by

 = π + πA r rh2 22

where the first term represents the two ends and the second term represents the curved lateral 
surface. Then A is the objective function that is to be minimized and V = 2 represents the con-
straint. From this constraint equation, h = V/(πr2). Substituting this relationship into the expression 
for area gives

 = π + π
π

= π +A r
rV
r

r
V
r

2
2

2
22

2
2

Because the constraint has already been considered, this becomes an unconstrained problem. 
Differentiating A with respect to r and setting the derivative equal to zero to obtain the radius for 
the optimum, we get
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If V is taken as 2 m3,

 = π = = =−r h A0.683m, 1.366m, 8.793m* 1/3 * * 2

The second derivative is calculated to determine the nature of the optimum. Thus,
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Because r is positive, the second derivative is also positive, indicating that the area is a minimum, 
as desired in the problem. Similarly, the dimensions for other desired tank volumes may be deter-
mined for minimum surface area for heat loss.

8.4 OPTIMIZATION OF CONSTRAINED PROBLEMS

The optimization of most thermal systems is governed by constraints that arise due to the conserva-
tion laws and limitations imposed by the materials, space, cost, safety, etc. As discussed earlier, the 
number of equality constraints must be less than the number of independent variables for optimiza-
tion to be possible. If the number of constraints equals the number of variables, the problem may 
simply be solved to yield the set of variables that satisfies the constraints. No flexibility is avail-
able to choose the best or optimal design. If the number of constraints is larger than the number of 
variables, the problem is overconstrained and some of the constraints must be discarded, resulting 
in arbitrariness and a lack of uniqueness in the solution. These considerations are evident from 
Equation (8.8), where the condition m < n is needed for optimization of a system. If m = n, the con-
straint equations can be used to obtain the solution, and if m > n, the problem is overconstrained, 
and no solution is possible unless m – n constraints are dropped.
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Considering the optimization problem, i.e., m < n, the method of Lagrange multipliers may 
be applied to determine the optimal design. The equations that need to be solved are given by 
Equation (8.26) and Equation (8.27) and may be rewritten here as

 ∑∇ + λ ∇ =
=

U G
i

m

i i 0
1

 0, for 1,2, ,= = …G i mi

where ∇U and ∇Gi are the gradient vectors, which may be expanded in terms of the n independent 
variables to yield Equation (8.8). Therefore, m + n equations are obtained for the n independent vari-
ables and m multipliers. These equations may be linear or nonlinear, and may involve polynomials 
or transcendental functions such as exponential, logarithm, and hyperbolic functions. Analytical 
methods may be used for relatively simple cases with a small number of equations. Numerical 
techniques, as outlined in Chapter 4, may be used for more complicated circumstances, which com-
monly arise when dealing with practical thermal systems.

If there is only one constraint, G = 0, Equation (8.22) is obtained. Only one Lagrange multiplier 
λ arises and is determined from the solution of the resulting n + 1 equations. Consider, for instance, 
the simple optimization problem given by

 = + = − =U x x G x x2 5 and 12 02
1 2 1 2  (8.46)

Then, the method of Lagrange multipliers yields the following equations:
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 (8.47)

These equations lead to

 + λ = + λ = =x x x x x4 0, 5 0, 121 2 1 1 2  (8.48)

Therefore, the solution is obtained as:

 2.466, 4.866, 36.493, 2.027* * *
1 2= = = λ = −x x U  (8.49)

It can be shown that if either x1 or x2 is varied from its optimum value, while ensuring that 
the constraint is satisfied, the objective function U increases. Therefore, the optimum obtained 
is a minimum in U. In this simple case, the second derivatives may also be derived to confirm 
that a minimum in U has been obtained. The sensitivity coefficient Sc = –λ = 2.027. This gives 
the effect of relaxing the constraint on the optimum value of U. For instance, if x1 x2 = 13, 
instead of 12, U* can be calculated to be 38.493, an increase of 2.0. There is a slight difference 
in the change in U* obtained from solving the equations with the changed constraint and that 
from the calculated value of Sc. This is because nonlinear equations make Sc a function of x1 
and not a constant. The following example illustrates this treatment for the tank problem con-
sidered earlier.

Example 8.4

Solve the tank problem given in Example 8.3 as a constrained optimization problem.
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SOLUTION

The objective function is the area A, which is to be minimized, and the constraint is the volume 
V. Thus, the optimization problem may be written as

 = = π + πU A r rh2 22

and

 = π − =G r h V 02

From Equation (8.22),

 ∂
∂

+ λ ∂
∂

= ∂
∂

+ λ ∂
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= =U
r

G
r

U
h

G
h

G0, 0, 0

Therefore,

 π + π + λ π = π + λ π = π =r h rh r r h V4 2 (2 ) 0, 2 ( r ) 0,2 2

or

 + + λ = + λ = π =r h rh r r h V2 0, 2 0, 2

Solving these three equations yields

 =
π





 =

π




 λ = − π



r

V
h

V
V2

4
2

2*
1/3

*
1/3 1/3

For V = 2 m3: r* = 0.683 m, h* = 1.366 m, A* = 8.793 m2, λ = –2.928. These values are the same 
as those obtained earlier by converting the problem to an unconstrained one. Again, it can be 
confirmed that a minimum in the area has been obtained.

The sensitivity coefficient Sc, which is equal to –λ, is obtained as additional information. Let us 
assume that the constraint on the volume is relaxed from 2.0 to 2.1. Then, it can easily be shown 
that r* = 0.694 m and A* = 9.078 m2. Therefore, ∂A/∂V = (9.078 – 8.793)/0.1 = 2.85, which is close 
to the sensitivity coefficient Sc, that is given by –λ and is, thus, equal to 2.928 at the optimum 
point. Again, the slight difference between Sc and ∂A/∂V is due to the dependence of λ on the 
variables.

8.5 APPLICABILITY TO THERMAL SYSTEMS

The use of calculus methods to optimize thermal systems is limited by the requirement that the 
objective function and constraints be continuous and differentiable. In addition, only equality 
constraints can be considered. Practical thermal systems seldom lead to simple analytic func-
tions such as those considered in the examples discussed here. Only very simple systems, with a 
small number of components and highly idealized characteristics, can generally be represented 
by polynomials and other simple expressions. Governing sets of algebraic and differential equa-
tions must often be solved to determine the behavior of a given system. In addition, discrete 
values are frequently taken by the design variables, due to the availability of standard parts and 
components, making it difficult to obtain the system characteristics as continuous functions. 
However, the calculus methods, whenever applicable, are convenient and efficient. In addition, 
they form part of several other optimization strategies and are useful in understanding the nature 
of the optimum. Therefore, effort is often made to obtain expressions that facilitate the use of 
calculus methods.
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8.5.1 use oF curve Fitting

Curve fitting is certainly the most useful method of representing the results from numerical and 
experimental modeling in the form of simple algebraic expressions, which can easily be treated 
by calculus methods to optimize the system. Employing the methods outlined in Chapter 3, par-
ticularly the least squares best fit approach, the simulation results for a system may be expressed 
in terms of polynomials, exponentials, sinusoidal, power-law variations, and so on. The simula-
tion itself may be very complicated, involving the numerical solution of nonlinear algebraic and 
differential equations and experimental data from property measurements and physical modeling. 
However, if continuous changes in the design variables and in the operating conditions can be con-
sidered, algebraic expressions may be employed to closely approximate the results. The choice of 
the type and form of the function used for curve fitting the data is based on the physical nature of 
the system. Polynomials may be used to curve fit the results if information is not available to choose 
a more specific expression.

Thus, the results from a variety of sources may often be represented by relatively simple alge-
braic expressions. Empirical correlations for the convective heat transfer coefficient, characteristics 
of a pump, and pressure-flow rate relation for an extrusion die are examples of such curve fits and 
may typically be written as

 ( ) ( )= =hL

k
A a bNu Re Pr1  (8.50)

  ∆ = − −p A A m A m2 3 4
2 (8.51)

 ∆ = +p A A mc
5 6  (8.52)

where Nu, Re, and Pr are the Nusselt, Reynolds, and Prandtl numbers, defined in Chapter 3; h is the 
heat transfer coefficient; L is a characteristic length; k is the thermal conductivity; Δp is the pressure 
rise in a pump or the pressure drop through a die; m is the mass flow rate; and the A’s and the expo-
nents a, b, c are constants obtained from curve fitting. Similar expressions can usually be derived 
for heat exchangers, manufacturing systems, refrigeration units, cooling towers, and other thermal 
systems, linking the characteristics with the design variables and operating conditions. The con-
straints may be satisfied during the simulation because the governing equations are based on the 
conservation laws, yielding an unconstrained problem, or similar algebraic equations may be 
derived for the constraints. Inequality constraints are also encountered in the design of thermal 
systems and are considered later.

Once the objective function and the constraints have been obtained in the form of algebraic 
equations, the method of Lagrange multipliers may be conveniently applied to obtain the location 
of the optimum point and the corresponding value of the objective function. As far as possible, 
the constrained problem should be solved, even though it is more involved, because it provides the 
additional information on the sensitivity coefficients, which are used to fine-tune the final design. 
Similarly, unless necessary, elimination should not be used to reduce the number of equations 
because this also removes a design variable that could be treated as an independent quantity in the 
design process. Numerical methods are particularly useful because large systems of nonlinear equa-
tions are frequently obtained.

8.5.2 exAmples

In the preceding sections, we considered several examples to illustrate the application of calculus 
methods to optimization. Practical thermal systems also provide interesting examples of the use 
of this approach. A common circumstance encountered in the design of heat transfer equipment is 
that of minimizing the heat loss Q while meeting the constraints due to energy balance, strength 
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considerations, etc. The heat transfer coefficient h may be obtained from empirical correlations 
available in the literature. Therefore, the optimization problem may be formulated as

 = ∆ →Q hA T  Minimize (8.53)

with

 = = ∆ ∆ =A f L L h f L L T f L L T C( , ), ( , , ), ( , , )1 1 2 2 1 2 3 1 2  (8.54)

where A is the surface area; ΔT is the temperature difference from the ambient; L1 and L2 are dimen-
sions, such as diameter and height of the cylindrical shell of a heat exchanger; C is a constant; and 
f1, f2, and f3 are functions. Additional dimensions may also be included if necessary. The expressions 
for A and h may be substituted into the objective function to obtain a single constraint problem.

The method of Lagrange multipliers may be applied to the preceding problem to obtain the 
dimensions at which the heat loss is a minimum. The sensitivity coefficients are also derived to 
determine the effect of a variation in the constraint(s) on the optimum. The following examples 
illustrate the solution of such a problem.

Example 8.5

In an electronic circuitry, the power source may be considered as a thin square with side dimen-
sion L in meters. It is desired to minimize the heat transfer from the surface of the power supply 
to the local surroundings. The heat transfer coefficient h in W/(m2 ⋅ K) is given by the expression

 ( )= + ∆ −h L T L2 10  1/ 2 1/4 1

where ΔT is the temperature difference in K from the local ambient. A constraint arises due to the 
strength of the bond that attaches the power supply to the electronic circuit board as L ΔT = 5.6. 
Calculate the side dimension L of the square that would minimize the total heat loss, solving the 
problem as both an unconstrained and a constrained one.

SOLUTION

The rate of heat loss Q from the power supply is the objective function that is to be minimized 
and is given by the expression

 ( ) ( ) ( )= ∆ = + ∆ ∆ = + ∆−Q h A T L T L L T L L T2 10 2 101/ 2 1/4 1 2 3/ 2 5/4

because the surface area A is L2 for a square. The problem may be treated as unconstrained by 
substituting ΔT in terms of L from the given constraint. Thus, ΔT = 5.6/L and this is substituted in 
the preceding equation to yield

 ( )( )= + = +





−Q L L L
L

L2 10 5.6 8.61
2

103/ 2 1 5/4

1/4
1/4

For Q to be a minimum,
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= − +
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which gives

 = = =L
1

25
0.04m 4cm*
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The second derivative is given by

 = −





− −d Q
dL

L L8.61
5
8

15
8

2

2
9/4 7/4

At L* = 0.04 m, the second derivative is calculated as 3008.25, a positive quantity, indicating that 
Q is a minimum. Its value is obtained as Q* = 77.05W. Figure 8.7 shows a sketch of the variation 
of Q with L, and the minimum value is indicated.

The problem can also be solved as a constrained one, with the objective function and the 
constraint written as

 = + ∆ ∆ =Q L L T L T(2 10 ) and 5.63/ 2 5/4

Therefore, from Equation (8.9), the optimum is given by the equations

 

( )
( )

∆ + + λ∆ =

+ ∆ + λ =

∆ =

T L T

L L T L

L T

2 15 0

5
4

2 10 0

5.6

5/4 1/ 2

3/ 2 1/4

These equations can be solved to yield the optimum as

 = ∆ = λ = −L T Q0.04m; =140; 77.05W; 17.2* * *

Thus, the results obtained are identical to those obtained by solving the corresponding uncon-
strained problem. It can be shown that if the constraint is increased from 5.6 to 5.7, the heat 
transfer rate Q becomes 78.77, i.e., an increase of 1.72. This change can also be obtained from the 
sensitivity coefficient Sc. Here, Sc = –λ = 17.2, which gives the change in Q for a change of 1.0 in 
the constraint. Therefore, for a change of 0.1, Q is expected to increase by 1.72.

Example 8.6

For the solar energy system considered in Example 5.3, the cost U of the system is given by the expression

 = +U A V35 208

where A is the surface area of the collector and V is the volume of the storage tank. Find the condi-
tions for which the cost is a minimum, and compare the solution with that obtained in Example 5.3.

FIGURE 8.7 Variation of the heat transfer rate Q with dimension L of the power source in Example 8.5.
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SOLUTION

The objective function is U (A, V), given by the preceding expression. A constraint arises from the 
energy balance considerations given in Example 5.3 as

 −



 =A

V
290

100
5833.3

Therefore, A may be obtained in terms of V from this equation and substituted in the objective 
function to obtain an unconstrained problem as

 =
−





 + →U

V
V(35)

5833.3
290 100/

208 Minimum

or

 =
−

+ →U
V

V
2041.67
2.9 1/

208 Minimum

Therefore, U may be differentiated with respect to V and the derivative set equal to zero to obtain 
the optimum. This leads to the equation

 
−

=
V V

2041.67
(2.9 1/ )

1
2082 2

or

 ( )− = =V2.9 1 9.816 3.1331/ 2

Therefore, V* = 1.425 m3. Then, A* = 26.536 m2 and U* = 1225.16.
It can easily be shown that if V or A is varied slightly from the optimum, the cost increases, indi-

cating that this is a minimum. The maximum temperature To is obtained as 55.09°C, which lies in 
the acceptable range. These values may also be compared with those obtained in Example 5.3 for 
different values of To, indicating good agreement. Unique values of the area A and volume V are 
obtained at which the cost is a minimum, rather than the domain of acceptable designs obtained 
in Example 5.3. However, these values of A and V are usually adjusted for the final design in order 
to use standard items available at lower costs.

8.5.3 inequAlity constrAints

Inequality constraints arise largely due to limitations on temperature, pressure, heat input, and 
other quantities that relate to material strength, process requirements, environmental aspects, and 
space, equipment, and material availability. For instance, the temperature To of cooling water at the 
condenser outlet of a power plant is constrained due to environmental regulations as To < Tamb + R, 
where Tamb is the ambient temperature and R is the regulated temperature difference. The outlet 
from a cooling tower has a similar constraint. Other common constraints such as

 , ,   ,   ,max max min min min≤ ≤ τ ≥ τ > > T T P P m m Q Q  (8.55)

where the temperature T, pressure P, process time τ, mass flow rate m, and heat input rate Q apply 
to a given part of the system. Such constraints, which are given in terms of the maximum or mini-
mum values, represented respectively by subscripts max and min, have been considered earlier. The 
time τmin represents the minimum time needed for a given thermal process, such as heat treatment.

Because only equality constraints can be considered if calculus methods are to be applied, these 
inequality constraints must either be converted to equality ones or handled in some other manner. 
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As discussed in Chapter 7, a common approach is to choose a value less than the maximum or more than 
the minimum for the constrained quantity. Thus, the temperature at the condenser outlet may be taken as

 = + − ∆T T R To amb  (8.56)

where ΔT is an arbitrarily chosen temperature difference, which may be based on available informa-
tion on the system and safety considerations. Similarly, the wall temperature may be set less than 
the maximum, the pressure in an enclosure less than the maximum, and so on, in order to obtain 
equality constraints.

In many cases, it is not possible to arbitrarily set the variable at a particular value in order to 
satisfy the constraint. For instance, if the temperature and pressure in an extruder are restricted by 
strength considerations, we cannot use this information to set the conditions at certain locations 
because it is not known a priori where the maxima occur. In such cases, the common approach is 
to solve the problem without considering the inequality constraint and then checking the solution 
obtained if the constraint is satisfied. If not, the design variables obtained for the optimum are 
adjusted to satisfy the constraint. If even this does not work, the solution obtained may be used to 
determine the locations where the constraint is violated, set the values at these points at less than 
the maximum or more than the minimum, and solve the problem again. With these efforts, the 
inequality constraints are often satisfied. However, if even after all these efforts the constraints are 
not satisfied, it is best to apply other optimization methods.

8.5.4 some prActicAl consiDerAtions

In the preceding discussion, we assumed that an optimum of the objective function exists in the 
design domain and methods for determining the location of this optimum were obtained. However, 
many different situations may and often do arise when dealing with practical thermal systems. 
Frequently, for unconstrained problems, several local maxima and minima are present in the 
domain, which is defined by the ranges of the design variables, as sketched in Figure 8.8. These 
optima are determined by solving the system of algebraic equations derived from the vector equa-
tion ∇U = 0. Because nonlinear equations generally arise for thermal systems and processes, mul-
tiple solutions may be obtained, indicating different local optima. Because interest obviously lies 
in the overall or global maximum or minimum, it is necessary to consider each extremum in order 

FIGURE 8.8 Local and global extrema in an allowable design domain.
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to ensure that the global optimum has been obtained. Multiple solutions are also possible for con-
strained problems because of the generally nonlinear nature of the equations. Again, each optimum 
point must be considered and the objective function determined so that the desired best solution 
over the entire domain is obtained.

In many cases, the objective function varies monotonically and a maximum or minimum does not 
arise. In several practical systems, opposing mechanisms do give rise to optimum values, but the loca-
tions where these occur may not be within the acceptable ranges of variation of the design parameters, 
as shown in Figure 8.9. Therefore, the application of the method of Lagrange variables may either not 
yield an optimum at all or give a value outside the design domain. Both these circumstances are com-
monly encountered and are treated in a similar way. The desired maximum or minimum value of the 
objective function is obtained at the boundaries of the domain and the corresponding value of the inde-
pendent variable is selected for the design, as indicated by point A in Figure 8.9 for a maximum in U.

An example of such a situation is maximization of the flow rate in a network consisting of pumps 
and pipes. A monatomic rise in flow rate is expected with increasing pressure head of the pump 
and a stationary point is not obtained. Thus, in Example 5.8, the maximum flow rate arises at the 
maximum allowable values of the pressure levels P1 and P2 (see Figure 5.38). Similarly, energy bal-
ance for materials undergoing heat treatment may yield a temperature, beyond the allowable range, 
at which the system heat loss is minimized. In such cases, the maximum or minimum allowable 
values of the design parameters that result in the desired largest or smallest value of the objective 
function are chosen for the design.

8.5.5 computAtionAl ApproAch

Analytical methods for deriving and solving the equations for the Lagrange multiplier method are 
generally applicable to a relatively small number of components and simple expressions. A compu-
tational approach may be developed for problems that are more complicated. One such scheme is 
based on the solution of a system of nonlinear equations by the Newton-Raphson method, presented 
in Chapter 4. The governing equations from the method of Lagrange multipliers may be written as
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FIGURE 8.9 Monotonically varying objective functions over given acceptable domains, resulting in opti-
mum at the boundaries of the domain.
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where

 = … = …i n j m1,2, , and 1,2, ,

Therefore, a system of n + m equations is obtained, with the n independent variables and the m 
multipliers as the unknowns. These equations may be solved by starting with guessed values of the 
unknowns and solving the following system of linear equations for the changes in the unknowns, 
Δxi and Δλi, for the next iteration:
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Then, the values for the next iteration are given, for i varying from 1 to n and j varying from 1 to m, by

 = + ∆ λ = λ + ∆λ+ +x x xi
l

i
l

i
l

j
l

j
l

j
land1 1  (8.59)

where the superscripts l and l + 1 indicate the present and next iterations, respectively.
The initial, guessed values are based on information available on the physical system. However, 

values of the multipliers are not easy to estimate. Earlier analysis of the system, information on 
sensitivity, or estimates based on the guessed, starting values of the x’s may be employed to 
arrive at starting values of the λ’s. The partial derivatives needed for the coefficient matrix are 
generally obtained numerically if the expressions are not easily differentiable. Therefore, for a 
given function fi, the first derivative may be obtained from
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where Δxj is a chosen small increment in xj. Second derivatives will also be needed because the 
functions Fi in Equation (8.57) contain first derivatives. The second derivatives may be obtained 
from Gerald and Wheatley (2003), Jaluria (2012), and Chapra and Canale (2016) as
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Other finite-difference approximations can also be used, as discussed in Chapter 4.
Therefore, a numerical scheme may be developed to determine the optimum using the method 

of Lagrange multipliers. The guessed values are entered and the iteration process is carried out 
until the unknowns do not change significantly from one iteration to the next, as given by a chosen 
convergence criterion (see Chapter 4). However, the process is quite involved because the first and 
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second derivatives may have to be obtained numerically and a system of linear equations is to be 
solved for each iteration. Such an approach is suitable for complicated expressions and for a rela-
tively large number of independent variables and constraints, generally in the range of 5 to 10. For 
a still larger number of unknowns, the problem becomes very complicated and time-consuming, 
making it necessary to seek alternative approaches.

8.6 SUMMARY

This chapter focuses on the calculus-based methods for optimization. These methods use the deriv-
atives of the objective function U and the constraints to determine the location where the objective 
function is a minimum or a maximum. For the unconstrained problem, a stationary point is indi-
cated by the partial derivatives of the objective function U, with respect to the independent vari-
ables, going to zero. The nature of the stationary point, whether it is a maximum, a minimum, or a 
saddle point, is determined by obtaining the higher-order derivatives. For the constrained problem, 
the method of Lagrange multipliers is introduced and the system of equations, whose solution yields 
the optimum, is derived. Derivatives are again needed, making it a requirement for applying calcu-
lus methods that the objective function and the constraints must be continuous and differentiable. In 
addition, only equality constraints can be treated by this approach. The importance of this method 
lies not only in solving relatively simple problems, but also in providing basic concepts and strate-
gies that can be used for other optimization methods.

The physical interpretation of the Lagrange multiplier method is discussed, using a single con-
straint and only two independent variables. It is seen that the gradient vector of the objective func-
tion U becomes aligned with that of the constraint G, where G = 0 is the constraint, at the optimum. 
Thus, the contours of constant U become tangential to the constraint curve at the optimum. Proof 
of this method is also given for the simple case of a single constraint. The characteristics and solu-
tions of more complicated problems are discussed. The method is used for both unconstrained 
and constrained problems, including cases where a constrained problem may be converted into an 
unconstrained one by substitution. The significance of the multipliers is discussed and these are 
shown to be related to the sensitivity of the objective function to changes in the constraints. This is 
important additional information obtained by this method and forms a valuable input in deriving 
the final design of the system.

Finally, the application of these methods to thermal systems is considered. Because the objective 
function and the constraints must be continuous and differentiable, this approach is often restricted 
to relatively simple systems. However, curve fitting of experimental and numerical simulation results 
may be used to obtain algebraic expressions to characterize system behavior. Then the method of 
Lagrange multipliers may be employed easily to obtain the optimum. Inequality constraints may 
also be considered, in some cases by converting these to equality constraints and in others by 
checking the solution obtained, without taking these into account in the analysis, to ensure that 
the inequalities are satisfied. In some practical problems, an optimum may not arise in the design 
domain. In such cases, the largest or smallest value of the objective function is obtained at the 
domain boundaries and the corresponding values may be used for the best design. A few examples 
of thermal systems and processes are given. A computational approach for solving relatively com-
plicated optimization problems using these methods is also presented.

REFERENCES

Beightler, C.S., Phillips, D., & Wilde, D.J. (1979). Foundations of optimization (2nd ed.). Englewood Cliffs, 
NJ: Prentice-Hall.

Chapra, S.C., & Canale, R.P. (2016). Numerical methods for engineers (7th ed.). New York: McGraw-Hill.
Chong, E.K.P., & Zak, S.H. (2013). An introduction to optimization (4th ed.). New York: Wiley-Interscience.
Dieter, G.E. (2000). Engineering design (3rd ed.). New York: McGraw-Hill.



398 Design and Optimization of Thermal Systems

Gebhart, B. (1971). Heat transfer (2nd ed.). New York: McGraw-Hill.
Gerald, C.F., & Wheatley, P.O. (2003). Applied numerical analysis (7th ed.). Reading, MA: Addison-Wesley.
Incropera, F.P., & Dewitt, D.P. (2001). Fundamentals of heat and mass transfer (5th ed.). New York: Wiley.
Jaluria, Y. (2012). Computer methods for engineering with Matlab applications. Boca Raton, FL: CRC Press.
Kaplan, W. (2002). Advanced calculus (5th ed.). Reading, MA: Addison-Wesley.
Keisler, H.J. (2012). Elementary calculus (3rd ed.). Mineola, NY: Dover Publications.
Rao, S.S. (2009). Engineering optimization: theory and practice (4th ed.). New York: Wiley.
Stoecker, W.F. (1989). Design of thermal systems (3rd ed.). New York: McGraw-Hill.

PROBLEMS

 8.1 The cost C involved in the transportation of hot water through a pipeline is given by

 = + +





+ +C
D D x

D

x D
20 4

In
2.5 55

  where the four terms represent pumping, heating, insulation, and pipe costs. Here, D is the 
diameter of the pipe and x is the thickness of insulation, as shown in Figure P8.1. Find the 
values of D and x that result in minimum cost.

 8.2 A manufacturer of steel cans wants to minimize costs. As a first approximation, the cost of 
making a can consists of the cost of the metal plus the cost of welding the longitudinal seam 
and the top and bottom, see Figure P8.2. The can may have any diameter D and length L, 
for a given volume V. The wall thickness d is 1 mm. The cost of the material is $0.50/kg and 
the cost of welding is $0.1/m of the weld. The density of the material is 104 kg/m3. Using the 
method of Lagrange multipliers, find the dimensions of the can that will minimize cost.

FIGURE P8.1

FIGURE P8.2
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 8.3 The cost C in a metal forming process is given in terms of the speed U of the material as

 =

+ 
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  where K and S are constants. Find the speed U at which the cost is optimized. Is this a mini-
mum or a maximum?

 8.4 The cost S of a rectangular box per unit width is given in terms of its two other dimensions 
x and y as

 = +S x y8 32 2

  The volume, per unit width, is given as 12, so that xy = 12. Solve this problem by the 
Lagrange multiplier method to obtain the optimum value of S. Is it a maximum or a mini-
mum? What is the physical significance of the multiplier l?

 8.5 In a hot rolling manufacturing process, the temperature T, velocity ratio V, and thickness 
ratio R are the three main design variables that determine the cost C as

 = + + +C
R

V RT
T RV65

250
5 4

  Obtain the conditions for optimal cost and determine if this is a minimum or a maximum.
 8.6 A rectangular duct of length L and height H is to be placed in a triangular region, where 

each side is equal to 1.0 m, as shown in Figure P8.6, so that the cross-sectional area of the 
duct is maximized. Formulate the optimization problem as a constrained circumstance and 
determine the optimal dimensions.

 8.7 A rectangular box has a square base, with each side of length L, and height H. The volume 
of the box is to be maximized, provided the sum of the height and the four sides of the base 
does not exceed 100 cm, i.e., H + 4L < 100. Set up the optimization problem and calculate 
the dimensions at which maximum volume is obtained.

 8.8 Consider the convective heat transfer from a spherical reactor of diameter D and tempera-
ture Ts to a fluid at temperature Ta, with a convective heat transfer coefficient h. Denoting 
(Ts – Ta) as θ, h is given by

 = + θ −h D2 0.55 0.27 1.2 

FIGURE P8.6
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  Also, a constraint arises from strength considerations and is given by

 θ =D 75

  We wish to minimize the heat transfer from the sphere. Set up the objective function in 
terms of D and θ and with one constraint. Employing Lagrange multipliers for this con-
strained optimization, obtain the optimal values of D and θ. Also, obtain the sensitivity 
coefficient and explain its physical meaning in this problem. How will you use it in the final 
selection of the values of D and θ?

 8.9 The heat lost by a thermal system is given as hL2T, where h is the heat transfer coefficient, 
T is the temperature difference from the ambient, and L is a characteristic dimension. The 
heat transfer coefficient, in SI units, is given as
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  It is also given that the temperature T must not exceed 7.5 L−3/4. Calculate the dimension 
L that minimizes the heat loss, treating the problem as an unconstrained one first and 
then as a constrained one. What information does the Lagrange multiplier yield in the 
latter case?

 8.10 For the solar energy system considered in Example 8.6, study the effect of varying the cost 
per unit surface area of the reactor, given as 35 in the problem, and also of varying the cost 
per unit volume of the storage tank, given as 208. Vary these quantities by ±20% of the 
given values in turn, keeping the other coefficient unchanged, and determine, for each case, 
the conditions for which the cost is a minimum. Discuss the physical implications of the 
results obtained.

 8.11 The cost C of fabricating a tank of dimensions x, y, and z is given by the expression

 = + +C x y z8 3 42 2 2 

  with the total volume given as 16 units, i.e., xyz = 16. Calculate the dimensions for which the 
cost is minimized. Also, obtain the Lagrange multiplier and explain its physical meaning in 
this problem.

 8.12 Two pipes deliver hot water to a storage tank. The total flow rate in dimensionless terms is 
given as 10, and the nondimensional heat inputs q1 and q2 in the two pipes are given as
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  where  m and m   1 2 are the flow rates through the two pipes. If the total heat input is to be 

minimized, set up the optimization problem for this system. Using Lagrange multipliers for 
a constrained problem, obtain the optimal values of the flow rates and the sensitivity coef-
ficient. What does it represent physically in this problem?

 8.13 The mass flow rates in two pipes are denoted by  m and m   1 2. The heat inputs in these two 

circuits are correspondingly given as q1 and q2. The total mass flow rate, m1 + m2, is given as 

14 and the following equations apply:
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  Obtain the values of  m and m   1 2 that optimize the total heat input, q1 + q2, using the method 

of Lagrange multipliers. Also, obtain the sensitivity coefficient.
 8.14 The fuel consumption F of a vehicle is given in terms of two parameters x and y, which 

characterize the combustion process and the drag as

 = +F x y10.5 6.21.5 0.7

  with a constraint from conservation laws as

 =x y 201.2 2

  Cast this problem as an unconstrained optimization problem and solve it by the Lagrange 
multiplier method. Is it a maximum or a minimum?

 8.15 In a water flow system, the total flow rate Y is given in terms of two variables x and y as

 = + +Y x y8.5 7.1 212 3

  with a constraint due to mass balance as

 + =x y 251.5

  Solve this optimization problem both as a constrained problem and as an unconstrained prob-
lem, using the Lagrange multiplier method. Determine if it is a maximum or a minimum.
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9 Search Methods

9.1 BASIC CONSIDERATIONS

Search methods, which are based on selecting the best design from several alternative designs, are 
among the most widely used methods for optimizing thermal systems. A finite number of designs 
that satisfy the given requirements and constraints is generated and the design that optimizes the 
objective function is chosen. Though particularly suited to circumstances where the design vari-
ables take on discrete values, this approach can also be used for continuous functions, such as those 
considered in Chapter 8. A large number of search methods have been developed to handle different 
kinds of problems and to provide robust, versatile, and flexible means to optimize practical systems 
and processes.

Comparing different alternatives and choosing the best one is not a new concept and is used 
extensively in our daily lives. Before purchasing a stereo system, we would generally consider dif-
ferent models, retailers, manufacturers, and so on, in order to procure the optimal system within 
our financial constraints. There is a finite number of options, with each combination of the differ-
ent attributes of the system giving rise to a possible choice. The final choice is based on personal 
preference, finances available, reputation of the manufacturer, system features, etc. In a similar way, 
optimization of practical thermal systems may be based on considering a number of feasible designs 
and choosing the best one, as guided by the objective function.

This chapter discusses the use of search methods for the optimization of thermal systems. 
Because generating a feasible design is generally a time-consuming process, it is necessary to mini-
mize the number of designs needed to reach the optimum. Therefore, efficient search methods that 
converge rapidly to the optimum have been developed and are extensively used for thermal systems. 
The efficiency of the different methods is also considered, in terms of iterative steps needed to reach 
the optimum.

Both constrained and unconstrained problems are considered, for single as well as multiple 
independent variables. As discussed in Chapter 8, a constrained problem may often be trans-
formed into an unconstrained one by using substitution and elimination. In addition, the con-
straints are often included in the modeling and simulation, making the optimization problem 
an unconstrained one. Thus, unconstrained problems, which are often much simpler to solve 
than the constrained ones, arise in a wide variety of practical systems and processes. A discus-
sion of search methods is given in this chapter, along with examples to illustrate their applica-
tion to thermal systems. For further details on these methods, textbooks on optimization, such 
as Siddall (1982), Vanderplaats (1984), Rao (2009), Arora (2004), Ravindran et al. (2006), and 
Rhinehart (2018), may be consulted.

9.1.1 importAnce oF seArch methoDs

In many practical thermal systems, the design variables are not continuous functions but assume 
finite values over their acceptable ranges. This is largely due to the limited number of materials 
and components available for design. Finite numbers of components, such as pumps, blowers, fans, 
compressors, heat exchangers, heaters, and valves, are generally available from the manufacturers at 
given specifications. Even though additional, intermediate specifications can be obtained if these are 
custom made, it is much cheaper and more convenient to consider what is readily available and base 
the system design on those that are readily available. Similarly, a finite number of different materials 
may be considered for the system parts, leading to a finite number of discrete design choices.
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In order to obtain an acceptable design, the design process, which involves modeling, simulation, 
and evaluation of the design, is followed. As discussed in the earlier chapters of this book, this is 
usually a fairly complicated and time-consuming procedure. Results from the simulation are also 
needed to determine the effect of the different design variables on the objective function. Because 
of the effort needed to simulate typical thermal systems, a systematic search strategy is necessary 
so that the number of simulation runs is kept at a minimum. Each run, or set of runs, must be used 
to move closer to the optimum. Random or unsystematic searches, where extensive simulation or 
experimental runs are carried out over the design domain, are inefficient and impractical.

Search methods can be used for a wide variety of problems, ranging from very simple prob-
lems with unconstrained single-variable optimization to extremely complicated systems with 
many constraints and variables. Because of their versatility and easy application, these methods 
are the most commonly used for optimizing thermal systems. In addition, these methods can 
be used to improve the design even if a complete optimization process is not undertaken. For 
instance, if an acceptable design has been obtained, the design variables may be varied from 
the values obtained, near the acceptable design. This allows one to search for a better solution, 
as given by improvement in the objective function. Similarly, several acceptable designs may be 
generated during the design process. Again, the best among these is selected as the optimum in 
the given domain.

It is obvious that search methods provide important and useful approaches for extracting the 
optimum design and to improve existing designs. We will focus on systematic search schemes, 
which may be used to determine the optimum design in a region whose boundaries are defined 
by the ranges of the design variables. In order to illustrate the different methods, relatively simple 
expressions are employed here for which search methods are really not necessary, and simpler 
schemes such as the calculus methods can easily be employed. However, this is only for illustration 
purposes and, in actual practice, each test run or simulation would generally involve considerable 
time and effort. Some practical systems are also considered to demonstrate the application of these 
methods to more complex systems.

9.1.2 types oF ApproAches

Several approaches can be employed in search methods, depending on whether a constrained or an 
unconstrained problem is being considered and whether the problem involves a single variable or 
multiple variables. These approaches may be classified as follows.

9.1.2.1 Elimination Methods
In these methods, the domain in which the optimum lies is gradually reduced by eliminating regions 
that are determined not to contain the optimum. We start with the design domain defined by the 
acceptable ranges of the variables. This region is known as the initial interval of uncertainty. 
Therefore, the region of uncertainty in which the optimum lies is reduced until a desired interval 
is achieved. Appropriate values of the design variables are chosen from this interval to obtain the 
optimal design. For single-variable problems, the main search methods based on elimination are

Exhaustive search
Dichotomous search
Fibonacci search
Golden section search

All these approaches have their own characteristics, advantages, and applicability, as discussed 
later in detail. These methods can also be used for multivariable problems by applying the approach 
to one variable at a time. This technique, known as a univariate search, is presented later and is 
widely used. Exhaustive search over the domain can also be used for multivariable problems. The 
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application of these methods to unconstrained optimization problems is discussed, along with their 
effectiveness in reducing the interval of uncertainty for a specified number of simulation runs.

9.1.2.2 Hill-Climbing Techniques
These methods are based on finding the shortest way to the peak of a hill, which represents the 
maximum of the objective function. A modification of the approach may be used to locate the 
bottom, or depression, which represents the minimum. The calculation proceeds so that the objec-
tive function improves with each step. Though more involved than the elimination methods, hill-
climbing techniques are generally more efficient, requiring a smaller number of iterations to achieve 
the optimal design. These methods are applied to multivariable problems, for which some of the 
important hill-climbing techniques are

Lattice search
Univariate search
Steepest ascent/descent method

Though these methods are discussed in detail for relatively simple two-variable problems, they 
can easily be extended to a larger number of independent variables. Derivatives are needed for the 
steepest ascent/descent method, thus limiting its applicability to continuous and differentiable func-
tions. The other methods mentioned in the preceding, though generally less efficient than steepest 
ascent, are applicable to a wider range of systems, including those that involve discrete and discon-
tinuous values. Several other search methods have been developed in recent years because of their 
importance in practical systems, as outlined earlier and also presented later.

9.1.2.3 Constrained Optimization
The techniques mentioned earlier are particularly useful for unconstrained optimization problems. 
However, many of these can also be used, with some modifications, for constrained problems. 
The constraints must be satisfied while searching for the optimum. This restricts the movement 
toward the optimum. The constraints may also define the acceptable design domain. Two important 
schemes for optimizing constrained problems are

Penalty function method
Searching along a constraint

The former approach combines the objective function and the constraints into a new function 
that is treated as unconstrained, but which allows the effect of the constraints to be taken into 
account through a careful choice of weighting factors. The latter approach can be combined with 
the methods mentioned earlier for unconstrained optimization, particularly with the steepest ascent 
method. The search is carried out along the constraints so that the choices are limited and the opti-
mal design satisfies these constraints. The procedure becomes quite involved in all but very simple 
cases. Therefore, effort is often directed at converting a constrained problem to an unconstrained 
one or the penalty function method is used.

9.1.3 ApplicAtion to thermAl systems

As discussed in preceding chapters, each simulation or experimental run is generally very involved 
and time-consuming for practical thermal systems. For instance, the temperature Tb of the barrel in 
the screw extrusion of plastics (see Figure 1.10b) is an important variable. If the optimum tempera-
ture is sought in order to maximize the mass flow rate or minimize the cost, simulation of the system 
must be carried out at different temperatures, over the acceptable range, to choose the best value. 
However, each simulation involves solving the governing partial differential equations for the flow 
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and heat transfer of the plastic in the extruder as well as in the die. The material melts as it moves 
in the screw channel and the viscosity of the molten plastic varies with temperature and shear rate 
in the flow, the latter characteristic known as the non-Newtonian behavior of the fluid. Similarly, 
other properties are temperature-dependent. Other complexities such as the complicated geometry 
of the extruder, viscous dissipation effects in the flow, conjugate heat transfer in the screw, etc., must 
also be included. Thus, each simulation run requires substantial effort and computer time. This is 
typical of practical thermal systems because of the various complexities that are generally involved. 
Therefore, it is important to minimize the number of iterations needed to reach the optimum.

In our discussion of the various search methods, we will assume that each simulation or experi-
mental run is complicated and time-consuming. Then the best method is the one that yields the 
optimum with the smallest number of runs. For illustration, we will use simple analytic expressions 
in many cases. These could easily be differentiated and the derivatives set equal to zero to obtain 
the maximum or minimum in unconstrained problems, as presented in Chapter 8. The Lagrange 
method of multipliers may also be used advantageously for many of these constrained or uncon-
strained problems. However, simple expressions are chosen only for demonstrating the use of search 
methods. In actual practice, such simple expressions are rarely obtained and simulation of the sys-
tem, such as the extruder mentioned previously, has to be undertaken to find the optimum.

9.2 SINGLE-VARIABLE PROBLEM

Let us first consider the simplest case of an optimization problem with a single independent  
variable x. The mathematical statement is simply

 ( ) opt→U x U  (9.1)

where U is the objective function and the optimum Uopt may be a maximum or a minimum. There 
are no constraints to be satisfied. In fact, there can be no equality constraints because only one vari-
able is involved. If an equality constraint is given, it could be used to determine x and there would be 
nothing to optimize. However, inequality constraints may be given to specify an acceptable range of 
x over which the optimum is sought. For instance, in the plastic extrusion system considered in the 
preceding discussion, the barrel temperature Tb may be allowed to range from room temperature to 
the charring temperature of the plastic, which is around 250°C for typical plastics and is the tem-
perature at which these are damaged.

The single-variable optimization problem is often of limited interest in thermal systems because 
several independent variables are generally important in practical circumstances. However, there 
are two main reasons to study the single-variable problem. First, there are systems whose per-
formance is dominated by a single variable, even though other variables affect its performance. 
Examples of such a dominant single variable are heat rejected by a power plant, energy dissipated 
in an electronic system, temperature setting in an air conditioning or heating system, pressure or 
concentration in a chemical reactor, fuel flow rate in a furnace, surface area in a heat exchanger, and 
speed of an automobile. In such cases, the optimal design may be sought by varying only the single, 
dominant variable. Second, many multivariable optimization problems are solved by alternately 
optimizing with respect to each variable.

If U(x) is a continuous, differentiable function, such as the ones shown in Figure 9.1, the maxi-
mum or the minimum can easily be found by setting the derivative dU/dx = 0. However, in search 
methods discrete runs are made at various values of x to determine the location of the optimum or 
the interval in which it lies, to the desired accuracy level. The objective function may be unimodal 
in the given domain, i.e., it has a single minimum or maximum, as sketched in Figure 9.1, or it may 
have several such local minima or maxima, as seen in Figure 9.2. Most of the methods discussed 
here assume that the objective function is unimodal. If it is not, the domain has to be approximately 
mapped to isolate the global optimum and apply search methods to this subdomain, as indicated in 
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Figure 9.2. Let us start with a uniform exhaustive search, which can be used effectively to deter-
mine the variation of the objective function over the entire domain and thus isolate local and global 
optima.

9.2.1 uniForm exhAustive seArch

As the name suggests, this method employs uniformly distributed locations over the entire design 
domain to determine the objective function. The number of runs n is first chosen and the initial 
range Lo of variable x is subdivided by placing n points uniformly over the domain. Therefore, 
n + 1 subdivisions, each of width Lo /(n + 1), are obtained. At each of these n points, the objec-
tive function U(x) is evaluated through simulation or experimentation of the system. The interval 
containing the optimum is obtained by eliminating regions where inspection indicates that it does 
not lie. Thus, if a maximum in the objective function is desired, the region between the location 
where the smaller value of U(x) is obtained in two runs and the nearest boundary is eliminated, 
as shown in Figure 9.3 in terms of the results from three runs. In Figure 9.3(a), the region beyond 
C and that before A are eliminated, thus reducing the domain in which the maximum lies to the 
region between A and C. Similarly, in Figure 9.3(b), the region between the lower domain bound-
ary and point B is eliminated.

Consider a chemical manufacturing plant in which the temperature Tr in the reactor determines 
the output M by shifting the equilibrium of the reaction. If the temperature can be varied over the 

FIGURE 9.1 Unimodal objective function distributions, showing a maximum and a minimum.

FIGURE 9.2 Variation of the objective function U(x) showing local and global optima over the acceptable 
design domain. Also shown is a subdomain containing the global maximum.
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range 300 to 600 K, the initial region of uncertainty is 300 K. The maximum output in this range 
is to be determined. If five trial points or runs are chosen, i.e., n = 5, the range is subdivided into 
six intervals, each of width 50 K, as shown in Figure 9.4. The output is computed from a simulation 
of the system at the chosen points and the results obtained are shown. From inspection, the maxi-
mum output must lie in the interval 400 < Tr < 500. Therefore, the interval of uncertainty has been 
reduced from 300 to 100 as a result of five runs. The desired optimal design is then chosen from this 
interval. In general, the final region of uncertainty Lf is

 
2
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=
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L
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because two subintervals, out of a total of n + 1, contain the optimum.
The reduction of the interval of uncertainty is generally expressed in terms of the reduction ratio 

R, defined as
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L
L
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f

Initial interval of uncertainty
Final interval of uncertainty

= =  (9.3)

FIGURE 9.3 Elimination of regions in the search for a maximum in U.

FIGURE 9.4 Uniform exhaustive search for the maximum in the output M in a chemical reactor, with the 
temperature Tr as the independent variable.
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For the uniform exhaustive search method, the reduction ratio is
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 (9.4)

Therefore, the number of experiments or trial runs n needed for obtaining a desired interval of 
uncertainty may be determined from this equation. For instance, if, in the preceding example, the 
region containing the optimum is to be reduced to 30 K, then the reduction ratio is 10 and the num-
ber n of trial runs needed to accomplish this is 19.

The exhaustive search method is not a very efficient strategy to determine the optimum 
because it covers the entire domain uniformly. However, it does reveal the general character-
istics of the objective function being optimized, particularly whether it is unimodal, whether 
there is indeed an optimum, and whether it is a maximum or a minimum. Therefore, though 
inefficient, this approach is useful for circumstances where the basic trends of the objective 
function are not known because of the complexity of the problem or because it is a new problem 
with little prior information. It is not unusual to encounter thermal systems with unfamiliar 
characteristics of the chosen objective function. Even in the case of the plastic screw extruder, 
considered earlier, the effect of the barrel temperature is not an easy one to predict because 
of the dependence of system behavior on the material, whose properties vary strongly with 
temperature and thus affect the flow and heat transfer characteristics. The exhaustive search 
helps in defining the optimization problem more sharply than the original formulation. Only a 
small number of runs may be made initially to determine the behavior of the function. Using 
the information thus obtained, one of the more efficient approaches, presented in the following, 
may then be selected for optimization.

9.2.2 Dichotomous seArch

In a dichotomous search, trial runs are carried out in pairs, separated by a relatively small amount, 
in order to determine whether the objective function is increasing or decreasing. Therefore, the total 
number of runs must be even. Again, the function is assumed to be unimodal in the design domain, 
and regions are eliminated using the values obtained in order to reduce the region of uncertainty 
that contains the maximum or the minimum. The dichotomous search method may be implemented 
in the following two ways.

9.2.2.1 Uniform Dichotomous Search
In this case, the pairs of runs are spread evenly over the entire design domain. Therefore, the 
approach is similar to the exhaustive search method, except that pairs of runs are used in each case. 
Each pair is separated by a small amount ε in the independent variable. Considering the example 
shown earlier in Figure 9.4, the total design domain stretches from 300 to 600 K. We may decide to 
use four runs, placing one pair at 400 K and the other at 500 K, with a separation ε of 10 K in each 
case. As seen in Figure 9.5, the left pair allows us to eliminate the region from the left boundary 
to point A and the right pair the region beyond point b. Here, the pairs A, a and B, b are located at 
equal distance on either side of the chosen values of 400 K and 500 K, with a difference of ±5 K 
from these. The separation ε must be larger than the error in fixing the value of the variable in order 
to obtain accurate and repeatable results.

For n runs or simulations, the initial range Lo is divided into (n/2) + 1 subintervals, neglecting the 
region between a single pair. Because the final interval of uncertainty Lf has the width of a single 
subdivision, the reduction ratio R is obtained, neglecting the separation ε, as

 
2

1= +R
n

 (9.5)
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Therefore, the initial interval of uncertainty is reduced to one-third, or 400 < Tr < 500 K, 
after four runs. With exhaustive search, 40% of the domain is left after four runs, as seen from 
Equation (9.4). Therefore, the uniform dichotomous search has slightly faster convergence than the 
uniform exhaustive search. However, the sequential dichotomous search, discussed next, is a con-
siderable improvement over both of these.

9.2.2.2 Sequential Dichotomous Search
As before, this method uses pairs of experiments or simulations to ascertain whether the function is 
increasing or decreasing and thus reduce the interval containing the optimum. However, it also uses 
the information gained from one pair of runs to choose the next pair. The first pair is located near the 
middle of the given range and about half the domain is eliminated. The next pair is then located near the 
middle of the remaining domain and the process repeated. This process is continued until the desired 
interval of uncertainty is obtained. Because pairs of runs are used, the total number of runs is even.

Considering, again, the example used earlier, let us locate the first pair of points, A and a, on 
either side of Tr = 450 K with a separation ε of 10 K. Because we are seeking a maximum in the 
output and because Ma > MA, where Ma and MA are the values of the objective function at these 
two points, the region to the left is eliminated, and the new interval of uncertainty is 450 < Tr < 
600 K if ε is neglected. The next pair, B and b, is then placed at the middle of this domain, i.e., at 
Tr = 525 K, as shown in Figure 9.6. Again, by inspection, because MB > Mb, the region to the right of 
the pair is eliminated, leaving the interval 450 < Tr < 525 K. Therefore, the interval of uncertainty 
is reduced to 25%, or one-fourth, of its initial value. With each pair, the region of uncertainty is 
halved. Therefore, neglecting the separation ε, the interval is halved n/2 times, where n is the total 
number of runs and is an even number. Therefore, the reduction ratio is obtained as R = 2n/2. This 
implies that an even number of runs may be chosen a priori to reduce the region of uncertainty to 
obtain the desired accuracy in the selection of the independent variable for optimal design.

9.2.3 FibonAcci seArch

The Fibonacci search is an efficient technique to narrow the domain in which the optimum value 
of the design variable lies. It uses a sequential approach based on the Fibonacci series, which is a 
series of numbers derived by Fibonacci, a mathematician in the thirteenth century. The series is 
given by the expression

 2 1= +− −F F Fn n n  (9.6)

FIGURE 9.5 Uniform dichotomous search for a maximum in M.
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where F0 = F1 = 1.
Therefore, the first two numbers in the series are unity and the nth number is the sum of the 

preceding two numbers. The Fibonacci series may thus be written as

n: 0 1 2 3 4 5 6 7 8 9 10 … 

Fn: 1 1 2 3 5 8 13 21 34 55 89 … 

It can be seen from this series that the numbers increase rapidly as n increases. The fact that, for  
n ≥ 2, each number is a sum of the last two numbers is used advantageously to distribute the trial 
runs or experiments.

The method starts by choosing the total number of runs n. This choice is based on the reduction 
ratio, as discussed later. The initial range of values Lo is assumed to be given. Then the Fibonacci 
search places the first two runs at a distance d1 = (Fn–2/Fn)Lo from either end of the initial interval. 
For n = 5, this implies placing the runs at d1 = F3/F5 = (3/8)Lo from the two ends of the range. The 
simulation of the system is carried out at these two values of the design variable and the correspond-
ing objective function determined. The values obtained are used to eliminate regions from further 
consideration, as discussed earlier and shown in Figure 9.3. The remaining interval of width L is 
now considered and runs are carried out at a distance of d2 from each end of this interval, where  
d2 = (Fn–3/Fn–1)L. The location of one of the runs coincides with that for one of the previous runs, due 
to the nature of the series, and only one additional simulation is needed for the second set of points. 
Again, regions are eliminated from further consideration and points for the next iteration are placed 
at distance d3 from the two ends of the new interval, where d3 = (Fn–4/Fn–2)L, L being the width of 
this interval. Thus, the region of uncertainty is reduced. This process is continued until the nth run 
is reached. This run is placed to the right of an earlier simulation near the middle of the interval 
left, and thus the region is further halved to yield the final interval of uncertainty Lf . The following 
simple example illustrates this procedure.

Example 9.1

For a heating system, the objective function U(x) is the heat delivered per unit energy consumed. 
The independent variable x represents the temperature setting and has an initial range of 0 to 8. A 
maximum in U is desired to operate the system most efficiently. The objective function is given as 
U(x) = 7 + 17x – 2x2. Obtain the optimum using the Fibonacci search method.

FIGURE 9.6 Sequential dichotomous search for a maximum in M.
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SOLUTION

Let us choose the total number of runs as five. Then the first two runs are made at d1 = (F3/F5)Lo =  
(3/8)8 = 3 from either end, i.e., at x = 3 and x = 5. The value at x = 5 is found to be larger than 
that at x = 3. Therefore, for a maximum in U(x), the region 0 < x < 3 is eliminated, leaving the 
domain from 3 to 8. The next two points are located at d2 = (F2/F4)L = (2/5)5 = 2 from either end 
of the new interval of width L = 5. Thus, the two points are located at x = 6 and at x = 5. This 
latter location has already been simulated. The results from the run at x = 6 indicate that the 
objective function is smaller than that at x = 5. Therefore, the region beyond x = 6 is eliminated, 
leaving the domain from x = 3 to x = 6 for future consideration.

The next two points are located at d3 = (F1/F3)L = (1/3)3 = 1 from the two ends of the domain, 
i.e., at x = 5 (which is already available) and at x = 4. Thus, simulation is carried out at x = 4, and the 
objective function is found to be greater than that at x = 5. The region beyond x = 5 is eliminated, 
leaving the domain 3 < x < 5. The fifth and final run is now made at a point just to the right of x = 4 to 
determine if the function is increasing or decreasing. The value of the function is found to be higher 
at this point, indicating an increasing function with increasing x. Therefore, the region 3 < x < 4 is 
eliminated, giving 4 < x < 5 as the final region of uncertainty. If x = 4.5 is chosen as the setting for 
optimal U, the maximum heat delivered per unit energy consumed is obtained as 43.125. The value 
of U at x = 0 is 7 and that at x = 8 it is 15. Therefore, substantial savings are obtained by optimizing. 
Figure 9.7 shows the various steps in the determination of the final interval of uncertainty.

The initial range is reduced to one-eighth of its value in just five runs. Because Fn = 8 for n = 5, 
this also indicates that the reduction ratio is Fn, a statement that can be proved more rigorously by 
taking additional examples as well as by mathematics. Thus, this search method converges very 
rapidly to the optimum and only a few runs are often adequate for obtaining the desired accuracy 
level. For this simple case, calculus may be used as a check on the results. Calculus yields the 
optimum at x = 4.25, which is in the domain of uncertainty obtained by the search method and 
close to the optimum selected.

9.2.4 golDen section AnD other seArch methoDs

The golden section search method is derived from the Fibonacci search and, though not as efficient, 
is often more convenient to use. It is based on the fact that the ratio of two successive Fibonacci 
numbers is approximately 0.618 for n > 8, i.e., Fn–1/Fn = 0.618. This ratio has been known for a long 
time and was of interest to the ancient Greeks as an aesthetic and desirable ratio of lengths in their 
constructions. The ratio of the height to the base of the Great Pyramid is also 0.618. The reciprocal 

FIGURE 9.7 Use of Fibonacci search method to reduce the interval of uncertainty in Example 9.1.
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of this ratio is 1.618, which has also been used as a number with magical properties. The term for 
the method itself comes from Euclid, who called the ratio the golden mean and pointed out that 
a length divided in this ratio results in the same ratio between the smaller and larger segments 
(Vanderplaats, 1984; Dieter, 2000).

The golden section search uses the ratio 0.618 to locate the trial runs or experiments in the search 
for the optimum. The first two runs are located at 0.618 Lo from the two ends of the initial range. As 
before, an interval is eliminated by inspection of the values of the objective function obtained at these 
points. The new interval of length L is then considered and the next two runs are located at 0.618 L 
from the two ends of this interval. The result for one of the points is known from the previous calcu-
lations, and only one more simulation is needed. Again, an interval is eliminated and the domain in 
which the optimum lies is reduced. This procedure is continued until the optimum is located within an 
interval of desired uncertainty. The final run may be made at a location close to the middle of the inter-
val, in order to reduce the uncertainty by approximately half, as done earlier for the Fibonacci search.

Therefore, the total number of runs n need not be decided a priori in this method. This allows us 
to employ additional runs near the optimum if the curve is very steep there, or to use fewer points if 
the curve is flat. In the Fibonacci search, we are committed to the total number of runs and cannot 
change it based on the characteristics of the optimum. In the golden section search, the trial runs 
are always located at 0.618 L from the two ends of the interval of width L at a given search step. 
This makes it somewhat less efficient than the Fibonacci search, particularly for small values of n.

Similarly, other search strategies have been developed to extract the optimum design. Several of 
these are combinations of the various methods presented here. For instance, an exhaustive search 
may be used to determine if the function is unimodal and to determine the subinterval in which 
the global optimum lies. This may be followed by more efficient methods such as the Fibonacci 
search. An unsystematic search, though generally very inefficient, is nevertheless used in some cases 
because of the inherent simplicity and because the physical nature of the problem may guide the user 
to the narrow domain in which the optimum lies. In general, information available on the system is 
very valuable in the search for the optimum because it can be used to narrow the range, determine the 
acceptable level of uncertainty in the variables, and choose the most appropriate strategy.

9.2.5 compArison oF DiFFerent eliminAtion methoDs

The reduction ratio R, defined in Equation (9.3), gives the ratio of the initial interval of uncertainty 
to the interval obtained after n runs. Therefore, it is a measure of the efficiency of the method. It 
can also be used to select the number of runs needed to obtain a desired uncertainty in locating 
the optimum. The reduction ratios for the various methods presented here for the optimization of a 
single-variable problem are given in Table 9.1. Here, the effect of the separation ε between pairs of 
runs on the reduction ratio is neglected.

TABLE 9.1
Reduction Ratios for Single-Variable Search Methods
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If ε is retained, the final interval can be shown to be
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when the second point of the pair is always located to the right of the first point at a separation of ε 
(Stoecker, 1989). Thus, the reduction ratios given in Table 9.1 are obtained when ε is neglected. The 
corresponding results are also shown graphically in Figure 9.8.

It is clearly seen that the Fibonacci search is an extremely efficient method and is, therefore, widely 
used. It is particularly valuable in multivariable optimization problems, which are based on alternating 
single-variable searches, and in the optimization of large and complicated systems that require sub-
stantial computing time and effort for each simulation run. For small and relatively simple systems, the 
exhaustive search provides a convenient, though not very efficient, approach to optimization.

Example 9.2

Formulate the optimization problem given in Example 8.6 and Example 5.3 in terms of the maxi-
mum temperature To as the independent variable and solve it by the uniform exhaustive search 
and Fibonacci search methods to reduce the interval of uncertainty to 0.1 of its initial value.

SOLUTION

The initial interval of uncertainty in To is from 40°C to 100°C, or 60°C. This is to be reduced to 
an interval of 6°C by the use of two elimination methods. Using the reduction ratios given in 
Table 9.1, we have

 + = =n
n

1
2

10 or 19 for the uniform exhaustive search method

and

 = =F nn 10    or     6 for the Fibonacci method

The objective function is given by the equation

 U A V f To35 208 ( )= + =

FIGURE 9.8 Reduction ratio R as a function of the number of runs n for different elimination  
search methods.
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and the dependence of A and V on To is given by the equations
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Therefore, To may be varied over the given domain of 40°C to 100°C and the objective func-
tion determined using these equations. This problem thus illustrates the use of results from the 
model as one proceeds with the optimization. For complicated thermal systems, the results will 
generally require numerical simulation to obtain the desired results.

From the preceding calculation of the required value of n, we may choose n as 20 for a uniform 
exhaustive search, for convenience, and to ensure that at least a tenfold reduction in the interval 
of uncertainty is achieved. The value for n is taken as 6 for the Fibonacci search because this 
gives a reduction ratio of 13. For the uniform exhaustive search, the width of each subinterval is 
60/21, and 20 computations are carried out at uniformly distributed points. The point where the 
minimum value of U occurs, as well as the two points on either side of this point, yields the fol-
lowing results:

To A V U
51.43 25.68 1.59 1229.75
54.29 26.34 1.46 1225.37
57.14 27.04 1.35 1226.46

Therefore, the minimum lies in the interval 51.43 to 57.14. If the value at the midpoint, To = 54.29°C, is 
chosen, the cost is 1225.37. These values are close to those obtained in Example 8.6 by using the 
Lagrange multiplier method.

The Fibonacci search method is more involved because decisions on eliminating regions 
have to be made. Six runs are made, with 5/13, 3/8, 2/5, and 1/3 of the interval of uncertainty 
taken at successive steps to locate two points at equal distances from the boundaries. The  
first step requires two calculations and the next three require only one calculation each 
because points are repeated. The final calculation is taken at a point to the right of a point 
near the middle of the interval of uncertainty after five runs. The results obtained are sum-
marized as

To A V U Action Taken
63.08 28.62 1.16 1243.01
76.92 33.11 0.88 1341.72 Eliminate region beyond 76.92
53.85 26.24 1.48 1225.67 Eliminate region beyond 63.08
49.23 25.19 1.71 1237.56 Eliminate region 40 to 49.23
58.46 27.38 1.30 1228.58 Eliminate region beyond 58.46
53.90 26.25 1.47 1225.62 Eliminate region 49.23 to 53.85

The last point is just to the right of 53.85, which is close to the middle of the region 49.23 
to 58.46 left after five runs. Therefore, the final region of uncertainty is from 53.85 to 58.46, 
which has a width of 4.61°C. The optimum design may be taken as a point in this region. The 
results agree with the earlier results from the Lagrange multiplier and the uniform exhaustive 
search methods. Therefore, only six runs are needed to reduce the interval of uncertainty to less 
than one-tenth of its initial value. The Fibonacci method is very efficient and is extensively used, 
though the programming is more involved than for the exhaustive search method. It must also 
be noted that, in some cases, the optimum may lie at the boundaries. Then the final region of 
uncertainty would lie adjacent to the boundary and the value at the boundary may be calculated 
to narrow the region further.



416 Design and Optimization of Thermal Systems

9.3 UNCONSTRAINED SEARCH WITH MULTIPLE VARIABLES

Let us now consider the search for an optimal design when the system is governed by two or more 
independent variables. For ease of visualization and discussion, we will largely consider only two 
variables, later extending the techniques to a larger number of variables that arise in more complicated 
systems. However, the complexity of the problem rises sharply as the number of variables increases 
and, therefore, attention is generally directed at the most important variables, usually restricting these 
to two or three. In addition, many practical thermal systems can be well-characterized in terms of two 
or three predominant variables. Examples of this include the length and diameter of a heat exchanger, 
fluid flow rate and evaporator temperature in a refrigeration system, height of a cooling tower and the 
energy rejected by it, volume of a combustion chamber and the fuel flow rate, and so on.

In order to graphically depict the iterative approach to the optimum design, a convenient method is 
the use of contours or lines of constant values of the objective function. Figure 9.9 shows a typical con-
tour plot where each contour represents a particular value of the objective function and the maximum 
or minimum is indicated by the innermost contour. This plot is similar to the ones used in topology to 
represent different heights or elevations in mountainous regions. The peak represents a maximum and 
the depression or bottom represents a minimum. Increasing height on the mountain is thus similar to 
advancing toward the center of the contour plot. Such a graphical representation works well for a two-
variable problem because the plane of the figure is adequate to show the movement toward the peak or 
the bottom. However, a three-dimensional representation is needed for three variables, with each con-
tour replaced by a surface. This becomes quite involved for visualization and the complexity increases 
with increasing number of variables. However, the extension of the mathematical treatment to a larger 
number of variables is straightforward and can be employed for more complicated problems.

The methods presented here for multivariable, unconstrained optimization are based on mov-
ing the calculation in the direction of increasing objective function for a maximum and in the 
direction of decreasing objective function for a minimum. Therefore, the procedure for determin-
ing a maximum is similar to climbing toward the peak of a mountain or hill, so these methods 
are known as hill-climbing techniques. The three methods discussed in detail here are lattice 
search, univariate search, and steepest ascent. Elimination methods, which reduce the interval of 
uncertainty by eliminating regions, may also be combined with these techniques, particularly with 
an univariate search, to obtain the optimum.

9.3.1 lAttice seArch

This search method is based on calculating the objective function U in the neighborhood of a 
chosen starting point and then moving this point to the location that has the largest value of U, if 

FIGURE 9.9 Lattice search method in a two-variable space.
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the search is for a maximum. Thus, the calculation moves in the direction of increasing value of the 
objective function for locating a maximum. The maximum is reached when the value at the central 
point is higher than the values at its neighboring points. Though the search for a maximum in U is 
considered here, a similar procedure may be followed for a minimum, moving the calculation in the 
direction of decreasing value of the objective function.

A grid lattice is superimposed on the design domain, as shown in Figure 9.9 in terms of the 
contour plots on a two-dimensional space. The starting point may be chosen based on available 
information on the system characteristics or on the location of the maximum from previous efforts; 
otherwise, a point away from the boundaries of the region may be selected, such as point 1 in 
the figure. The objective function is evaluated at all the neighboring points, 2–9. If the maximum 
value of the objective function turns out to be at point 9, then this point becomes the central point 
for the next set of calculations. Because the values at points 1, 2, 8, and 9 are known, only the values 
at the remaining five points, 10 through 14, are needed. Again, the trial point is moved to the loca-
tion where the objective function is the largest. This process is continued until the maximum value 
appears at the central point itself.

Clearly, this is not a very efficient approach and involves exhaustive search in the neighborhood 
of a central point, which is gradually moved toward the optimum. However, it is more efficient than 
using an exhaustive search over the entire region because only a portion of the region is involved 
in a lattice search and the previously calculated values are used at each step. The efficiency of a 
lattice search, compared to an exhaustive search, is expected to be even higher for a larger number 
of variables and finer grids. It is also obvious that the convergence to the optimum depends on the 
grid. It is best to start with a coarse grid, employing only a few grid points across the region. Once 
the maximum is found with this grid, the grid may be refined and the previous maximum taken as 
the starting point. Further grid refinement may be used as the calculations approach the optimum. 
The method is fairly robust and versatile. It can even be used for discontinuous functions and for 
discrete values, as long as the objective function can be evaluated. The approach can be extended 
easily to a problem with more than two variables. However, the number of points in the neighbor-
hood of the central point, including this point, rises sharply as the number of variables increases, 
being 32 for two, 33 for three, 34 for four variables, and so on.

9.3.2 univAriAte seArch

A univariate search involves optimizing the objective function with respect to one variable at a time. 
Therefore, the multivariable problem is reduced to a series of single-variable optimization prob-
lems, with the process converging to the optimum as the variables are alternated. This procedure is 
shown graphically in Figure 9.10. A starting point is chosen based on available information on the 
system or at a point away from the boundaries of the region. First, one of the variables, say x, is held 
constant and the function is optimized with respect to the other variable y. Point A represents the 
optimum thus obtained. Then y is held constant at the value at point A and the function is optimized 
with respect to x to obtain the optimum given by point B. Again, x is held constant at the value at 
point B and y is varied to obtain the optimum, given by point C. This process is continued, alternat-
ing the variable, which is changed while the others are held constant, until the optimum is attained. 
This is indicated by the change in the objective function, from one step to the next, becoming less 
than a chosen convergence criterion or tolerance.

Therefore, the two-variable problem is reduced to two single-variable problems applied alter-
nately. The basic procedure can easily be extended to three or more independent variables. In solv-
ing the single-variable problem, the search methods presented earlier, such as Fibonacci and golden 
section searches, may be used. This provides a very useful method for optimizing thermal sys-
tems, particularly those that have discrete values for the design variables and those that have to 
be simulated for each trial run. Efficient search methods, rather than exhaustive searches, are of 
interest in such cases. Calculus methods may also be used if continuous, differentiable functions 
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are involved, as illustrated in the following example. There are certain circumstances where an 
univariate search may fail, such as those where ridges and very sharp changes occur in the objective 
function (Stoecker, 1989). However, by varying the starting point, interval of search, and method for 
single-variable search, such difficulties can often be overcome.

Example 9.3

The objective function U, which represents the cost of a fan and duct system, is given in terms of 
the design variables x and y, where x represents the fan capacity and y the duct length, as

 U
x

xy
y
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Both x and y are real and positive. Using the univariate search, obtain the optimum value of U and 
the corresponding values of x and y. Is this optimum a minimum or a maximum?

SOLUTION

Calculus methods may be used for the two single-variable optimization problems that are obtained 
in the univariate search. If y is kept constant, the value of x at the optimum is given by
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Similarly, if x is held constant, the value of y at the optimum is given by
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Because the only information available on x and y is that these are real and greater than 0, let us 
choose x = y = 0.5 as the starting point. If a solution is not obtained, the starting point may be varied. 

FIGURE 9.10 Various steps in the univariate search method.
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First x is held constant and y is varied to obtain an optimum value of U. Then y is held constant and 
x is varied to obtain an optimum value of U. In both cases, the preceding equations are used.

The results obtained are tabulated as

x y U
0.5 1.633 9.840
1.944 1.633 6.788
1.944 0.828 5.598
2.438 0.828 5.456
2.438 0.740 5.428
2.532 0.740 5.423
2.532 0.726 5.423
2.548 0.726 5.422
2.548 0.723 5.422
2.550 0.723 5.422
2.550 0.723 5.422

For each step, one of the variables is held constant, as indicated, and the optimum is obtained 
in terms of the other variable. The procedure is repeated until the overall optimum, which is a 
minimum in U, is attained. The iteration is terminated when x and y stop changing. A convergence 
criterion can also be used to stop the iterative process. The procedure is quite straightforward and 
converges quite rapidly for this simple problem. Even for substantially different starting points, the 
method converges to the optimum. The optimum can also be obtained by calculus methods, as 
discussed in Chapter 8. The results are identical to those obtained here by the univariate search, 
providing validation for this scheme. If U is not calculated at each step, it can be confirmed that a 
minimum in cost is achieved by varying x or y from the values obtained at the optimum. The value 
of U increases if either of these is varied, indicating that indeed a minimum is obtained.

9.3.3 steepest Ascent/Descent methoD

The steepest ascent/descent method is an efficient search method for multivariable optimization and is 
widely used for a variety of applications, including thermal systems. It is a hill-climbing technique in 
that it attempts to move toward the peak, for maximizing the objective function, or toward the bottom, 
for minimizing the objective function, over the shortest possible path. The method is termed steepest 
ascent in the former case and steepest descent in the latter. At each step, starting with the initial trial 
point, the direction in which the objective function changes at the greatest rate is chosen for moving 
the location of the point, which represents the design on the multivariable space. Figure 9.11 shows 

FIGURE 9.11 Steepest ascent method, shown in terms of (a) the climb toward the peak of a hill and (b) in 
terms of constant U contours.
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this movement schematically on a hill as well as on a two-variable contour plot. Because the search 
always moves in the direction of the greatest rate of change of U, the number of trial runs needed to 
reach the optimum is expected to be relatively small and the method to be very efficient. However, 
it does require the evaluation of gradients in order to determine the appropriate direction of motion, 
limiting the application of the method to problems where the gradients can be obtained accurately and 
easily. Numerical differentiation may be used if an algebraic expression is not available for the objec-
tive function, which is often the case for thermal systems.

It was seen in Section 8.2 that the gradient vector ∇U is normal to the constant U contour line 
in a two-variable space, to the constant U surface in a three-variable space, and so on. Because 
the normal direction represents the shortest distance between two contour lines, the direction of 
the gradient vector ∇U is the direction in which U changes at the greatest rate. For a multivariable 
problem, the gradient vector may be written as
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where i1, i2, …, in are the unit vectors in the x1, x2, …, xn directions, respectively. At each trial 
point, the gradient vector is determined and the search is moved along this vector, the direction 
being chosen so that U increases if a maximum is sought, or U decreases if a minimum is of 
interest.

The direction represented by the gradient vector is given by the relationship between the changes 
in the independent variables. Denoting these by Δx1, Δx2, …, Δxn, we have from vector analysis
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Therefore, if Δx1 is chosen, the changes in the other variables must be calculated from these 
equations. In addition, Δx1 is taken as positive or negative, depending on whether U increases or 
decreases with x1 and whether a maximum or a minimum is sought. For a maximum in U, Δx1 is 
chosen so that U increases, i.e., Δx1 is positive if ∂U/∂x1 is positive and negative if ∂U/∂x1 is negative. 
The partial derivatives, such as ∂U/∂x1, are generally obtained numerically by using expressions 
such as
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where h is a small change in x1. Similarly, the other partial derivatives may be evaluated. If an alge-
braic expression is available for the objective function, for instance, from curve fitting of numerical 
simulation results, calculus can be used advantageously to evaluate these derivatives.

9.3.3.1 Two Approaches
There are two ways of moving the trial point. In the first case, we could choose the magnitude of the 
step size in terms of one of the variables, say Δx1, calculate the changes in the remaining variables, 
and determine the new values of these variables. At the new point, the gradient vector is again 
determined and the point is again moved in the direction of ∇U. This procedure is continued until 
the optimum is reached, as indicated by small changes, within specified convergence criteria, in the 
objective function and the variables from one trial run to the next. Again, for a maximum in U, Δx1 
is taken as positive if ∂U/∂x1 is positive and negative if the latter is negative, these conditions being 
reversed for a minimum in U.

The second approach is to move the trial point along the direction of the gradient vector until an 
optimum is reached. This becomes the new trial point. The gradient vector is evaluated, the new 
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direction of movement determined, and the trial point moved in this direction until, again, an opti-
mum is reached. This procedure is continued until the overall optimum is attained. This approach 
is the one shown in Figure 9.11(b). Because the calculation of the gradients may be time-consuming, 
the second approach is often preferred because fewer calculations of the gradient are needed. In 
addition, the first approach could run into a problem if the objective function U varies very slowly 
or rapidly with the variable, say x1, whose step size is chosen.

These two approaches for applying the steepest ascent/descent method may be summarized for 
a two-variable (x and y) problem as follows.

First approach. Choose a starting point. Select Δx. Calculate the derivatives. Decide the 
direction of movement, i.e., whether Δx is positive or negative. Calculate Δy. Obtain the 
new values of x, y, and U. Calculate the derivatives again at this point. Repeat previous 
steps to attain new point. This procedure is continued until the change in the variables 
between two consecutive iterations is within a desired convergence criterion.

Second approach. Choose a starting point. Calculate the derivatives. Decide the direction 
of movement, i.e., whether x must increase or decrease. Vary x, using a chosen step size 
Δx and calculating the corresponding Δy. Continue to vary x until the optimum in U is 
reached. Obtain the new values of x, y, and U. Calculate the derivatives again at this 
point and move in the direction given by the derivatives. This procedure is continued 
until the change in the variables from one trial point to the next is within a desired 
tolerance.

The two approaches are, therefore, similar, except that the second approach involves much fewer 
calculations of the derivatives. Similarly, other schemes may be developed for applying the steep-
est ascent/descent method. The application of these two approaches is illustrated in the following 
example.

Example 9.4

Consider the simple problem of Example 9.3 and apply the two approaches just discussed for the 
steepest ascent/descent method to obtain the minimum cost U.

SOLUTION

The objective function U for this unconstrained optimization problem is given by
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The partial derivatives in terms of the independent variables x and y are
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To move the trial point in the direction of ∇U, the following relationship applies:
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Therefore, Δx may be chosen and Δy calculated from this equation. If ∂U/∂x is positive, Δx is 
taken as positive for search for a maximum in U. In the present case, we want a minimum in U. 
Therefore, Δx is taken as positive if ∂U/∂x is negative.

For the first approach, the derivatives are calculated at each point obtained by changing x by 
Δx and y by Δy, where Δy is obtained from the preceding relationship between Δx and Δy. The 
starting point is taken as x = y = 0.5. The results obtained for different values of Δx are

Δx No. of Iterations x y U

0.5 3 2.0 0.699 5.625
0.1 20 2.5 0.731 5.423
0.05 40 2.5 0.731 5.423
0.01 205 2.55 0.723 5.422
0.005 410 2.55 0.722 5.422

Clearly, only a few iterations are needed to reach close to the optimum, but a much larger 
number is needed to obtain it with a high level of accuracy, as achieved for very small Δx. Because 
the final design is generally not the exact optimum, but close to it, so that standard available items 
may be used for the system, there is no reason to insist on very high accuracy for the optimum.

In the second approach, the derivatives are calculated at a trial point which is then moved in 
the direction of ∇U until an optimum is obtained. This optimum point is obtained by monitoring U 
and stopping at the minimum value. This becomes the new trial point and the process is repeated. 
The results obtained in terms of trial points, with the same starting point as the first approach, are

x y U
0.5 0.5 17.542
0.995 0.951 7.245
1.490 1.340 6.139
1.985 0.721 5.615
2.09 0.844 5.528
2.245 0.718 5.475
2.295 0.782 5.453
2.385 0.717 5.438
2.41 0.752 5.431
2.47 0.716 5.427
2.48 0.733 5.424
2.54 0.733 5.423
2.54 0.733 5.423

Again, convergence near the optimum is quite slow. It is also interesting to note that the values of 
y fluctuate and are not monotonic as in the first approach. This is because the derivatives are not 
calculated after each increase in x but are kept constant until an optimum is reached. These results 
are obtained with a step size Δx of 0.005. The overall convergence is slower than that in the first 
approach, because several calculations are needed to obtain the trial points shown in the table. 
However, if the calculation of derivatives is involved and time-consuming, this approach could be 
more efficient than the first one.

The preceding examples demonstrate the use of univariate search and steepest ascent/descent in 
obtaining the optimum. Simple examples are taken to show the various steps involved and the con-
vergence to the optimum. However, these methods can easily be implemented on the computer in 
order to deal with practical thermal systems, which are much more complex and which may involve 
simulations at the trial points to obtain the desired results. Then the optimization scheme is coupled 
with the numerical model and simulation results are used in reaching the optimum.
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9.4 MULTIVARIABLE CONSTRAINED OPTIMIZATION

We now come to the problem of constrained optimization, which is much more involved than the 
various unconstrained optimization cases considered thus far in this chapter. The number of inde-
pendent variables must be larger than the number of equality constraints; otherwise, these con-
straints may simply be used to determine the variables and no optimization is possible. Inequality 
constraints often indicate the feasible domain of the variables. There is no restriction on the number 
of inequality constraints that may be used to define the region in which the optimum must lie.

Constrained problems are quite common in the design of thermal systems. The inequality con-
straints are often due to various limitations imposed on the system by practical considerations, such 
as temperature and pressure limitations on the materials to maintain the structural integrity of a 
containment. The equality constraints are largely due to the basic conservation principles for mass, 
momentum, and energy. For instance, the speed of material emerging from the rollers in hot rolling 
may be obtained in terms of the speed before the rollers and the dimensions on the two sides by using 
mass conservation. However, in most practical cases, the numerical simulation of the system includes 
the conservation equations and other restrictions on the variables. Then the results obtained have 
already taken care of the constraints and the problem may be treated as unconstrained. Similarly, 
in several cases, the constraints are used to eliminate some of the variables from the problem and 
thus make it unconstrained, as seen in Chapter 8. All such attempts are made to convert constrained 
problems into unconstrained ones because of the complexity introduced by the constraints.

Despite various efforts to remove the constraints from the optimization problem, many problems 
still cannot be simplified and need to be solved as constrained problems. In addition, the elimina-
tion of an equality constraint results in the elimination of an independent variable. The constraint 
itself may be an important consideration and its retention desirable for the system being considered. 
As discussed in Chapter 8, the sensitivity coefficient, which indicates the effect of relaxing the 
constraint on the optimum, is an important feature that is useful in the final design of the system. 
Therefore, the constrained problem is of interest in a variety of applications. Several techniques 
are available for solving constrained optimization problems (Haug and Arora, 1979; Rao, 2009; 
Arora, 2004). We shall consider two approaches that are of particular interest to thermal systems.

9.4.1 penAlty Function methoD

The basic approach of this method is to convert the constrained problem into an unconstrained one 
by constructing a composite function using the objective function and the constraints. The method 
uses certain parameters, known as penalty parameters, that penalize the optimization of the com-
posite function for violation of the constraints. The penalty is larger if the violation is greater. The 
composite function is then optimized using any of the techniques applicable for unconstrained 
problems. The penalty parameters are varied and the resulting composite functions are optimized. 
The process is continued until there is no significant change in the optimum when the penalty 
parameters are varied.

Let us consider the optimization problem given by the equations

 … →( , , , , ) Minimum/Maximum1 2 3U x x x xn  (9.12)

 … = = …( , , , , ) 0,  where 1, 2, 3, ,1 2 3G x x x x i mi n  (9.13)

where only equality constraints are considered and, therefore, n > m. The composite function, also 
known as the penalty function, may be formulated in many different ways. A commonly used for-
mulation is given here. If a maximum in U is being sought, a new objective function V is defined as

 ( ) ( ) ( ) ( )1 1
2

2 2
2

3 3
2 2= − + + +…+ V U r G r G r G r Gm m  (9.14)
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and if a minimum in U is desired, the new objective function is defined as

 ( ) ( ) ( ) ( )1 1
2

2 2
2

3 3
2 2= + + + +…+ V U r G r G r G r Gm m  (9.15)

Therefore, the squares of the constraints are included in the new objective function V. The use 
of the squares ensures that the magnitude of the violation of a constraint is considered, and not its 
positive or negative value that may cancel out with the violation in other constraints. Here the r’s 
are scalar quantities that vary the importance given to the various constraints and are known as 
penalty parameters. They may all be taken as equal or different. Higher values may be taken for the 
constraints that are critical and smaller values for those that are not as important.

If the penalty parameters are all taken as zero, the constraints have no effect on the solution and, 
therefore, the constraints are not satisfied. On the other hand, if these parameters are taken as large, 
the constraints are satisfied but the convergence to the optimum is slow. Therefore, by varying the 
penalty parameters we can vary the rate of convergence and the effect of the different constraints on 
the solution. The general approach is to start with small values of the penalty parameters and gradu-
ally increase these as the G’s, which represent the constraints, become small. This implies going 
gradually and systematically from an unconstrained problem to a constrained one. The values of the 
G’s at a point in the iteration may also be used to choose the penalty parameters, using larger values 
for larger G’s so that these are driven more rapidly toward zero. Figure 9.12 shows schematically the 
effect of the penalty parameter r on the penalty function and on the minimum obtained for a single 
constraint. Clearly, the unconstrained minimum is obtained at r = 0 and at small values of r. The 
constrained minimum is attained at larger values of r.

The preceding formulation is one of the many that can be developed to use unconstrained opti-
mization techniques for constrained problems. Several other formulations are given in the literature 
(Vanderplaats, 1984; Arora, 2004). Such techniques are often known as sequential unconstrained 
minimization techniques (SUMTs). The method can be used for both equality and inequality con-
straints. For instance, consider the following optimization problem with one variable x:
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FIGURE 9.12 Penalty function method for the combined objective function V and different values of the 
penalty parameter r.
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where U is to be minimized. The inequality constraints give the feasible domain as 2 ≤ x ≤ 4. 
Without the constraints, the optimum is at x = –3, where U is zero. With the constraints, the mini-
mum is at x = 2, where U = 25/12 = 2.08. The penalty function may be written as
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where the maximum values in the ranges are used to satisfy the given inequalities. Figure 9.13 
shows the penalty function for different values of the penalty parameter r. The feasible domain and 
the minimum for this constrained problem are also shown. Similarly, problems with a larger number 
of variables and constraints may be considered.

Generally, the problem is well-behaved and easy to optimize at small values of r. However, 
the solution may not be in the feasible region, and the optimum derived is not the desired one. As 
r increases, the nonlinearity in the function increases, making convergence difficult. The solu-
tions at smaller r-values may then be used to provide the initial estimate to the optimum. As r 
increases, the desired optimum for the constrained problem is approached. Thus, at large values 
of r, r → ∞, the optimum in the feasible region is obtained. The following example illustrates 
the use of the penalty function method for a single-equality constraint with two independent 
variables.

Example 9.5

In a two-component system, the cost is the objective function given by the expression

 = +( , ) 2 52U x y x y

where x and y represent the specifications of the two components. These variables are also linked 
by mass conservation to yield the constraint

 ( , ) 12 0= − =G x y xy

Solve this problem by the penalty function method to obtain minimum cost.

FIGURE 9.13 The penalty function method for an acceptable domain defined by inequality constraints.



426 Design and Optimization of Thermal Systems

SOLUTION

This is a simple problem, which can easily be solved by calculus methods. However, it can be 
used to illustrate some important features of the penalty function method. The new objective 
function V(x, y), consisting of the objective function and the constraint, is defined as

 , 2 5 122 2( ) ( )= + + −V x y x y r xy

where r is a penalty parameter and the form used is the one given in Equation (9.15) for a minimum 
in the objective function.

We can now choose different values of r and minimize the unconstrained function V(x, y). 
Any method for unconstrained optimization may be used for obtaining the optimum. Let us 
use the univariate search method, with an exhaustive search for each variable because of the 
simplicity of the method and of the given functions. If r is taken as zero, the constraints are not 
satisfied, and if r is taken as large, the constraints are satisfied, but the convergence is slow. 
We start with small values of r and then increase it until the results do not vary significantly 
with a further increase. Some typical results, obtained for different values of r, are given in the 
following table:

r x y xy U
0.3 2.15 3.86 8.30 28.55
0.5 2.33 4.20 9.79 31.86
1.0 2.39 4.58 10.96 34.32

10.0 2.46 4.84 11.90 36.29
100.0 2.48 4.83 11.99 36.48

Different subinterval sizes were used in the exhaustive search to obtain the desired accuracy 
in the results. It is seen that at small values of r, the constraint xy = 12 is not satisfied, and the 
optimum value is not the correct one. As r increases, the constraint is approximately satisfied, and 
the optimum value becomes independent of r. However, if r is increased to still higher values, 
the constraint is closely satisfied, but convergence is very slow and requires a large number of 
runs to obtain accurate results. Therefore, the optimum may be taken as x* = 2.48, y* = 4.83, and 
U* = 36.48.

Calculus methods may also be used for this simple problem, yielding x* = 2.47, y* = 4.87, and 
U* = 36.49. We may also derive x and y in terms of the penalty parameter r, by differentiating V 
with respect to x and y, and equating the resulting expressions to zero, as

 =
+

= −
x

ry
ry

y
rx
rx

24
4 2

and
24 5

22 2

These equations may also be used instead of exhaustive search. It can easily be seen that as r → ∞, 
the constraint G = xy − 12 = 0 is satisfied. However, as r → 0, the constraint is not satisfied because 
x approaches zero and y approaches ∞. Therefore, the correct optimum for this constrained prob-
lem is obtained at large r.

9.4.2 seArch Along A constrAint

Several methods for optimization of constrained problems are based on reaching the constraint 
and then moving along the constraint in order to search for the optimum. These include the 
gradient projection method, the generalized reduced gradient method, and the hemstitching 
method (Arora, 2004; Stoecker, 1989). All these methods are quite similar, in that they search 
for the optimum while staying on or close to the constraint, though there are differences in 
their implementation. Inequality constraints generally determine the feasible region in which 
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the optimum is sought and the search is carried out along the equality constraints so that the 
optimum satisfies all the constraints. In addition, inequality constraints can be converted to 
equalities by the use of slack variables, which ensure that the given limits are not violated, as 
outlined in Chapter 7. However, these methods are best suited to problems for which the gradi-
ents of the objective function and the constraints are defined and easy to determine, analytically 
or numerically.

Let us first consider the hemstitching method. The main steps involved in this method are

1. Start with a trial point.
2. Move toward and reach the constraint(s).
3. Move tangentially along the constraint(s).
4. Bring point back to the constraint(s).

The direction of the tangential move is chosen so that the objective function increases if a maxi-
mum is being sought and decreases if a minimum is of interest. The application of this method 
depends on the number of variables and the number of equality constraints. It is useful in a variety 
of thermal problems that can be represented by continuous functions.

For the simplest case of a single constraint in a two-variable space, the basic approach 
involves choosing an initial guess or starting point in the feasible domain. We then move to the 
constraint and obtain a point on the constraint. From this point, we move tangentially to the 
constraint. This takes the trial point off the constraint in nonlinear optimization problems and 
the next step is used to bring the point back to the constraint. This process is repeated, mov-
ing along the constraint, until the optimum value of the objective function is obtained. If two 
constraints are involved in a three-variable space, the movement of the trial point is along the 
tangent to both the constraints. This approach is applicable for all cases in which the number 
of variables n is greater than the number of constraints m by one. If this difference is greater 
than one, the move may be made in a direction that yields the greatest change in the objective 
function.

Figure 9.14 shows the hemstitching method for a two-variable, single-constraint problem. The 
first step involves reaching the constraint by keeping one of the two variables, x1 or x2, fixed and 
varying the other until the constraint is satisfied. For example, if the constraint is

 1
2

2
4 =x x M  (9.20)

FIGURE 9.14 The hemstitching method with return to the constraint obtained by keeping (a) x1 fixed,  
and (b) x2 fixed.
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where M is a constant, we can keep either x1 or x2 fixed to obtain the value of the other variable at 
the constraint as

 or1
2
4
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x
 (9.21)

Therefore, a point on the constraint can be located. These equations can also be used to return to the 
constraint if a move tangential to the constraint takes the point away from the constraint, as shown 
in Figure 9.14 for the two schemes of keeping x1 or x2 fixed.

To optimize the objective function U(x1, x2), the trial point is moved tangentially to the con-
straint, which implies that ΔG = 0, where ΔG is the change in the constraint. From the chain rule
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Therefore, if ΔG is set equal to zero in this equation, Δx1 and Δx2 must satisfy the equation
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The change in the objective function ΔU is given by
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Therefore, the change in U(x1, x2) due to a move tangential to the constraint is given by
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If a maximum in U is being sought, Δx2 should be positive if S is positive so that the value of 
U increases because of the move. This means that x2 should be increased and the corresponding 
changes in the values of x1 and U determined from Equation (9.23) and Equation (9.25), respectively. 
Because a tangential move takes the point away from the constraint if the functions are nonlinear, 
the point is brought back to the constraint, as discussed previously and shown in Figure 9.14. The 
following simple example illustrates the use of this method for optimization.

Example 9.6

The cost function for a system is given by the expression

 = + +6 4 51
2

2U x x

where x1 and x2 represent the sizes of two components. The constraint is given by  
Equation (9.20) as

 = − =35 01
2

2
3G x x

Using the hemstitching method, obtain the minimum cost. Take x1 = 2.0 as the starting point in the 
region and keep x1 constant to return to the constraint. Take 0.2 as the step size in x2.
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SOLUTION

Because the objective function and the constraint are simple analytic expressions, calculus may 
be used to calculate the derivatives needed for the method. Therefore,
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The starting point is taken as x1 = 2, so that x2 = (35/4)1/3 = 2.061 satisfies the constraint. Then S 
is calculated and x2 is varied, with a chosen step size of 0.2. If S < 0, x2 is increased by this amount, 
because a minimum in U is to be obtained. Then Δx1 is calculated from the relationship just shown 
between Δx2 and Δx1. From this result, the new x1 is calculated as x1 + Δx1. The new objective func-
tion is determined, the point is brought back to the constraint, and the process is repeated. The 
results obtained are shown in the following table.

x1 x2 U G Next Move
2.0 2.061 32.303 0 Increment x2

1.735 2.261 29.338 −18.294 Return to constraint

1.735 2.266 29.364 0 Increment
1.524 2.466 27.614 −10.935 Return

1.524 2.470 27.637 0 Increment
1.352 2.670 26.668 −6.275 Return

1.352 2.675 26.690 0 Increment
1.211 2.875 26.243 −3.205 Return

1.211 2.879 26.262 0 Increment
1.093 3.079 26.174 −0.128 Return

1.093 3.083 26.192 0 Increment

The problem may also be solved easily by calculus methods from Chapter 8 to yield  
= 1.1271

*x , = 3.022
*x , and U* = 26.181 for the location and value of the desired optimum. Therefore, 

these results are close to those obtained here by the hemstitching method. As we approach 
the optimum, the change in U from one iteration to the next becomes small. A zero change, 
i.e., S = 0, indicates that the optimum has been attained. Oscillations may arise near the optimum 
and the step size must be reduced if a closer approximation to the analytical result is desired. 
However, such an accurate determination of the optimum is rarely needed in practical problems 
because the variables are generally adjusted for the final design on the basis of convenience and 
available standard system parts. In the preceding example, 1

*x  may be taken as 1.1 and 2
*x  as 3.1 

for defining the optimum. This example illustrates the hemstitching procedure for finding the opti-
mum of a constrained problem. The evaluation of the derivatives is the major limitation on the use 
of this approach. Numerical differentiation is needed in most practical problems. The procedure 
could get fairly involved as the number of variables increases and would fail if the functions are 
not continuous and well-behaved.

If the optimization problem involves two constraints and three variables, the first two steps are 
the same as before, i.e., a trial point is chosen and moved until it reaches the constraints, which 
are now surfaces in a three-dimensional space. One of the variables is held constant and the two 
constraint equations are solved to determine the other two variables. Once on the constraints, the 
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move is taken as tangential to both constraints. Therefore, the increments in the three variables are 
linked by the equations
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where G1(x1, x2, x3) = 0 and G2(x1, x2, x3) = 0 are the two equality constraints. Therefore, if the incre-
ment in one of the variables, say Δx1, is chosen, the other two, Δx2 and Δx3, may be calculated from 
the preceding equations. The change in the objective function U(x1, x2, x3) is given by the equation
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The step size Δx1 is chosen, increments Δx2 and Δx3 are calculated from Equation (9.26) and 
Equation (9.27), and the change in U is obtained from Equation (9.28). This determines whether Δx1 
should be positive or negative for a desired change in U. After a move, which is tangential to both 
constraints, the point is brought back to the constraints by keeping one of the variables fixed. The 
process is repeated until a negligible change in the objective function is obtained from one step to 
the next. This procedure can be extended to problems with a larger number of independent variables 
as long as the number of equality constraints m is one less than the number of variables n.

For circumstances where an arbitrary number of independent variables and constraints is 
involved, the move is made tangential to the constraints such that the change in U is the largest for a 
fixed distance d of movement. For three variables, this distance d is given by the equation

 ( ) ( ) ( )2
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2= ∆ + ∆ + ∆d x x x  (9.29)

For maximum ΔU, given by Equation (9.28), and subjected to constraints due to tangential direc-
tion and fixed distance, such as Equation (9.26), Equation (9.27), and Equation (9.29), the Lagrange 
multipliers method may be employed to determine the increments Δx1, Δx2, etc. (Stoecker, 1989). 
With these increments, the new point may be obtained for the desired favorable change in U. The 
point is brought back to the constraint and the process is repeated until convergence is achieved, as 
indicated by a small change in the objective function from one iteration to the next.

Several methods have been developed with this general approach to solve constrained optimiza-
tion problems. These include the constrained steepest descent (CSD) method, the method of feasible 
directions, the gradient projection method, and the generalized reduced gradient (GRG) method. 
Many efficient algorithms have been developed to obtain the optimum with the least number of tri-
als or iterations. Some of these are available in the public domain, while others are available com-
mercially. The difference between all these methods lies in deciding on the direction of the move 
and the scheme used to return to the constraint. The major problem remains the calculation of the 
gradients. Linearization of the nonlinear optimization problem is also carried out in some cases, 
and linear programming techniques can then be used for the solution. For details on these and other 
methods, see Arora (2004), Bertsekas (2016), and the various other references mentioned earlier.

9.5 EXAMPLES OF THERMAL SYSTEMS

We have discussed a wide range of search methods and their application to thermal systems in 
Chapter 7 and in this chapter. A few examples are given here for illustration of the application of 
these methods to practical thermal systems.
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Optimization of the optical fiber drawing furnace, as shown in Figure 1.10(c), can be carried 
out on the basis of the numerical simulation of the process. Because of the dominant interest in 
fiber quality, the objective function can be based on the tension, defect concentration, and veloc-
ity difference across the fiber, all these being the main contributors to lack of quality. These are 
then scaled by the maximum values obtained over the design domain to obtain similar ranges of 
variation. The objective function U is taken as the square root of the sum of the squares of these 
three quantities and is minimized. The two main process variables are taken as the furnace tem-
perature, representing the maximum in a parabolic distribution, and the draw speed. The univari-
ate search method is applied, using the golden section search for each variable and alternating 
from one variable to the other. Figure 9.15 shows typical results from this search strategy for the 
optimal draw temperature and draw speed. The results from the first search are used in the second 
search, following the univariate search strategy, to obtain optimal design in terms of these two 
variables. The optimization process can be continued though additional iterations to narrow the 
domain further. However, each iteration is time-consuming and expensive. Several other results 

FIGURE 9.15 Optimization of the optical fiber drawing process: Evaluation of optimal furnace draw tem-
perature at a draw speed of 15 m/s and the optimal draw speed at a draw temperature of 2489.78 K by using 
the golden section search method. The objective function U is chosen to represent defects in the fiber and is 
to be minimized.
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have been obtained on this complicated problem, particularly on furnace dimensions and operat-
ing conditions, to achieve optimal drawing.

Another problem that is considered for illustration is a chemical vapor deposition (CVD) system, 
shown in Figure 9.16(a), for the deposition of materials such as silicon and titanium nitride (TiN) on 
a given surface, known as the substrate, which is located on a heated susceptor to fabricate electronic 
devices or to provide a coating on a given part. The main quantities of interest include product qual-
ity, production rate, and operating cost. These three may be incorporated into one possible objective 
function, for example U = (coating nonuniformity) × (operating cost)/production rate. The objective 
function represents equal weighting for each of these characteristics. A minimum value in U implies 
greater film thickness uniformity. Operating costs are represented by heat input and gas flow rate. 
The production rate is expressed in terms of the deposition rate. All these quantities are normal-
ized to provide uniform ranges of variation. Obviously, many different formulations of the objective 
function can be used. A detailed study of the design space is carried out to determine the domain of 
acceptable designs and the effects of various parameters on the objective function. Using the steepest 
ascent method, with univariate search, the optimal design is obtained. Some typical results are shown 
in Figure 9.16, indicating the minimization of the objective function with the inlet velocity Vinlet and 
the susceptor temperature Tsus. Again, other objective functions, design parameters, and operating 
conditions can be considered to optimize the system and the process (Jaluria, 2003). Some typical 
results for a CVD reactor were also shown earlier as response surfaces in Figure 7.8.

A problem that is of considerable interest in the cooling of electronic equipment is one pertain-
ing to heat transfer from isolated heat sources, representing electronic components, located in a 
channel, as shown in Figure 9.17(a). A vortex generator is placed in the channel to oscillate the flow 
and thus enhance the heat transfer. The main quantities of interest are the pressure head ΔP and 
the heat transfer rates Q1 and Q2 from the two sources. It is desirable to maximize the heat transfer 
rates from the two sources, to accommodate more electronic components in a given space, and to 
minimize the pressure head, which affects the cost of the cooling system. These three quantities 

FIGURE 9.16 Optimization of a chemical vapor deposition (CVD) system, sketched in (a). Variation of the 
objective function U with inlet velocity (b) and susceptor temperature (c). The objective function U is defined 
as U = (coating nonuniformity × operating cost)/production rate.
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can be considered separately as a multi-objective function problem, or they can be combined, in 
their normalized forms, to form a single-objective function, F, which is then maximized. One such 
objective function, with the normalized quantities indicated by overbars is

 1 1 2 2 3= + − ∆F W Q W Q W P (9.30)

where the W’s are the weights of the three individual objective functions. The choice of the weights 
strongly depends on the design priorities. The responses for two different objective functions, as 
obtained from different values of the W’s, are presented in Figure 9.17. Here, both experimental 
and numerical results are employed for the data points. For the first case, the optimal Reynolds 
number is obtained as 5600 and the height of the vortex promoter hp/H as 0.12. For the second 
case, the Reynolds number is obtained as 5460 and the vortex promoter height as 0. Thus, a greater 
emphasis on pressure in the second case leads to a better solution without a promoter. If the weight 
W3 for pressure is made half of the weights for the heat transfer rates, the optimal promoter height 
is obtained as 0.26. Similarly, other weights and promoter geometries can be considered (Icoz and 
Jaluria, 2006).

The preceding electronic cooling system can also be considered without the vortex promoter. 
The total heat transfer rate and the pressure head are taken as the two main objective functions. 
Response surfaces can be drawn from these to investigate the optimum. Multi-objective function 
optimization can also be used, as discussed in Chapter 7. As was done for the preceding problem, 
both experimental and computational data are used to build the database for the response surfaces 
in terms of length dimensions L1 and L2. Second-order, third-order, and higher-order regression 
models are considered. Comparing the second order with the third order, it was observed that the 

FIGURE 9.17 (a) A simple system for cooling of electronic equipment, consisting of two heat sources rep-
resenting electronic components and a vortex promoter. (b) Response surface for the objective function F = 
W1Q1 + W2Q2 − W3ΔP for W1 = W2 = W3. (c) Response surface for the objective function F for W1 = W2 = W3 /2.
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third-order fitting was substantially a better choice because it had higher correlation coefficients. 
The difference between third-order and fourth-order models was small. Hence, the third-order 
model, based on computational and experimental data, was employed as the regression model for 
the multi-objective design optimization problem.

The response surfaces obtained from this regression model for ΔP and the total heat transfer rate, 
given in terms of the Stanton number, St, where St is the Nusselt number divided by the Reynolds 
and Prandtl numbers, are shown in Figures 9.18(a) and (b), respectively. After the regression model 
is obtained for dimensionless ΔP and St, the Pareto set or frontier is obtained for the multi-objective 
design optimization problem (Zhao et al., 2007). The resulting Pareto set, which is the solution to 
this problem, is plotted in Figure 9.18(c). From the figure, it is observed that if the pressure drop is 
decreased, implying a lower pumping cost, the Stanton number is also decreased, and vice versa. 
The maximum Stanton number and the minimum pressure drop cannot be obtained at the same 
time. This is expected from the discussion of the physical problem given earlier. A higher heat trans-
fer rate requires a greater flow rate, which in turn needs a greater pressure head. However, interest 
lies in maximizing heat transfer and minimizing the pressure head. Thus, for decision-making, 

FIGURE 9.18 Optimization of the system shown in Figure 9.17(a), without the vortex promoter. (a) Third-
order response surface for ΔP. (b) Third-order response surface for Stanton number, St. (c) Pareto front for 
multi-objective design optimization.
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other considerations have to be added to select the proper solution from the Pareto frontier, as out-
lined earlier in Chapter 7. A trade-off between the two objective functions is needed and is based on 
the requirements and preferences for a given circumstance.

9.6 SUMMARY

This chapter presents search methods, which constitute one of the most important, versatile, and widely 
used approaches for optimizing thermal systems. Search methods can be used if the objective function 
and constraints are continuous functions as well as if these take on discrete values. In many circum-
stances, combinations of the components and other design variables yield a finite number of feasible 
designs. Search methods are ideally suited for such problems to determine the best or optimum design. 
Both constrained and unconstrained optimizations can be carried out using search methods.

The simplest problem of single-variable unconstrained optimization is considered first. Such 
circumstances are of limited practical interest, but are illustrative of the optimization techniques 
for more complicated problems. In addition, multivariable problems are often broken down into 
simpler single-variable problems for which these methods can be used. An exhaustive search for the 
optimum in the feasible design domain is sometimes used because of its simplicity and to determine 
subdomains containing the optimum, even though it is not a very efficient approach. In addition, 
experience and information available on the system can sometimes be used with an unsystematic 
search to focus on a particular subdomain to extract the optimum. Efficient elimination methods, 
such as Fibonacci and dichotomous schemes, are presented next. The efficiency of these methods 
in reducing the interval of uncertainty for a given number of iterative designs is discussed. These 
schemes are quite commonly used for the optimization of thermal systems.

Multivariable unconstrained problems are discussed next. A lattice search, which is relatively easy 
to use but is an inefficient method, is considered, followed by a univariate search strategy, which breaks 
the problem down into alternating searches with a single variable. This is an important approach 
because it allows the use of efficient methods, such as Fibonacci and calculus methods, to solve the 
problem as a series of single-variable problems. Hill-climbing techniques, such as steepest ascent, are 
very efficient for multivariable unconstrained problems. However, this approach requires the deter-
mination of the derivatives of the objective function. These derivatives are obtained analytically in 
relatively simple cases and numerically in cases that are more complicated. However, this does limit 
the use of the method to problems that can be represented by continuous functions and expressions.

Constrained multivariable problems are the most complicated ones encountered in the optimiza-
tion of thermal systems. Because of their complexity, efforts are made to include the constraints in 
the objective function, thus obtaining an unconstrained problem. The inequality constraints gener-
ally define the feasible domain and the equality constraints often arise from conservation principles. 
In the simulation of most thermal systems, the equations stemming from conservation laws are gen-
erally part of the solution and do not result in equality constraints. However, there are problems that 
have to be solved as constrained problems. Two main approaches are presented in this chapter. The 
first is the penalty function method, which defines a new objective function, with the constraints 
included, and imposes a penalty if the constraints are not satisfied. The second approach is based on 
searching along the constraint. Derivatives are needed for the implementation of this method, thus 
restricting its applicability to continuous and differentiable functions. Examples of the application 
of search methods to practical thermal systems are finally outlined.
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PROBLEMS

 9.1 Use Fibonacci search to find the minimum of the function U(x), where

 ( )
ln sin /5

2 3

2( )[ ]( )
=

+
U x

x x

x

  Obtain a final interval of uncertainty in x of 0.1 or less.
 9.2 Reduce the cylindrical storage tank problem considered in Example 8.3 to its unconstrained 

form and determine the optimal dimensions using the following search methods:
a. Uniform exhaustive search
b. Dichotomous search
c. Fibonacci search

  Compare the number of trial runs needed in the three cases and the final solution obtained. 
Take the desired final interval of uncertainty for the radius as 5 cm.

 9.3 The amount of ammonia produced in the chemical reactor considered in Example 4.6 is 
to be optimized by varying the bleed over the range of 0 to 40 moles/s. Using any search 
method, with the numerical model given earlier, determine if an optimum in ammonia pro-
duction exists in this range and obtain the applicable bleed rate if it does.

 9.4 An optimum flow rate is to be achieved in the fan and duct system considered in 
Example 4.7 by varying the constants 15 and 80, which represent the zero pressure and 
the zero flow parameters. Use any suitable search method to determine if the flow can 
be optimized by varying these two parameters over the range ±30% of the given base 
values.

 9.5 Use univariate search to find the optimum of the unconstrained objective function U(x,y) 
given by

 ( , ) 2
20

3
= + +U x y x

xy

y

  Show that you have obtained a minimum. Also, use calculus methods to obtain the mini-
mum and compare the results from the two approaches.

 9.6 The cost C of a storage chamber is given in terms of its three dimensions as

 12 2 52 2 2= + +C x y z
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  with the volume given as 10 units, i.e., xyz = 10. Recast this problem as an unconstrained 
optimization problem with two independent variables. Applying univariate search, deter-
mine the dimensions that minimize the cost.

 9.7 We wish to minimize the cost U of a system, where U is given in terms of the three inde-
pendent variables x, y, and z as

 
1

16 2= + − +U xy
xz

y z

  Starting with the initial point (1, 0.5, 0.5), in x, y, and z, respectively, obtain the optimum 
by the univariate search method as well as by the steepest descent method with |Δx| = 1.0. 
Compare the results and number of trial runs in the two cases. Is the given value of |Δx| 
satisfactory?

 9.8 Apply any search method to solve the optimization problem for the solar energy system 
considered in Example 8.6. Employ the area A and the volume V as the two independent 
variables. Compare the results obtained with those presented in the example and the com-
putational effort needed to obtain the solution.

 9.9 In Example 5.1, an acceptable design of a refrigeration system was obtained to achieve the 
desired cooling. As seen earlier, an acceptable design may be selected from a wide domain. 
Considering the evaporator and condenser temperatures as the only design variables, for-
mulate the optimization problem for maximizing the coefficient of performance. Using any 
suitable search method, determine the optimal design of the system.

 9.10 The heat transfer Q from a spherical reactor of diameter D is given by the equation  
Q = h ⋅ T ⋅ A, where h is the heat transfer coefficient, T is the temperature difference from 
the ambient, and A(= πD2) the surface area of the sphere. Here, h is given by the expression

 2 0.5 0.2 1= + −h T D

  A constraint also arises from material limitations as

 20=DT

  Set up the optimization problem for minimizing the total heat transfer Q. Using the method 
of steepest descent, obtain the optimum, starting at the initial point D = 0.1 and T = 50, 
with step size in T equal to 10. Also, obtain the minimum by simple differentiation of the 
unconstrained objective function and compare the results from the two approaches.

 9.11 In a water flow system, the total flow rate Y is given in terms of two variables x and y as

 8.5 7.1 252 3= + +Y x y

  with a constraint due to mass balance as

 321.75+ =x y

  Solve this optimization problem both as a constrained problem and as an unconstrained 
problem, using any appropriate search method for the purpose.

 9.12 The heat loss Q from a furnace depends on the temperature a and the wall thickness b as

 
2

4
2

2

= + +Q
a

ab
b
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  Starting with the initial point (1,1), use the univariate search method to obtain the opti-
mum value of Q. Also, apply the method of steepest ascent to obtain the optimum. Is it a 
maximum or a minimum?

 9.13 The cost of a thermal system is given by the expression

 (3.3 4 )
1400 15002 2= + + +







C x y
x y

  where x and y are the sizes of two components. The terms within the first parentheses repre-
sent the capital costs and the terms within the second parentheses quantify the maintenance 
costs. Using the method of steepest ascent, calculate the values of x and y that optimize 
the cost.

 9.14 In an extrusion process, the diameter ratio x, the velocity ratio y, and the temperature z are 
the main design variables. The cost function is obtained after including the constraints as

 58
305

3 4= + + +C
x

y xz
xy z

  Using any suitable optimization technique, obtain the optimal cost or show a few steps 
toward the minimum.

 9.15 Apply the method of searching along a constraint to solve the constrained two-variable 
problem given in Example 9.5. Compare the results obtained with those from the penalty 
function method given in the example. Also, present the trial runs needed to obtain the 
solution.

 9.16 Solve the constrained optimization problem considered in Example 9.6 by the penalty func-
tion method. Compare the results obtained with those given in the example. Also, compare 
the computational effort needed by the two methods.

 9.17 Solve the constrained optimization problem given in Problem 8.12 by any appropriate 
search method given in this chapter.

 9.18 Solve Problem 8.6 as a constrained optimization problem by the hemstitching method.
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10 Geometric, Linear, and 
Dynamic Programming 
and Other Methods 
for Optimization

Several optimization methods are applicable only for certain types of functions or for specific prob-
lems. In the former category are methods such as geometric and linear programming. As mentioned 
in Chapter 7, geometric programming can be employed for problems in which the objective function 
and the constraints can be represented as sums of polynomials. Linear programming is applicable 
when these can be represented as linear combinations of the independent variables. In the second 
category are techniques such as dynamic programming and those for optimizing form, shape, and 
structure. Dynamic programming is applicable to continuous processes that can be represented by a 
sequence of stages or steps so that the optimum path may be determined. Shape and structural opti-
mization focus on varying the geometrical form or configuration of an item to obtain the optimum 
characteristics for a given application.

All these optimization methods have seen a considerable increase in interest and activity in recent 
years. This has been mainly due to growing global competition, the advent of new and diverse tech-
nological fields, new demands being placed on technology, and increasing computational power. 
However, except for geometric programming, many of these methods are generally not easily appli-
cable to practical thermal systems and have been employed mainly in other fields such as com-
munications, transportation, aircraft structures, and construction. Therefore, this chapter presents 
a detailed discussion of geometric programming and a brief outline of the other techniques for the 
sake of completeness and for indicating recent trends in optimization. In addition, a few specific 
problems as well as modifications in the problem formulation for some thermal systems may allow 
the use of these specialized techniques.

10.1 GEOMETRIC PROGRAMMING

Geometric programming can be used to solve problems that are characterized by nonlinear func-
tions and it is, therefore, a nonlinear optimization technique. Because thermal systems are often 
nonlinear in character, geometric programming is a useful method for optimizing these systems. 
The method, as presented here, is very easy to apply, because it involves the solution of linear 
equations, rather than nonlinear equations that have to be solved for the calculus methods of 
optimization. It first yields the optimum objective function, which is then used to determine 
the independent variables at the optimum. The relative contributions of the various terms in the 
objective function are also obtained, indicating dominant as well as negligible aspects. However, 
the method is convenient and easy to use only if certain conditions are met, as outlined in the next 
section. If these conditions are not satisfied, it is best to go to some other optimization technique, 
though in some cases it may be possible to modify the problem formulation in order to satisfy 
these conditions.
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10.1.1 ApplicAbility

Geometric programming is applicable to problems in which both the objective function and the 
constraints can be expressed as sums of polynomials of the independent variables. The exponents 
of the variables can be integer or noninteger, positive or negative, quantities. A few examples of the 
objective function, U(x1, x2, …, xn), in unconstrained problems, which can be treated by geometric 
programming are

 2 72
3/2

1
2

1 2
1/3= + +U x x x x  (10.1)

 4 3 21 1
1.6= + −U x x  (10.2)

 550 105
120,000

101
1
3 1

1.4= + + −U x
x

x  (10.3)

 3 3.7 81 2
2 1

3
1.3 2 3

2
2
2.2= + − +U x x

x

x
x x x  (10.4)

Similarly, for constrained problems, the following form is suitable for geometric programming:

 4 8 6 31
2

2
3

1
1/2

2
1/3

1
0.6

2= + − +− −U x x x x x x  (10.5)

with the constraint

 201 2
1.2 =x x  (10.6)

Therefore, fractions or integers, positive or negative, exponents and coefficients may be consid-
ered. Because such polynomial or power-law representations are quite common in thermal systems, 
particularly from curve fitting of experimental or simulation results, as seen in Chapter 3, geometric 
programming is a useful technique for optimizing these systems.

10.1.1.1 Degree of Difficulty
An important consideration that determines how the method is to be applied and whether it can be 
used to yield the optimum directly and without detailed analysis is the degree of difficulty D, which 
is defined as

 = − + ( 1)D N n  (10.7)

where N is the total number of terms in the objective function and in the constraints and n is the 
number of independent variables. Because the addition of a constant to the objective function does 
not affect the location of the optimum, only the terms containing polynomials are counted. For 
instance, the degree of difficulty for the problem given by Equation (10.1) is D = 3 − (2 + 1) = 0, because 
there are three polynomial-containing terms and two independent variables x1 and x2. Similarly, the 
degree of difficulty D for Equation (10.2), Equation (10.3), and Equation (10.4) are obtained as, 
respectively, 0, 1, and 0. For the problem given by Equation (10.5) and Equation (10.6), there are five 
polynomial terms in the objective function and the constraint and only two variables, resulting in a 
degree of difficulty D of 2.

Geometric programming is particularly useful when the degree of difficulty is zero. In this case, 
the optimum value of the objective function can be written right away, without resorting to any 
analysis, and the independent variables can be derived from this result. It is then a fairly simple 
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method to use. In some cases, if D is not zero, terms may be combined to reduce the degree of 
difficulty to zero. We shall consider only the circumstance of D = 0 here because if D is not zero 
and cannot be reduced to zero, the application of geometric programming involves the solution of 
nonlinear equations and becomes quite complicated. Other techniques such as search and calculus 
methods may be easier to use in this case. For further details, see Duffin et al. (1967), Zener (1971), 
Beightler and Phillips (1976), Wilde (1978), Stoecker (1989), Chiang (2005), Boyd et al. (2007), and 
Islam and Mandal (2019).

10.1.2 unconstrAineD optimizAtion

Let us first consider the application of geometric programming to unconstrained optimization prob-
lems. Because we are interested in problems with degree of difficulty zero, the number of terms 
must be greater than the number of variables by one.

10.1.2.1 Single Independent Variable
The objective function U may be written in terms of the independent variable x as

 = +U Ax Bxa b (10.8)

The two terms may be denoted as u1 and u2, where u1 = Axa and u2 = Bxb. Therefore, these terms 
represent the individual contributions to the overall objective function. For instance, the cost of 
producing an item using a manufacturing system may be taken as the sum of the contributions due 
to initial and operating costs, both of which are functions of the capacity or size x of the system. 
As the system size increases, the initial costs increase, but the operating and maintenance costs per 
item decrease, as shown in Figure 10.1.

According to geometric programming, the optimum value of the objective function U* in the 
preceding equation is given by the expression

 *

1 2

1 2

= 











U
Ax

w

Bx

w

a w b w

 (10.9)

FIGURE 10.1 Variation of initial and operating costs involved in producing an item with the size of the 
system, indicating a minimum cost per item.
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with

 11 2+ =w w  (10.10)

and

 01 2+ =aw bw  (10.11)

where w1 and w2 are parameters to be determined from Equation (10.10) and Equation (10.11). The 
latter equation results in the elimination of the independent variable x in Equation (10.9), yielding
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Also, it will be shown later, in Section 10.1.3, that
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Therefore, w1 and w2 represent the weights or relative contributions of the two terms to the 
total objective function at the optimum. This is an important piece of information obtained in 
geometric programming and may be used for further improvements in system design. From the 
preceding equations for w1 and w2, the independent variable x at the optimum may be determined 
from u1 = Axa or u2 = Bxb. Let us consider a simple problem to illustrate this procedure.

Example 10.1

For the cost function C given in Example 8.1 for a metal rolling process, determine the minimum 
cost and the corresponding mass flow rate m using geometric programming. Compare the results 
with those obtained earlier using the calculus method.

SOLUTION

The objective function is the cost C given by the expression

 = +



3.5
14.81.4

2.2C m
m

with   m as the mass flow rate, which is the independent variable. The two terms in the objec-
tive function for this unconstrained problem are polynomials and the degree of difficulty 
D = 2 − (1 + 1) = 0. Therefore, geometric programming may be employed easily to write down the 
optimum cost C * as

 = 
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and

 − =1.4 2.2 01 2w w

From these equations,

 = =w w0.611    and     0.389.1 2

Therefore,

 ( ) ( )= =3.5/0.611 14.8/0.389 11.965* 0.611 0.389C

Then, from Equation (10.13) and Equation (10.14),

 =3.5 0.6111.4 *m C

which gives

 = = (0.611 /3.5) 1.692* 1/1.4m C

These values are close to those obtained earlier in Example 8.1 by using a calculus-based 
optimization technique. The minimum cost is written directly, without any mathematical analysis; 
the factors w1 and w2 are obtained by solving two linear equations; and the mass flow rate m is 
calculated from Equation (10.13). The values of w1 and w2 indicate the contributions of the two 
terms to the objective function at the optimum. Therefore, the first term contributes 61.1% and the 
second term contributes 38.9%, indicating the dominance of the first term, which represents the 
equipment costs. The second term represents operating costs. Therefore, if further reduction in 
cost is desired, it will be best to focus on equipment costs.

Example 10.2

In a system for providing hot water for industrial use, the heating unit has a power input of 150 kW 
and a thermal efficiency of 100(0.2 + 0.045T  0.5), in percent, where T is the operating temperature 
difference from the ambient temperature in degrees centigrade. The rate of heat loss to the envi-
ronment, in kW, is represented by the expression 0.12T 1.25. Formulate the optimization problem to 
maximize the rate of energy supplied to the industry and obtain the optimum by using geometric 
programming. Also, solve the problem by minimizing the energy loss and show that the results 
obtained are the same as before.

SOLUTION

The objective function E is the rate of energy supplied to the company and is obtained by subtract-
ing the rate of heat loss from the net energy input rate, which is itself a product of the input power 
and the efficiency. Therefore,

 = + − = + −150(0.2 0.045 ) 0.12 30 6.75 0.120.5 1.25 0.5 1.25E T T T T

Because the constant does not affect the location of the optimum, we can optimize the function

 = −6.75 0.120.5 1.25U T T

As seen in Figure 10.2, the first term increases as T increases. The second term, which is negative, 
also increases in magnitude as T increases. The sum of the two terms indicates a maximum in the 
domain of interest. Such problems are commonly encountered in thermal systems.
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The degree of difficulty D = 2 – (1 + 1) = 0, because there are two terms and one independent 
variable. Therefore, the optimum is given by

 = 





−
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 + = + =w w w w1    and     0.5 1.25 01 2 1 2

From these equations, w1 = 1.667 and w2 = –0.667. Therefore,
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The operating temperature T is obtained from the equation for w1, i.e.,

 = =6.75
1.6671

0.5

*w
T

U

which gives

 = ×



 =1.667 32.31

6.75
63.68

2

T

We can now add the constant dropped from the original objective function to give the maximum 
rate of energy supplied as 30 + 32.31 = 62.31 kW.

Similarly, the rate of energy loss El can be written as

 
= −

= − + − = + −

Power input Rate of energy supplied to the industry

150 (30 6.75 0.12 ) 120 0.12 6.750.5 1.25 1.25 0.5

E

T T T T

l

FIGURE 10.2 Variation of energy input and heat loss with temperature in Example 10.2, along with the rate 
of net energy supply.
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Then the objective function to be minimized may be taken as

 = −0.12 6.751.25 0.5U T Tl

Following the procedure just given, the optimum objective function is obtained as

 = 
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where calculations yield w1 = −0.667 and w2 = 1.667, in this case. Therefore,
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Even though the quantities within the parentheses are negative, resulting in complex numbers, the 
negative sign from both the terms may be combined to yield
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This gives the minimum rate of energy loss as 120 − 32.31 = 87.69 kW, and thus the maximum 
rate of energy supply as 150 − 87.69 = 62.31 kW, as before.

This example shows that the w’s can be positive or negative and may also be larger 
than 1.0 in order to satisfy the governing equations. If negative terms appear within the 
parentheses, leading to complex numbers, the negative sign is extracted to yield −1.0 as a 
coefficient. Therefore, different forms of the objective function may be optimized by this 
approach. This problem can also be solved easily by calculus methods to obtain values very 
close to those given here. However, geometric programming yields the contributions of the 
two terms to the objective function at the optimum. Thus, the heat input along with the ther-
mal efficiency of the heating unit contribute 1.667, whereas the heat losses contribute −0.667, 
indicating the greater effect of the thermal efficiency as well as the expected negative effect 
of heat losses on energy supply.

10.1.2.2 Multiple Independent Variables
The preceding procedure for optimizing an unconstrained single-variable problem can easily be 
extended to unconstrained multiple-variable problems. However, as before, the objective function 
must consist of terms that are polynomials or power-law variations and the degree of difficulty must 
be zero. The weighting factors w1, w2, w3, etc., are introduced with each term and equations are writ-
ten to ensure that the sum of all the w’s is unity and that the independent variables are eliminated 
from the expression for the optimum value of the objective function. Therefore, the objective func-
tion is written as

 ( , ) 1 2 3= + +U x y u u u  (10.15)

where u1, u2, and u3 are polynomials in terms of two independent variables x and y. Because there 
are three terms in the objective function and two independent variables, the degree of difficulty is  
D = 3 − (2 + 1) = 0. Then the optimum value of the objective function may be written as
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with

 11 2 3+ + =w w w  (10.17)

Two other equations for w1 and w2 are obtained from Equation (10.16) by equating the sum of 
the exponents of each variable to zero in order to eliminate these variables from the optimum value 
of U. Thus, we have three linear equations that may easily be solved for w1, w2, and w3. Then U* is 
computed and the independent variables obtained from the equations

 1
1

2
2

3
3

* * *= = =w
u

U
w

u

U
w

u

U
 (10.18)

The mechanics of the procedure outlined here are best illustrated by means of examples, which 
follow.

Example 10.3

In Example 10.2, if the height H of the system is also included as an additional inde-
pendent variable, the thermal efficiency, in percent, is represented by the expression  
100(0.2 + 0.07H T 0.5 − 0.08H 2) and the rate of energy loss by 0.15H T 1.25. If the power input 
is still 150 kW, formulate the optimization problem to maximize the rate of energy supply and 
solve it by geometric programming.

SOLUTION

The rate of energy supply E is given by the expression

 
= + − −

= + − −

E H T H H T

H T H H T

150(0.2 0.07   0.08 ) 0.15  

30 10.5   12 0.15

0.5 2 1.25

0.5 2 1.25

Therefore, the objective function U may be taken as

 = − −U H T H H T10.5   12 0.15  0.5 2 1.25

All three terms are polynomials and the degree of difficulty D = 3 − (2 + 1) = 0. Therefore, from 
geometric programming, the optimum value of the objective function is given by

 =






−





−





10.5 12 0.15*
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w
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w w w

with

 
+ + =

+ + =
+ =

1
2 0
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1 2 3

1 2 3

1 3

w w w
w w w

w w

The last two equations are obtained by setting the sum of the exponents of H and T equal to zero, 
respectively, to eliminate these variables from the expression for U*. This gives w1 = 10/3, w2 = −1, 
and w3 = −4/3. Therefore,

 = 





−
−







−
−





 =

− −10.5
10/3

12
1

0.15
4/3

70.30*
10/3 1 4/3

U
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The independent variables H and T may be obtained from the expressions for the weighting 
factors, given by Equation (10.18). Thus,

 = − =HT w U H w U10.5 *     and,     120.5
1

2
2

*

From these equations, we obtain H = 2.42 m and T = 85.02°C at the optimum. The corresponding 
equation for the last term may also be used as a check on these values. Therefore, the maximum 
rate of energy supply is 30 + 70.30 = 100.30 kW. It is also seen that the first term in the objective 
function is the dominant one, with the contributions of the remaining two terms being of similar 
magnitude and less than half that of the first term. This information can be used in adjusting the 
design variables to improve the energy supply.

Example 10.4

In a manufacturing system, rectangular boxes of length x, height y, and width z (in meters) 
and open at the top, as shown in Figure 10.3, are used for storing and conveying material. The 
cost of material and fabrication is $150 per unit area in square meters, and the cost of storage 
varies inversely as the volume xyz, being 103 per unit volume in cubic meters. Formulate the 
optimization problem for minimizing the cost and obtain the optimum by using geometric 
programming.

SOLUTION

The objective function U is the total cost of material/fabrication and storage/conveying. Therefore, 
it may be written as

 ( ) ( )= + + +, , 150 2 2
1,000

U x y z xz xy yz
xyz

because the top of area xz is open. All the terms are polynomials and the degree of difficulty  
D = 4 − (3 + 1) = 0. Therefore, the optimum value of the cost is given by

 = 























150 300 300 1,000*

1 2 3 4

1 2 3 4

U
w w w w

w w w w

with

 

+ + + =
+ − =
+ − =
+ − =

1
0
0
0

1 2 3 4

1 2 4

2 3 4

1 3 4

w w w w
w w w
w w w
w w w

FIGURE 10.3 Rectangular box considered in Example 10.4.
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The last three equations ensure that the independent variables x, y, and z are eliminated from the 
objective function at the optimum, resulting in the preceding expression for U*. The first equation 
ensures that the sum of the weighting factors is unity.

This system of linear equations may be solved easily to yield w1 = w2 = w3 = 1/5, and w4 = 2/5.  
This implies that the last term is twice as important as each of the other terms. Therefore, the 
optimum value of the objective function is

 = 





















 =150

1/5
300
1/5

300
1/5

1,000
2/5

$1601.86*
1/5 1/5 1/5 2/5

U

The independent variables x, y, and z may be obtained from the equations

 = = =xz w U xy w U yz w U150    300    3001
*

2
*

3
*

which give x = 1.46 m, y = 0.73 m, and z = 1.46 m at the optimum. It can easily be con-
firmed that the cost obtained is a minimum by changing the variables slightly, away from the 
optimum.

This problem can also be solved by the use of calculus methods for optimization. However, 
as mentioned earlier, geometric programming involves the solution of a set of linear equations, 
whereas calculus methods may require solving nonlinear equations. This is a substantial advan-
tage in most practical problems. In addition, the weighting factors obtained as part of the solution 
indicate the relative importance of the various terms and can be used to improve the design by 
focusing on the dominant terms.

10.1.3 mAthemAticAl prooF

The procedure for the application of geometric programming to unconstrained nonlinear opti-
mization problems has been outlined and a few examples have been given to illustrate the use 
of the method. Let us now consider why this procedure yields the optimum and show that the 
weighting factors represent the relative contributions of the individual terms in the objective 
function.

10.1.3.1 Single Variable
The objective function for the simple case of a single independent variable may be written as

 1 2= + = +U u u Ax Bxa b (10.19)

Then, using calculus methods, the location of the optimum is found by differentiating this equa-
tion and setting the derivative equal to zero, i.e.,

 01 1= + =− −dU

dx
aAx bBxa b  (10.20)

Multiplying this equation by the independent variable x, we get

 0+ =aAx bBxa b

or

 01
*

2
*+ =au bu  (10.21)
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where the asterisks indicate values at the optimum. The preceding simplification is possible only 
because the two terms are polynomials.

We now define a function F as

 1

1

2

2

1 2

= 
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u

w

u

w

w w

 (10.22)

with

 11 2+ =w w  (10.23)

To determine the values of w1 and w2 at which an optimum in F is obtained, we may  
apply the Lagrange multiplier method to the function F with a constraint given by  
Equation (10.23), i.e.,

 
Maximize    ln  (ln ln ) (ln ln )

with     1 0

1 1 1 2 2 2

1 2

= − + −
= + − =
F w u w w u w

G w w

Therefore, from the Lagrange multiplier method

 
(ln ) G 0

0

∇ + λ∇ =
=

F

G

with w1 and w2 as the independent variables. Therefore, the equations for the variables w1, w2, and 
λ are obtained as

 

ln ln 1 0

ln ln 1 0

1 0

1 1

2 2

1 2

− − + λ =

− − + λ =
+ − =

u w

u w

w w

These equations may be solved to obtain w1 and w2 as

 1
1

1 2
2

2

1 2

=
+

=
+

w
u

u u
w

u
u u

 (10.24)

Substituting these expressions in Equation (10.22), we get

 1 2
/

1 2
/

1 2
1 1 2 2 1 2( ) ( )= + + = +( ) ( )+ +F u u u u u uu u u u u u  (10.25)

Therefore, F is made equal to the objective function U by a proper choice of w1 and w2, as given by 
Equation (10.24), so that the optimum value of U is equal to that for F.

Using Equation (10.21) and Equation (10.24), we have
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The optimum value of the objective function is thus obtained as
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 (10.26)

It is seen that the independent variable x is eliminated from the optimum value of the objective 
function. In addition, the weighting factors w1 and w2 are shown to indicate the relative contributions 
of the two terms u1 and u2 at the optimum.

10.1.3.2 Multiple Variables
The proof just given can be extended to unconstrained multiple-variable optimizations as long as the 
number of terms is greater than the number of variables by one (degree of difficulty is zero) and all 
the terms are polynomials. The optimum of the objective function is obtained by differentiating it 
with respect to each of the independent variables xi, in turn, and setting the derivative equal to zero. 
If each of these equations is multiplied by the corresponding xi, the resulting system of equations 
is of the form
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3 31
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, 1 1
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a u a u a u a u

a u a u a u a u

n n

n n

n n n n n n

 (10.27)

Thus, there are n independent variables and n + 1 terms. The coefficients aij are the exponents, 
which appear as coefficients due to differentiation. By forming a function F(x1, x2, …, xn) as done in 
Equation (10.22) for a single variable and optimizing ln F, subject to

 11 2 1+ + …+ =+w w wn  (10.28)

we get

 for 1,2, , 1= =
Σ

= … +w
u
U

u
u

i ni
i i

i

 (10.29)

When these equations are employed with Equation (10.27), the independent variables xi are 
eliminated from the optimum value of the objective function U. Therefore, the optimum and the 
weighting factors are obtained by the geometric programming procedure outlined and applied 
earlier.

It is seen that the weighting factors depend only on the exponents, not on the coefficients in the 
various terms. This means that the relative importance of each term remains unchanged as long as 
the exponents are the same. However, the optimum value and its location will change if the coef-
ficients vary, for instance, because of changes in cost per unit item, energy consumption, etc. The 
exponents represent the dependence of the objective function on the different variables and are often 
fixed for a given system or process.
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10.1.4 constrAineD optimizAtion

Geometric programming can also be used for optimizing systems with equality constraints. 
The degree of difficulty is again taken as zero, so that the total number of polynomial terms  
in the objective function and the constraints is greater than the number of independent  
variables by one. Let us consider the constrained optimization problem given by the objective 
function

 1 2 3= + +U u u u  (10.30)

subject to the constraint

 14 5+ =u u  (10.31)

with x1, x2, x3, and x4 as the four independent variables. The unity on the right-hand side of 
Equation (10.31) can be obtained by normalizing the equation if a quantity other than unity appears 
in the equation, which is often the case. Following the treatment given in the preceding section, the 
objective function and the constraint may be written as
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 (10.32)

with

 1    and    1 2 3+ + = =w w w w
u
U

i
i
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 (10.33)

as well as

 1     and     
1

,
1

4 5 4
4

5
5+ = = =w w w

u
w

u

Equation (10.33) may be raised to the power of an arbitrary constant p, and the objective function 
may be written as
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 (10.34)

Now, we may apply the method of Lagrange multipliers to obtain the optimum. The correspond-
ing equations are

 
( ) ( ) 0

1
1 2 3 4 5

4 5

∇ + + + λ∇ + =
+ =

u u u u u

u u

Again, as was done in the preceding section, the derivatives are taken with respect to  
the independent variables xi, one at a time, and the resulting equations multiplied by xi.  
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The constant p is arbitrary and can be taken as λ/U*. Then the equations for the w’s are 
obtained as

 

0

0

0

11 1 12 2 13 3 14 4 15 5

21 1 22 2 23 3 24 4 25 5

41 1 42 2 43 3 44 4 45 5



+ + + + =
+ + + + =

+ + + + =

a w a w a w pa w pa w

a w a w a w pa w pa w

a w a w a w pa w pa w

 (10.35)

with

 1   and     ( )1 2 3 4 5+ + = + =w w w p w w p

These linear equations may be solved for w1, w2, w3, w4, w5, and p. Therefore, Equation 
(10.34) gives the optimum value of the objective function and the independent variables are 
obtained from the expressions for the weighting factors, as was done before. The sensitivity 
coefficient Sc = −λ = −pU* and has the same physical interpretation as discussed in Chapter 8 
for the Lagrange multiplier method, i.e., it is the negative of the rate of change in the optimum 
with respect to a change in the adjustable parameter E in the constraint G = g − E = 0. The 
preceding approach may be extended easily to more than one constraint as long as the degree 
of difficulty is zero. The following examples illustrate the use of the method for constrained 
optimization.

Example 10.5

For the problem considered in Example 10.4, minimize the cost of material and fabrication of the 
box for a given total volume of 5 m3, using geometric programming.

SOLUTION

The costs of the material and fabrication vary directly as the total surface area of the rectangular 
container, which is open at the top. Therefore, the objective function U may be taken as the area, 
given by

 ( ) = + +, , 2 2U x y z xz xy yz

with the constraint due to the total volume given as

 = 5xyz

In order to apply geometric programming, the constraint is written as

 =0.2( ) 1xyz

All the four relevant terms in the objective function and in the constraint are polynomials and the 
number of independent variables is three. Therefore, the degree of difficulty D = 4 − (3 + 1) = 0.

From geometric programming for constrained optimization, the optimum value of the objec-
tive function may be written as

 = 
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In order to eliminate the independent variables x, y, and z from the preceding equation for the 
objective function at the optimum, we have, respectively,

 
+ + =
+ + =
+ + =
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1 2 4

2 3 4

1 3 4
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Also,

 + + = 11 2 3w w w

and

 =4pw p

This system of linear equations may be solved easily to yield

 = = = = = −1
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2
3

1 2 3 4 4w w w w pw

Therefore, the optimum value of the objective function is obtained as
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The independent variables are obtained from the equations

 = = = = = =1
3

2
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2
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1
* *

2
* *

3
* *xz w U U xy w U U yz w U U

Therefore, these equations are solved to obtain x = 2.15 m, y = 1.08 m, and z = 2.15 m at the 
optimum. Again, it can be confirmed that the area obtained at the optimum is a minimum by 
calculating U for small changes in x, y, and z from the optimum values. This simple example illus-
trates the use of geometric programming for constrained nonlinear optimization. Even though the 
requirements of polynomial expressions and zero degree of difficulty limit the applicability of this 
approach, the method is useful in a variety of problems, particularly in thermal systems, where 
polynomials are frequently used to represent the characteristics.

Example 10.6

In a hot-rolling process, the cost C of the system is a function of the dimensionless temperature T,  
the thickness ratio x, and the velocity ratio y, before and after the rolls, and is given by the 
expression

 = + +1.5 5
102

2C x y
T



454 Design and Optimization of Thermal Systems

subject to the constraints due to mass and energy balance given, respectively, as

 = =xy T
x

y
1    and    

5

Formulate this optimization problem and apply geometric programming to determine the 
optimum.

SOLUTION

The constant in the objective function does not affect the optimum and the second constraint 
must be written in a form suitable for applying geometric programming. Therefore, the optimiza-
tion problem may be written as

 = +5
102

2U x y
T

subject to

 = =xy
Ty

x
1    and    

5
1

All the terms are polynomials and the degree of difficulty is zero because the total number of 
polynomial terms is four and the number of variables is three. Therefore, the optimum value of the 
objective function is given by

 =
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with the following equations for the unknowns w1, w2, w3, w4, p1, and p2:
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where the last three equations ensure that x, y, and T, respectively, are eliminated from the expres-
sion for U*. These equations are solved to yield w1 = 0.8, w2 = 0.2, w3 = w4 = 1, p1 = −1.2, and  
p2 = 0.4. This gives

 = 





















 =

−5
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10
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1
1

1
5

4.976*
0.8 0.2 1.2 0.4

U

Therefore, the optimum cost C* = 1.5 + 4.976 = 6.476. Employing the equations 5x2y = w1U* and 
10/T 2 = w2U*, along with the constraints, we obtain x = 0.796, y = 1.256, and T = 3.170. The two 
Lagrange multipliers are λ1 = p1U* = –5.971 and λ2 = p2 U* = 1.99, yielding corresponding sensitiv-
ity coefficients as (Sc)1 = –λ1 and (Sc)2 = –λ2. Therefore, the first constraint is more important and 
an increase of 0.1 in the constant, which is unity, in the constraint will increase the dimensionless 
cost by 0.5971. Similarly, an increase of 0.1 in the constant in the second constraint decreases the 
cost by 0.199. This information can be used to adjust the design variables for convenience and to 
use readily available items for the final design.



455Geometric, Linear, and Dynamic Programming

10.1.5 nonzero Degree oF DiFFiculty

For the application of geometric programming to the optimization of systems, we have considered 
only those cases where the degree of difficulty D is zero. For this particular circumstance, the 
method requires the solution of linear equations and, consequently, provides a simple approach for 
optimization. However, there are obviously many problems for which the degree of difficulty is not 
zero, as can be seen from the examples discussed in preceding chapters. If the degree of difficulty 
is higher than zero, geometric programming can be used, but it involves solving a system of nonlin-
ear equations. This considerably complicates the solution and it is then probably best to use some 
other optimization technique. Efficient computational algorithms may also be developed for solving 
such nonlinear systems, as discussed earlier in Chapter 4. Then geometric programming may be 
employed for a broader range of problems than if we are constrained to problems with zero degree 
of difficulty. Inequality constraints can also be converted into equality constraints, as discussed in 
earlier chapters, for applying this method of optimization.

Despite the possibility of solving problems with degree of difficulty greater than zero, geomet-
ric programming is clearly best suited to cases where it is zero. Therefore, effort is often directed 
at reducing the problem with a nonzero degree of difficulty to one with zero degree of difficulty. 
One technique of achieving this is condensation, in which terms of similar characteristics may 
be combined to reduce the number of terms. For instance, in the rectangular container problem of 
Example 10.4, if an additional term 200z arises due to side supports to the box, the objective func-
tion becomes

 , , 150 2 2
1,000

200( ) ( )= + + + +U x y z xz xy yz
xyz

z (10.36)

The degree of difficulty is one in this case. However, we may combine two terms, say the first 
and last, to reduce the degree of difficulty to zero. Writing these terms according to the geometric 
programming approach, we have

 ( )









 = =150

1/2
200
1/2

120,000 346.41
1/2 1/2

2 1/2 0.5xz z
xz x z (10.37)

where the two terms have been taken to be of equal importance. With this combined term, the 
degree of difficulty becomes zero and the approach given in this chapter may be applied. Similarly, 
other terms may be combined to make the degree of difficulty zero. In some cases, information on 
the physical characteristics of the system may be used to eliminate relatively unimportant terms. 
The number of independent variables may also be reduced by holding one or more constant for the 
optimization in order to bring the degree of difficulty to zero. All such techniques and procedures 
expand the application of geometric programming. For additional information on geometric pro-
gramming, the references given earlier may be consulted.

10.2 LINEAR PROGRAMMING

Linear programming is an important optimization technique that has been applied to a wide range of 
problems, particularly to those in mathematics, economics, industrial engineering, power transmis-
sion, and material flow. This method is applicable if the objective functions as well as the constraints 
are linear functions of the independent variables. The constraints may be equalities or inequalities. 
Since its first appearance about 70 years ago, linear programming has found increasing use due to 
the need to model, manage, and optimize large systems such as those concerned with manufactur-
ing, transportation, energy, and telecommunications (Hadley, 1962; Murtagh, 1981; Dantzig, 1998; 
Dantzig and Thapa, 2003; Gass, 2010; Karloff, 2006; Vanderbei, 2014). A large number of efficient 
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optimization algorithms for linear programming have been developed and are available commer-
cially as well as in the public domain. For instance, Matlab toolboxes have software that can be 
easily employed to solve linear programming problems for system or process optimization.

The applicability of linear programming to thermal systems is somewhat limited because 
of the generally nonlinear equations that represent these systems. However, several problems 
are concerned with the distribution and allocation of resources in various industries, such 
as manufacturing and the petroleum industry, which may be solved by linear programming 
techniques.

In addition, because of the availability of efficient linear programming software, nonlinear opti-
mization problems are solved, in certain cases, by using the following approaches:

1. Using transformations to convert nonlinear terms into linear ones, as discussed in Chapter 3  
for curve fitting of exponential, power-law, and other nonlinear variations.

2. Focusing on local regions so that the variations are not large and the terms may be 
approximated as linear without significant error. Thus, a piecewise linear programming 
is carried out.

3. Converting the nonlinear problem into a sequence of linear problems, as discussed in 
Chapter 4 for nonlinear algebraic systems. Iteration is then used, starting with an initial 
guessed solution, to converge to the optimum.

With the use of these techniques, linear programming may be used effectively for many thermal 
processes and systems.

A common method of linearization is to use the known values from the previous iteration for 
the nonlinear terms. For instance, an objective function of the form 3 41 2

2
2 1

3= + +U x x x x  may be 
linearized as

 3 41 2
2

2 1
3( ) ( )= + +U x x x x

l l

where the superscript l indicates values from the previous iteration, the others being from the cur-
rent iteration. Therefore, the function becomes linear because the quantities within the parentheses 
are known from the previous iteration. Then, linear programming may be used, with iteration, to 
obtain the solution. However, despite these efforts, linear programming finds its greatest use in the 
various areas mentioned previously, rather than in thermal engineering, for which nonlinear opti-
mization techniques are often necessary. Therefore, only the essential features of this optimization 
technique and a few representative examples are given here. For further details, various references 
already given may be consulted.

10.2.1 FormulAtion AnD grAphicAl methoD

The problem statement for linear programming is given in terms of the objective function and the 
constraints, which must both be linear functions of the independent variables. Therefore, the objec-
tive function that is to be minimized or maximized is written as

 ∑( )… = + + + + =, , , ,1 2 3 1 1 2 2 3 3U x x x x b x b x b x b x b xn n n i i

i

  (10.38)

subject to the constraints

 ,  , ∑= < = >G a x or Ci ij j

i

i (10.39)
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where bi, aij, and Ci are constants. The constraints may be equalities or inequalities, with Gi greater or 
smaller than the constants Ci. There are n variables and m linear equations and/or inequalities that involve 
these variables. In linear programming, because of inequality constraints, n may be greater than, equal 
to, or smaller than m, unlike the method of Lagrange multipliers, which is applicable only for equality 
constraints and for n larger than m. We are interested in finding the values of these variables that satisfy 
the given equations and inequalities and also maximize or minimize the linear objective function U.

Let us illustrate the application of linear programming with the following problem involving two 
variables x and y:

 ( , ) 5 2= +U x y x y (10.40a)

  4 3 16+ ≤x y  (10.40b)

 2 4− ≥ −y x  (10.40c)

This simple problem can be solved graphically, as sketched in Figure 10.4. The inequality con-
straints define the feasible region in which the solution must lie. Therefore, the shaded area in the 
figure represents the feasible domain. The objective function is defined by a family of parallel straight 
lines intersecting the two axes, with the value of U increasing as one moves away from the origin. 
For instance, 5x + 2y = 5 gives a straight line joining x = 1, y = 0 and x = 0, y = 2.5. Similarly, 
5x + 2y = 10 gives a straight line joining x = 2, y = 0 and x = 0, y = 5, and so on. Therefore, the maxi-
mum value of U is obtained by the line that touches point A, which is at the intersection of the two con-
straints. At this point, x = 2.8, y = 1.6, and U = 17.2. Therefore, the optimum occurs on the boundary of 
the feasible domain. This is a particular feature of linear programming and most efficient algorithms 
seek to move rapidly along the boundary, including the axes, to obtain the optimum.

Similarly, the optimum value of U may be obtained for a different set of constraints. For instance, 
let us replace Equation (10.40c) by

 2,  or 4 8≤ + ≤x x y  (10.41)

FIGURE 10.4 Graphical method for solving the linear programming problems given by Equation (10.40) 
and Equation (10.41).
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In the first case, the optimum is obtained at x = 2 and y = 8/3, yielding U = 46/3. Again, the optimum 
is given by the line of constant U passing through the point given by the intersection of the two 
constraints. In the second case, the optimum is at x = 1 and y = 4, giving U = 13.0. As expected, the 
optima occur at the boundary of the feasible domain.

10.2.2 slAck vAriAbles

The preceding linear programming problems may also be solved by algebra by converting the 
inequalities into equalities. As mentioned in Chapter 7, additional constants, known as slack 
variables, may be included in order to ensure that the inequalities are not violated. Thus, by add-
ing a constant s1, where s1 > 0, to the left-hand side of Equation (10.40b), we can write an equation 
of the form

 4 3 161+ + =x y s  (10.42)

Similarly, Equation (10.40c) may be written as

 2 42− − = −y x s  (10.43)

with s2 > 0. The other inequalities just considered may also be written as equalities by using slack 
variables. Therefore,

 2,  and,  4 83 4+ = + + =x s x y s  (10.44)

The slack variables indicate the difference from the constraint. Therefore, the optimization prob-
lem considered here now involves the four variables, x1, x2, s1, and s2, and there are only two equations, 
i.e., n = 4 and m = 2. To find the optimum value of U, two variables, in turn, are set equal to zero and 
the remaining variables are obtained from a solution of the two equations. For this problem, there 
are six such combinations, this number being in general [n!]/[m!(n − m)!], where n! is n factorial. The 
optimum is the maximum obtained from these combinations. It can easily be shown that the results 
given earlier from a graphical solution are also obtained by employing algebra, as outlined here. The 
following example further illustrates the extraction of the optimum by linear programming.

Example 10.7

A company produces x quantity of one product and y of another, with the profit on the two items 
being four and three units, respectively. Item 1 requires 1 hour of facility A and 3 hours of facility 
B for fabrication, whereas item 2 requires 3 hours of facility A and 2 hours of facility B, as shown 
schematically in Figure 10.5. The total number of hours per week available for the two facilities 
is 200 and 300, respectively. Formulate the optimization problem and solve it by linear program-
ming to obtain the allocation between the two items for maximum profit.

SOLUTION

The objective function is the profit U, given by the expression

 = +4 3U x y

The constraints arise due to the maximum time available for the two facilities. Therefore,

 
+ ≤
+ ≤
3 200

3 2 300

x y

x y
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Introducing slack variables s1 and s2, we have the following two equations:

 
+ + =
+ + =

3 200

3 2 300
1

2

x y s

x y s

Two variables are set equal to zero, in turn, and these equations are solved for the other two 
variables. The value of the objective function is determined in each case. If s1 or s2 is negative, the 
solution is not allowed, because these were assumed to be positive to satisfy the constraints. The 
six combinations yield the following results:

x y s1 s2 U

0 0 200 300 0
0 66.67 0 166.66 200.01
0 150 −250 0 Negative s1, not allowed

200 0 0 −300 Negative s2, not allowed

100 0 100 0 400
71.43 42.86 0 0 414.3

Therefore, a maximum value of 414.3 is obtained for U at x = 71.43 and y = 42.86. This prob-
lem can also be solved graphically, as shown in Figure 10.6, to confirm that the optimum arises at 
the intersection of the two constraints and is thus on the boundary of the feasible region.

10.2.3 simplex Algorithm

Extensive literature is available on linear programming and many efficient algorithms have been 
developed over the years for solving large optimization problems consisting of many terms. Most 
computer systems include software packages for linear programming. Among these is the simplex 
algorithm, which searches through the many possible combinations for the optimum value of the 
objective function. It is based on the Gauss-Jordan elimination procedure, outlined in Chapter 4, 
for solving a set of simultaneous linear equations. Therefore, the normalization of the pivot element 
to obtain unity, as well as eliminating the other coefficients in the column containing the pivot ele-
ment, are used during the solution procedure.

The method uses a tabular form of data presentation known as a programming tableau. The 
initial tableau is formed by using slack variables s1 and s2, as described earlier. For instance, let 
us consider the linear programming problem given by Equation (10.40a,b,c). Equation (10.42) and 
Equation (10.43) give the corresponding slack variables. These equations form the initial tableau. 
The simplex algorithm focuses on the variable among x, y, s1, and s2 that affects the solution the 

FIGURE 10.5 Schematic showing the utilization of facilities A and B to manufacture items 1 and 2 in 
Example 10.7.
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most by determining the benefit obtained by adding a unit of each quantity. The one that shows 
the greatest positive change is used to replace one of the active variables in the previous iteration, 
the first iteration being initiated with s1 and s2 as the first set of active variables. This process is 
continued, with interchange of variables, until the benefit to the optimum by a change in the vari-
ables is small. The optimum solution is then obtained by putting the slack variables equal to zero, 
i.e., s1 = s2 = 0. Because the method involves matrix manipulations, it is well-suited for solution on 
a digital computer. If a minimum of the objective function is sought instead of a maximum, the 
signs of the coefficients in the given expression for the objective function U are changed. Similarly, 
the signs of the coefficients of the slack variables in the constraint equations are changed if the 
constraint is greater than a given quantity instead of being less than it, as discussed earlier. The fol-
lowing example illustrates the use of the simplex algorithm.

Example 10.8

The objective function for an optimization problem is taken as the total income, which involves an 
income of five units on item A and seven units on item B. Item A requires 2.5 hours of cutting and 
1.5 hours of polishing, whereas item B requires 4 hours of cutting and 1 hour of polishing. If the 
total labor hours available for cutting are 4000 and for polishing 2000, formulate the optimization 
problem and solve it by the simplex algorithm to obtain the optimum.

SOLUTION

The optimization problem reduces to the objective function

 = +5 71 2U x x

where x1 and x2 represent the amounts of items A and B, respectively, that are produced. The 
constraint equations are

 + ≤
+ ≤

2.5 4 4000
1.5 2000

1 2

1 2

x x
x x

FIGURE 10.6 Graphical solution to the linear programming problem posed in Example 10.7.
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Because the objective function and the constraints are all linear expressions, linear program-
ming may be used to obtain the solution. In order to use the simplex algorithm, the problem is 
written in terms of the slack variables as

 
= + + +
+ + + =
+ + + =

5 7 0 0

2.5 4 0 4000
1.5 0 2000

1 2 1 2

1 2 1 2

1 2 1 2

U x x s s

x x s s
x x s s

We start by choosing the slack variables s1 and s2 as the active variables, with the coefficients 
ki for these equal to zero. The coefficients for x1 and x2 are 5.0 and 7.0, respectively. The column 
represented by b, in the following table, contains the constants from the constraint equations. The 
objective function Uj is evaluated by the equation Uj = Σkiaij, where aij represents the coefficients 
in the matrix. The row Cj (= kj – Uj) gives the improvement in the objective function due to the 
addition of a unit of each variable. This yields the initial tableau, as follows.

Initial Tableau
kj 5.0 7.0 0.0 0.0

Active ki x1 x2 s1 s2 b g
s1 0 2.5 4 1 0 4000 1000
s2 0 1.5 1 0 1 2000 2000
Uj 0 0 0 0 0
Cj 5 7 0 0

The largest positive value for Cj is obtained for x2. Therefore, x2 is made an active variable in the 
next iteration. The column headed by g, in the preceding table, is obtained by dividing the value 
of b for each row by the value in the pivot column for that row. This indicates the contribution of 
each row, and the one with the smallest contribution is removed. Therefore, s1 is dropped from 
the active variables. The underlined number is the pivot element given by the intersection of the 
row being removed and the column containing the new active variable.

Now, the Gauss-Jordan elimination procedure, presented in Chapter 4, is used. The pivot ele-
ment is made 1.0 by dividing all the elements in the pivot row by the value of the pivot element. 
Elimination is used to make all other elements in the pivot column go to zero. Therefore, the sec-
ond tableau is obtained as follows.

Second Tableau
kj 5.0 7.0 0.0 0.0

Active ki x1 x2 s1 s2 b g
x2 7 5/8 1 1/4 0 1000 1600
s2 0 7/8 0 –1/4 1 1000 1142.9
Uj 35/8 7 7/4 0 7000
Cj 5/8 0 –7/4 0

Following the procedure outlined previously for the third tableau, x1 is made an active variable, 
and s2 is dropped using the results given for the second tableau. The pivot element is underlined. 
Again, Gauss-Jordan elimination is used to make the pivot element unity and all the other ele-
ments in the pivot column zero. This gives the third tableau as follows.

Third Tableau
kj 5.0 7.0 0.0 0.0

Active ki x1 x2 s1 s2 b
x1 5 1 0 −2/7 8/7 1142.9

x2 7 0 1 3/7 −5/7 285.7

Uj 5 7 11/7 5/7 7714.4
Cj 0 0 −11/7 −5/7
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This iteration is carried out until Cj values are less than or equal to zero. Because this is the 
case for the third tableau, this is the optimum condition and we stop at this stage. The resulting 
equations are

 

= + −

= − +

= − −

x s s

x s s

U s s

1142.9
2
7

8
7

285.7
3
7

5
7

7714.4
11
7

5
7

1 1 2

2 1 2

1 2

Then the optimum solution is obtained by putting s1 = s2 = 0. This gives x1 = 1142.9, x2 = 285.7, 
and U = 7714.4. It can easily be shown that the results obtained by the graphical method are close 
to these values. However, the application of the simplex algorithm, as outlined here, is well-suited 
for digital computation and can be used effectively for large systems.

Efficient procedures are also available for several important practical problems in linear pro-
gramming. A few examples are indicated in terms of the following problems:

1. The transportation problem. This problem concerns the optimum way to distribute an item 
or product from a number of production plants to a number of warehouses. If a company 
has several plants with different outputs and several warehouses with different require-
ments, a shipping pattern may be established that minimizes transportation and manufac-
turing costs.

2. The allocation problem. As the name suggests, this problem deals with the alloca-
tion of resources such as machines and workers in order to maximize the output or 
minimize the costs. If an industrial establishment manufactures several items and each 
has its own requirements of time on various machines such as milling, grinding, and 
heat treatment facilities, the time allocated to different products may be varied for 
optimization. Example 10.7 considered this application to illustrate the use of linear 
programming.

3. Critical-path problems. These problems focus on finding the most efficient path through 
many tasks that must be carried out to complete a given operation such as the fabrication 
of a heat exchanger. The tasks that cause excessive delay are determined and other tasks 
arranged around these to minimize the total time.

4. The blending problem. In this case, the inflow of different raw materials and the produc-
tion of finished products are blended or mixed in such a way that the profit is maximized. 
An example of this problem arises in oil companies that buy crude oil of different quality 
from different sources and produce different finished products such as diesel, gasoline, and 
polymeric materials.

Problems such as the ones just outlined give rise to large linear systems for which linear pro-
gramming may be applied to minimize costs, maximize profits, or seek the optimum of some other 
objective function. The simplex algorithm, mentioned earlier, is one efficient scheme that searches 
along the boundary of the feasible domain from one vertex, given by the intersection of constraints, 
to the next until the optimum is obtained. For large-scale problems, such as telecommunication net-
works and electric power grids, other specialized and more efficient schemes have been developed. 
One such scheme is by Karmarkar (1984), which searches for efficient directions while working 
in the interior of the feasible domain, rather than searching only at the outer boundary. It can thus 
converge very rapidly to the desired optimum.
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10.3 DYNAMIC PROGRAMMING

Several engineering processes consist of a sequence of stages or continuous operations that can 
be approximated as a series of interconnected steps. In thermal systems, discrete stages such as 
pumps, compressors, evaporators, and condensers are frequently encountered. The output from one 
stage is the input to another stage, thus coupling all the stages. In addition, in many cases, such as 
chemical reactors, the process may be broken down into a series of smaller steps. Figure 10.7 shows 
a schematic of the various stages or steps in the manufacture of an insulated wire, going from the 
raw material to a spool of plastic-insulated wire. Dynamic programming is an optimization tech-
nique that is applicable to such processes and seeks to find the path through these stages or steps 
that would minimize cost, maximize output, or optimize some other chosen objective function. The 
word dynamic refers to iterative changes in the path and not to the usual connotation of changes 
with time.

Dynamic programming is quite different from the other optimization techniques such as 
Lagrange multiplier and geometric programming approaches because it yields an optimal function 
rather than an optimal point. It is similar to the use of calculus of variations to determine the path 
that would minimize, for instance, the distance traveled or energy consumed by an automobile in 
going from one point to another under given constraints. In dynamic programming, the total path is 
divided into a finite number of smaller steps, and variations in the location and sequence of the steps 
are used to obtain the optimal path. The method is well-suited to problems that involve a number of 
activities that can be treated as stages and can be varied in their relative positions in the process. By 
dividing a large complicated optimization problem into a series of smaller steps, the overall effort to 
obtain the optimum is reduced (Nemhauser, 1967; Stoecker, 1989; Bellman, 2003; Denardo, 2003; 
Lew and Mauch, 2006; Bertsekas, 2012) .

In going from one point to another through a sequence of steps, dynamic programming starts 
with one stage, analyzes it, and determines the optimum corresponding to it. It then proceeds to 
the next stage, obtains its optimum, and combines it with the previous stage. Optimal plans are 
established for subsections of the problem. Thus, it does not consider all possible combinations, but 
uses the optimal plans for the subsections, ignoring other nonoptimal plans. Once an optimum is 
determined for a particular subsection, it is not repeated for future calculations of other subsections 
and the final optimum. Figure 10.8 shows a sketch of a typical problem amenable to a solution by 
dynamic programming. Three possible locations exist for each of the three stations on the transport 
of material from A to B. The costs between different points are given and dynamic programming 
seeks a path through the three stations that would minimize the overall cost. Therefore, if ci rep-
resents the cost in each stage of the transportation of the material from one location to another, 
dynamic programming seeks to minimize the total cost C for n stages given by

 ∑=
=1

C Ci

i

n

 (10.45)

Dynamic programming is a useful technique for a variety of engineering and management prob-
lems, such as those encountered in plant layouts, transportation networks, pipeline for oil and water 
distribution, and manufacturing systems. Chemical engineers have extensively used dynamic pro-
gramming for the design, optimization, and control of chemical reactors and processes. However, 
the use of this optimization technique for thermal processes and systems is rather limited because it 

FIGURE 10.7 Discrete stages in the manufacture of a plastic insulated electrical wire.
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is often difficult to divide continuous processes into steps. When stages do arise, as in heating and 
cooling systems, the number of stages is often small and is generally not interchangeable or movable 
within the process.

Example 10.9

Use dynamic programming to find the path for minimum cost of transportation from point A  
to B in Figure 10.8 while passing through one of the three stations of locations C, D, and E.  
Employ the costs given in the figure and the following costs for going between the other 
locations:

1–1 1–2 1–3 2–1 2–2 2–3 3–1 3–2 3–3
10 14 20 14 15 16 20 16 15

SOLUTION

Starting with point A, there are three ways to reach C. However, we cannot eliminate the non-
optimal paths at this stage because the combination with the next step may change the optimum. 
In order to reach D1, we can go through C1, C2, or C3, resulting in three different subsections. 
Similarly, D2 and D3 can be reached by going through these three stations of C. Therefore, the 
total cost in going from A to D is given by

Through Cost to D1 Cost to D2 Cost to D3
C1 27 31 37
C2 29 30 31
C3 38 34 33

The optimal path for each subsection is underlined. We can similarly consider reaching E1, E2, 
and E3 through D1, D2, and D3. In each case, only the optimal solution for the subsection up to 
D is used and the others are ignored. This means that the cost up to D1 is taken as 27, up to D2 as 
30, and up to D3 as 31. Therefore, the total cost in going from A to E is given by

Through Cost to E1 Cost to E2 Cost to E3
D1 37 41 47
D2 44 45 46
D3 51 47 46

Again, the optimal solutions for the path up to E are underlined, indicating two choices with 
same cost for reaching E3. The costs from E to B are given in Figure 10.8. When these are added 

FIGURE 10.8 Use of dynamic programming to minimize the cost of going from point A to point B.
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to the optimum costs for reaching the three stations for E, it is seen that the cheapest is through 
E2 and has a total cost of 55. Therefore, the optimal path is given as A − C1 − D1 − E2 − B. By 
using the optimal solutions obtained earlier for the subsections of the overall path, the number of 
computations is reduced. The total number of combinations is 3 × 3 × 3 × 1 = 27. The number of 
calculations needed here is 9 + 9 + 3 = 21. Clearly, the benefit of dynamic programming in reduc-
ing the computational effort will increase as the number of steps is increased.

10.4 OTHER METHODS

Several other optimization techniques have been developed in recent years to meet the growing 
demand for optimization in many specialized and emerging areas. Some of these methods are 
new while others are based on many of the techniques discussed in this and previous chapters. 
A common circumstance encountered in design of systems is that of the objective function and 
the constraints increasing or decreasing monotonically with respect to a given design variable. 
Monotonicity analysis is a technique that may be used for such problems to determine which con-
straints directly affect the optimum and thus locate it. It also indicates how the feasible domain 
may be modified to improve the design in terms of the objective function (Papalambros and 
Wilde, 2000).

Another area of optimization that has received a lot of attention lately is that of shape 
optimization. In this optimization problem, the geometry or topology of the item is a variable, rather 
than just its dimensions. Thus, the shape of the part may be varied to minimize cost, maximize heat 
transfer rate, minimize weight, and so on, while the given constraints are satisfied. Generally, an 
initial geometry or shape is chosen and a numerical computation, usually based on the finite ele-
ment method because of its versatility, is carried out to determine the objective function. The shape 
is changed iteratively within the feasible domain to optimize the objective function subject to the 
constraints. The design variables include those that define the boundary or shape of the item under 
consideration. Such an iterative procedure, with changes in the shape, is possible mainly because 
of the availability of efficient computational schemes for analysis and fast computers. These ideas 
have been extended to the optimization of topology, profile, trajectory, and configuration in different 
types of systems and applications. Though an active area for research in the design of structures, 
shape optimization has not been used much in thermal systems and processes. Several other meth-
ods were outlined in Chapter 7 and some examples were given in Chapter 9. These include response 
surfaces and multi-objective design optimization. Genetic algorithms, artificial neural networks, 
and fuzzy logic are other approaches that are used in the optimization process, as discussed in 
Chapter 7.

Another approach to the optimization of processes and phenomena was proposed by Bejan 
(2000) in terms of the constructal law, which was stated as, “For a finite-size system to persist in 
time, it must evolve in such a way that it provides easier access to the imposed currents that flow 
through it.” This concept has been used to determine optimum shapes, patterns, and configurations 
for a wide range of applications. These include heat exchangers, electronic equipment, fluid flow 
systems, and other thermal processes and systems (Bejan and Lorente, 2008).

10.5 SUMMARY

This chapter presents several optimization methods that are of interest in engineering systems. 
However, some of these are not very useful for thermal systems, though they are important in other 
applications. Geometric programming is a nonlinear optimization technique that requires the objec-
tive function and the constraints to be sums of polynomials. Because many thermal systems can be 
represented by polynomials and power-law expressions with exponents that are positive, negative, 
fractions, or whole numbers, this technique is of particular value in the optimization of these sys-
tems. However, the results from analysis or curve fitting of numerical/experimental data must be 
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expressed in the form of polynomials. If the number of polynomial terms in the objective function 
and the constraints is greater than the number of variables by one, the degree of difficulty is said 
to be zero, and geometric programming is probably the simplest method to obtain the optimum. If 
the degree of difficulty is not zero, it is sometimes possible to reduce the problem to one with zero 
degree of difficulty. Otherwise, it may be best to use some other method.

Linear programming, which is extensively used in industrial engineering, economics, traffic 
flow, telecommunications, and many other important applications, requires that the objective func-
tion and the constraints be linear functions of the variables. Because thermal processes are gener-
ally nonlinear, linear programming is not very useful for thermal systems. However, some problems 
may be linear or the equations may be linearized in some cases, allowing the use of linear program-
ming. The basic approach for solving linear programming problems is discussed using graphical 
methods and algebra with slack variables. The frequently used simplex algorithm is also presented. 
The occurrence of the optimum at the domain boundaries is an important feature of these problems, 
and efficient methods are employed to move rapidly along the boundary or to go from one point on 
the boundary to the other through the interior region of the domain.

Dynamic programming leads to an optimal function rather than an optimal point. It is appli-
cable to processes that involve several discrete stages or that can be approximated by a series of 
steps. Thus, it seeks to optimize the path through the various steps. It is a useful technique for plant 
layout and production planning. In thermal systems, discrete steps, such as compressors, pumps, 
and turbines, are involved in many cases. However, there is generally little freedom to choose the 
sequence because the process determines this. In addition, only a few stages are often encountered. 
Thus, dynamic programming, though important for a variety of problems, is of limited interest in 
thermal systems. Similarly, other specialized techniques such as structural, shape, and trajectory 
optimization are outlined. Again, these approaches are of considerable interest in many engineer-
ing problems but are of limited use in the optimization of thermal systems. Search methods remain 
the most important optimization technique for thermal systems and various strategies have been 
developed to facilitate the use of these methods.
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PROBLEMS

 10.1 Solve the unconstrained optimization problem given in Example 8.2 using the geometric  
programming method. Compare the results obtained with those presented earlier and 
discuss the advantages and disadvantages of this method over calculus methods.

 10.2 Hot water is delivered by pipe systems with flow rates and1 2m m  . The total heat input Q, 
which is to be minimized, is given as

 3( ) 4( ) 151
2

2
2= + +Q m m 

  with the constraint

 201 2 =m m 

  Use geometric programming to obtain the optimal flow rates. First, recast the problem into 
an unconstrained circumstance and solve it. Then, solve it as the given constrained problem 
and compare the two approaches.

 10.3 Minimize the cost U of a system, where U is given in terms of the three independent vari-
ables x, y, and z as

 2
2

12 32= + − +U xy
xz

y z

  using geometric programming. Compare the results obtained with those from calculus 
methods. Comment on the differences between the two methods.

 10.4 The cost C in an extrusion process is given in terms of the diameter ratio x, the velocity ratio 
y, and the temperature z as

 50
300

4 5= + + +C
x
y xz

xy z

  Using geometric programming for this unconstrained problem, obtain the minimum cost 
and the values of the independent variables at the optimum.

 10.5 The cost C in a metal processing system is given in terms of the speed V of the material as

 = π
+ 2 17.5(3/ )

4/3

5/4 7/3 2C
KS

V V

  where K and S are constants. Using geometric programming, find the speed V at which the 
cost C is optimum. Is this point a maximum or a minimum?

 10.6 Solve the cylindrical storage tank problem given in Example 8.3 by geometric program-
ming as a constrained problem to determine the optimal values of the design variables. 
Also, calculate the sensitivity coefficient.
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 10.7 The cost C of a storage chamber varies with the three dimensions x, y, and z as

 12 2 52 2 2= + +C x y z

  and the volume is given as 10 m3 so that

 10=xyz

  Using geometric programming, calculate the dimensions that yield the minimum cost. Also, 
calculate the sensitivity coefficient. What does this quantity mean physically in this problem?

 10.8 The heat transfer rate Q from a spherical reactor of diameter D is given by the equation 
Q = hΔTA, where h is the heat transfer coefficient, ΔT is the temperature difference from the 
ambient, and A is the surface area, i.e., A = πD2. Here, h is given by the expression

 4.5 2.0 1 0.25 2= + ∆− −h D T D

  A constraint arises from the energy input and is given as

 400.5∆ =TD

  Set up the optimization problem for the total heat transfer rate Q. Using geometric program-
ming, find the optimum value of Q and the corresponding diameter. Also, find the sensitiv-
ity coefficient.

 10.9 The fuel consumption F of a vehicle is given in terms of two parameters x and y, which 
characterize the combustion process and the drag, as

 10.5 6.21.5 0.7= +F x y

  with a constraint from conservation laws as

 201.2 2 =x y

  Cast this problem as an unconstrained optimization problem and solve it by the Lagrange 
multiplier method and by geometric programming. Is it a maximum or a minimum?

 10.10 For the problem given in Example 10.5, if the total volume is given as 10 m3, obtain the 
resulting optimal conditions and compare them with those presented in the example. Also, 
calculate the sensitivity coefficient and discuss your results in terms of the value obtained.

 10.11 Simplify the problem given in Example 10.6 by reducing the number of constraints to one 
by elimination. Then apply geometric programming to obtain the optimum and compare 
the results obtained with those given earlier.

 10.12 The cost C of a system consisting of two components is given by the linear expression

 2 61 2= +C x x

  where x1 and x2 are independent variables that characterize the two components and must 
satisfy the constraints
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  Solve this problem by linear programming using slack variables, as well as the graphical 
method, to obtain the optimal value of C and the corresponding values of x1 and x2.

 10.13 Obtain the solution to the preceding optimization problem by using the simplex algorithm 
and compare the results with those obtained from the graphical method.

 10.14 Use the simplex algorithm to obtain the optimum for the constraints given in Problem 10.12 
if the objective function is given, instead, as C = 3.5x1 + 4.0x2. Comment on the difference 
in the results from those obtained in the earlier problem.

 10.15 Using the simplex method, derive the optimum for the problem posed in Problem 10.12 if 
the last two constraints are replaced by the inequalities
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  while the remaining problem remains unchanged.
 10.16 Using the graphical linear programming method, determine the variables x1 and x2 that 

yield an optimal value of the objective function

 2.51 2= +U x x

  subjected to the constraints
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 10.17 The number of components produced by a company in two different categories are x and y. 
The objective function is the overall income U, given by

 1.25 1.75= +U x y

  subjected to the constraints
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  Solve this problem by any linear programming method to obtain the optimum number of 
components produced.

 10.18 Determine whether your conclusions will be affected if, in Example 10.9, all the costs 
given for going between the following locations are all increased by a fixed amount  
of 2; i.e.,

1–1 1–2 1–3 2–1 2-2 2–3 3–1 3–2 3–3

12 16 22 16 17 18 22 18 17

  while the remaining costs are unchanged. What would happen if these were increased by  
4 instead? Discuss your findings.
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 10.19 Solve the dynamic programming problem shown in Figure 10.8, if the costs involved in 
going between various locations are

A–1 A–2 A–3 1–B 2–B 3–B

19 20 17 18 16 21

  and for the others

1–1 1–2 1–3 2–1 2–2 2–3 3–1 3–2 3–3

12 15 19 15 13 17 18 18 16

 10.20 Solve the dynamic programming problem shown in Figure P10.20, with the time 
(in minutes) between the various locations given as

A–1 A–2 A–3 A–4 1–D 2–D 3–D 4–D

10 14 12 15 16 12 10 8

and

1–1 1–2 1–3 1–4 2–1 2–2 2–3 2–4

16 20 14 17 12 14 15 6

3–1 3–2 3–3 3–4 4–1 4–2 4–3 4–4

10 11 13 18 8 11 14 22

  Determine the optimum path that leads to the minimum amount of time in going  
from A to D.

FIGURE P10.20 
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11 Knowledge-Based Design and 
Additional Considerations

The basic approach to the design and optimization of thermal systems has been presented in the 
preceding chapters. Different steps in the design process, starting with the formulation and the con-
cept, have been presented to obtain acceptable designs, followed by optimization. Many additional 
aspects that must be included in practice for a successful design have also been outlined. These 
include economic, safety, environmental, regulatory, legal, and other issues that may be technical 
or nontechnical in nature. These considerations are of critical importance, because a design that is 
technically feasible may not be acceptable because of the excessive cost or because it violates regu-
lations regarding safety or the environmental impact.

In this chapter, we will consider knowledge-based design, which is a non-traditional design 
methodology based on experience, informal approaches or heuristics, information on existing sys-
tems, and current practice. It includes the knowledge base pertaining to the process or system 
under consideration, as well as reasoning or inference that can be used to acquire new knowledge 
and suggest solutions. The main elements of this method and the overall scheme are outlined, 
followed by examples of a few thermal systems to demonstrate the power and usefulness of this 
approach.

Also considered in this chapter are some additional important issues with respect to the design 
of thermal systems, such as professional ethics and other constraints. The sources of informa-
tion that may be employed to provide inputs for design are also outlined. Some of the important 
sources for information on material property data, characteristics of components, economic vari-
ables, optimization techniques, computer software, etc., are given. An overview of the design and 
optimization of thermal systems is also presented. This overview serves to put the entire design 
and optimization process in perspective. Several design projects are included as problems at the 
end of the chapter to cover the entire process for common thermal systems. Groups of students 
may use these as projects in design courses that involve design and optimization undertaken over 
the period of a semester.

11.1 KNOWLEDGE-BASED SYSTEMS

With the extensive growth in computer-based design, considerable effort has been directed at 
streamlining the design process, improving the design methodology, automating the use of exist-
ing information, and developing strategies for rapid convergence to the final design. Many of these 
techniques are discussed in the literature (Suh, 1990; Rosenman et al., 1990; Sobieszczanski-
Sobieski et al., 2015). A particularly important approach that is finding increasing use in the design 
process is that of knowledge-based design. The development and use of this tool is based on the 
premise that the more the machine or computer knows or learns as it proceeds, the more effective 
and efficient this process will be. Therefore, an attempt is made to include relevant information on 
the system, process, and current practice, adding to this information with time and employing the 
information base to guide the design. The experience gained by a designer over time and various 
so-called rules-of-thumb or heuristics are also included. Recent advancements in computer science 
in areas such as information storage and retrieval, artificial intelligence, and symbolic languages 
are used in developing knowledge-based design aids, which are then used to provide inputs to the 
design process.
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11.1.1 introDuction

Storing the knowledge and experience of an expert in a particular area and using these to make 
logical decisions for selection, diagnostics, and design is the basic concept behind knowledge-based 
systems. Therefore, knowledge-based systems are also sometimes known as expert systems and 
involve artificial intelligence (AI) features such as

1. Stored expert knowledge and experience
2. Reasoning
3. Decision making and logic
4. Learning

AI is used in many areas such as natural languages, database systems, expert consulting systems, 
theorem proving, manufacturing, scheduling, pattern recognition, image processing, model devel-
opment, and design. Recent years have seen considerable growth in AI and its application to dif-
ferent problems, and the basic approaches, scope, and definitions in the field have undergone many 
changes over the last decade. Examples of software in use include MYSIN, which diagnoses dis-
eases; PROSPECTOR, which evaluates potential ore deposits; MACSYMA, which solves problems 
in calculus by using symbolic manipulation; and DENDRAL, which finds structures of complex 
organic compounds. Several expert systems have been developed for the design of different types of 
systems, including thermal systems, and are discussed later in this chapter.

The knowledge-based methodology requires efficient storage of the knowledge base so that 
repetition is avoided, minimum space is taken, and rapid retrieval of information is possible. 
A common arrangement used for the storage of information is a tree structure, in which objects are 
organized in a hierarchical scheme with certain objects taken as subclasses of other objects. These 
subclasses inherit the common features from the objects above it. Therefore, a relationship similar 
to that of a parent and child is established with respect to inheritance of characteristics and proper-
ties. Figure 11.1 shows a tree structure for storing information on animals, with only two choices at 
each step. So if we consider a cat, its hierarchy indicates that it is a nonvegetarian, nonflying land 
animal. Only information specific to cats needs to be placed at the particular location, with more 

FIGURE 11.1 Tree structure for storing data on animals.
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general features being derived from its hierarchy. Genetic algorithms, discussed earlier, employ 
many of these concepts for optimization.

Similar tree structures can be developed for thermal processes, as given in Figure 11.2 for cool-
ing systems for electronic equipment. Different types of cooling arrangements, fluids, and transport 
mechanisms are included. In earlier chapters, Figure 2.7 gave a similar tree structure for forced con-
vection cooling, considering different types of systems. Similarly, Figure 2.32 gives a tree structure 
that can be used to store information on different types of materials. Again, the use of subclasses 
helps in information storage and retrieval. The types of information that may be stored are knowl-
edge and experience available with an expert or design engineer, material characteristics, design 
rules, empirical data, and other inputs that may be used for design. In many practical cases, intuitive 
ideas, heuristics, and general features are used to guide the design. These may also be built into the 
system to obtain an acceptable or optimal design.

11.1.2 bAsic components

The main components of a knowledge-based design system, shown in Figure 11.3, are

1. Front end
2. Computational modules
3. Material databases
4. Graphics output
5. Knowledge base

The user interacts with the front end, which interfaces with the other components of the system. 
Numerical, symbolic, or graphical inputs are provided by the user to the front end. The geometry, 
configuration, dimensions, materials, and operating conditions are entered. This is quite similar to a 
wide range of commercially available software in different areas. The front end then obtains mate-
rial property data and supplies these to the computational modules to obtain the simulation results 
needed for design. Empirical data, correlations, component characteristics, etc., may be included 
in the computational modules to complete the modeling and the simulation. These are linked with 

FIGURE 11.2 An example of a tree structure for storing data on cooling of electronic equipment.
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the knowledge base. The given design rules are then used to obtain the final design, which is then 
communicated as graphical or tabulated results.

11.1.2.1 Front End and Knowledge Base
The front end contains the design rules, constraints, requirements, design variables, and other 
aspects pertaining to the given system. Some of these, particularly constraints due to material limi-
tations, are obtained from the databases associated with the system. The knowledge base contains 
the relevant knowledge, which includes

1. Information from previous designs
2. Rules of thumb or common known features of the system
3. Heuristics based on informal methods
4. Safety and environmental regulations
5. Information on existing and similar systems
6. Current engineering practice
7. Other information that constitutes the experience of a designer

All this knowledge may be used in the development of a realistic and successful design. Therefore, 
the knowledge base is an important component of this design methodology. It helps a designer avoid 
mistakes made in the past and use earlier design efforts for accelerating the iterative design process. 
It is worth noting that many of these aspects are typically employed in the design process even if the 
systematic approach given here is not followed.

11.1.2.2 Computational Modules
The computational modules house algorithms for numerical simulation of the system. This compo-
nent is particularly important for the design and optimization of thermal systems, because computer 
simulation results usually form the basis for design. Even if items such as pumps, heat exchangers, 
and compressors are only to be selected for the thermal system, computational effort is needed for 
analyzing the system to ensure that the given requirements and constraints are satisfied. Various 
computational techniques are stored in the form of subroutines, which can be called from the front 
end to provide computational results. Examples of methods that may be included for thermal sys-
tems are

1. Gauss-Jordan method for matrix inversion
2. Least squares method for best fit
3. Numerical differentiation and integration
4. Successive over relaxation (SOR) method for linear algebraic equations

FIGURE 11.3 Components of a knowledge-based system for design.
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5. Runge-Kutta method for ordinary differential equations
6. Finite-difference and finite-element methods for partial differential equations

Separate modules may be developed for a given problem, such as a glass furnace, air condition-
ing system, diesel engine, etc. Information on the discretization methodology, convergence criteria, 
data storage for graphics, etc., is included to enable accurate results to be obtained and linked 
with the other parts of the system. Programming languages such as Fortran and C or software like 
Matlab and Mathcad are used for carrying out rapid computations. Parallel computing, with a large 
number of processors, is commonly employed for faster response from these modules. Empirical 
data, usually in the form of correlations, are also included here.

11.1.2.3 Material Databases
The material databases contain information on various materials that are of interest for the types of 
systems under consideration. Important items that may be included are

1. Thermal properties
2. Allowable ranges of temperature and temperature gradient
3. Strength data, hardness, malleability, and other physical characteristics
4. Cost per unit mass or volume
5. Availability, including import considerations
6. Manufacturability or ease of fabrication
7. Environmental effect

Thermal properties, such as thermal conductivity, diffusivity, specific heat, density, and latent 
heat, are stored for thermal systems, usually at different temperatures or as functions of tempera-
ture. In order to avoid damaging them, constraints on temperature and temperature gradient are 
given for the various materials. Damage may occur, for instance, due to the melting or charring of 
the material, thermal stresses, and deformation at high temperatures. Cost, availability, manufactur-
ability, strength, and other relevant properties are important in material selection and should also be 
included. The information stored is usually a strong function of the application. Again, the informa-
tion is stored in terms of classes and subclasses of materials, as shown in Figure 2.32, to facilitate 
inclusion of additional property data and information retrieval.

11.1.2.4 Graphical Input/Output
The graphical output is important for convenience and proper use of the system for design. 
Impressive advancements have been made in graphics software, and it is quite easy to obtain the 
outputs in different forms suitable for a wide variety of applications. Some of the important features 
available in current systems are

1. Line graphs and contour plots
2. Menu-driven software
3. Real-time output
4. Three-dimensional plots
5. Choice of scales
6. Different viewing angles
7. Color graphics

Therefore, the outputs can be fine-tuned to a given application. For example, if a plastic screw 
extruder is being designed, the pressure and temperature rise in the extruder as the material flows 
from the hopper to the die may be displayed. As an example, Figure 11.4 shows the temperature 
distribution in the channel of a plastic extruder in terms of isotherms. The temperature distributions 
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FIGURE 11.4 Isotherms and temperature distributions in the channel of a plastic screw extruder. Here θ, y*, and z* are dimensionless temperature, cross-channel coor-
dinate distance, and down-channel distance, respectively. H is the channel height. (Adapted from Karwe and Jaluria, 1990.)
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across the channel at four down-channel locations are also shown. This figure shows how the plastic 
heats up as it moves from the hopper at z* = 0 to the die at the other end of the channel. In iterative 
design, the results may be displayed after each iteration, allowing the user to observe the conver-
gence to the final design and to intervene if the iterative process appears to be diverging or if the 
design emerging from the design process is not satisfactory. Color graphics may also be used to 
indicate hot and cold regions in the flow.

Graphical inputs to the front end are important in many applications because the geometry, 
boundary conditions, and dimensions are most conveniently entered on a graphical display. An 
example of casting is seen in Figure 11.5, where the mold, cast cavity, runner, and thermal condi-
tions at the outer surfaces are shown. Such a schematic may be displayed and the user may interac-
tively enter the appropriate quantities and parameters such as dimensions, heat transfer coefficients, 
and materials. Many available programming languages, such as Visual Basic, are particularly suited 
for such graphical inputs.

11.1.2.5 Languages
The programming language employed in the knowledge-based design system forms another impor-
tant consideration. Languages, such as LISP, PROLOG, SMALLTALK, and PYTHON, which 
allow the use of symbols rather than just numbers for manipulation and control of the software, 
are particularly useful for the front end and the knowledge base. For instance, descriptions of a 
surface as “smooth,” viscosity as “high,” and disturbances as “small” are all symbolic in form and 
digital values may or may not be associated with these. This is similar to the concept of fuzzy logic 
discussed in Chapter 7. In the storage and use of knowledge, we need symbolic representations for

1. Symbolic manipulation of objects
2. Rules of thumb and heuristic arguments in symbolic form
3. Inputs/outputs given in symbolic form
4. Use of symbolic notation for storage of data
5. Symbolic representation of design rules

A symbolic environment allows the versatility and flexibility needed for specifying design rules, 
constraints, expert knowledge, and other pertinent information. LISP was a commonly used language 
and variations of LISP are often used to develop expert system shells in which the rules and expert 
knowledge for a given application can be easily entered (Winston and Horn, 1989). PROLOG and 
its various versions, such as Sigma PROLOG, have a variety of other features that may be appropri-
ate for certain types of applications (Clark and McCabe, 1984; Bratko, 2011). One of these features 
is easy link with computational modules, which are often based on languages such as FORTRAN 
and C, and this makes PROLOG attractive for the design of thermal systems. SMALLTALK is a 
more powerful language, but it is more complicated and more difficult to implement (Brauer, 2015). 

FIGURE 11.5 Geometrical configuration of an ingot casting process.
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PYTHON is widely used for AI and has many useful packages that may be employed for different 
applications (Lutz, 2013).

As previously mentioned, computations are generally performed in scientific programming lan-
guages. Parallel computing is particularly attractive for the design and control of thermal systems 
because very fast computations can be achieved, allowing real-time simulation of many systems and 
providing appropriate graphical outputs. Multi-core processors, distributive computing, massively 
parallel systems, grid computing, and computer clusters are some of the computing environments 
that employ algorithms that make effective use of multiple processors to speed up the computations.

11.1.3 expert knowleDge

Expert systems are based on the knowledge, or expertise, of an expert, so that the logical decisions 
made by an expert in a given area can be made by the computer itself. Empirical data, heuristic 
arguments, and rules for making decisions are all part of this knowledge-based methodology. The 
expert knowledge is obviously specific to a given application and represents the knowledge and 
experience acquired by the expert over a long period of work in the area of interest (Jackson, 1999; 
Giarratano and Riley, 2005; Ryan, 2018).

For instance, if an expert system is to be developed for the solution of differential equations, an 
expert will tell us that the solution depends on the nature of the equation, some of the important 
characteristics being

1. Ordinary or partial differential equation (ODE or PDE)
2. Linear or nonlinear
3. Order of the equation
4. Initial-value or boundary-value ODE
5. Characteristics of PDE: elliptic, parabolic, hyperbolic

Using mathematics, we can develop rules to determine the nature of the equations. A database 
of analytical solutions can be built and expert knowledge can be used to determine if a particular 
equation can be solved analytically. Then a search in the database may yield the desired solution. If 
a numerical solution is necessary, the knowledge base may again be used to choose the following:

1. Numerical scheme
2. Grid size and discretization
3. Appropriate time step so that numerical stability is ensured
4. Convergence criterion to terminate iteration
5. Initial guessed values, if needed

A computational expert uses his or her experience and knowledge in deciding many issues such 
as the method, grid for desired accuracy, termination of scheme, obtaining an analytical solution 
if possible, accuracy of the numerical results, and so on. Therefore, one who is presumably not an 
expert in this area can use this expertise effectively to guide the solution. A database of analytical 
solutions, different numerical methods, stability criteria, and other constraints and rules is built into 
the expert system (Russo et al., 1987). The knowledge base will be useful for an inexperienced user 
as well as users who may have a stronger background in the area, because the information available 
can guide and confirm the decisions to be made. We all use such knowledge in a variety of actions 
and decisions in our daily lives.

An important element in the development and use of knowledge-based methodology is object-
oriented programming, developed using a programming language such as C++, Python, or Java. 
In a non-object-oriented, or procedural, environment, a programmer begins with an initial state 
and, through a set of prescribed procedures, arrives at the goal. For example, to invert a matrix in 
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procedural programming, one must prescribe every step of the method. In an object-oriented envi-
ronment, a message would be sent to an object called matrix inversion, which is like a subroutine 
and which would invert the matrix. The object would already have all the necessary information 
on the procedures for inverting a matrix. Thus, an object is the housing used to store information. 
This information comes in the form of procedures known as methods, which can act on the given 
data, being a matrix in this example, upon receiving a message to do so. Objects are organized in a 
hierarchical scheme with certain objects taken as subclasses of other objects, as discussed earlier. 
These subclasses, therefore, inherit the common features from the methods of the object above it. 
The three components of the object-oriented system described here are encapsulation, message 
passing, and inheritance (Cox and Novobilski, 1991; Budd, 2002).

All the information needed to use an object is stored in the object itself. The methods embedded 
or encapsulated in each of the objects are unique to that object. Therefore, encapsulation makes dif-
ferent objects reusable and reduces duplication within a program. Message passing is independent 
of the methods and is like a call statement, making it possible to execute the methods stored in the 
object. Inheritance gives each object access to the features of the methods from the class above it 
on a tree structure. This aspect allows any system to be easily modified by adding an object, or 
subroutine, without affecting any other object. With the use of these features of object-oriented 
programming, it is easy to store and retrieve expert knowledge. Many of the features outlined here 
have been built into many common software platforms used in engineering simulation and design.

11.1.4 Design methoDology

In the traditional design process, the designer uses the results from modeling and simulation of a 
system to vary the design variables and to choose appropriate values that would lead to a design 
that satisfies the given requirements and constraints. In this process, the designer often uses addi-
tional information on environmental and safety regulations, material properties, empirical data 
on the characteristics of some components, economic issues, and so on, to obtain an acceptable 
or optimal design. All these aspects have been considered in the preceding chapters. However, 
the designer also relies on experience, current engineering practice, and existing information on 
the design of similar systems to choose between different alternatives at various stages of the 
design process. The inclusion of this expert knowledge is often crucial to the development of a 
successful design. For instance, the designer may be aware of the types of materials that have 
been used in previous designs and may be able to narrow the search rapidly by this expert knowl-
edge. Similarly, the choice of the type and size of the compressor to be employed for an air con-
ditioning system will benefit from the knowledge of an expert who has worked on such systems 
and knows the typical components used.

A typical design process involves an initial concept, analysis, choice of design variables, evalua-
tion, and redesign, until acceptable or optimal design is obtained. All of these features may be built 
into the design procedure to accelerate convergence to the final design as well as to ensure that real-
istic and practical designs are considered. Therefore, a knowledge-based system for design includes

1. Design rules. Requirements, constraints, heuristics, priority of different considerations, 
and rules of thumb.

2. Knowledge base. Expert knowledge, accepted practice, information on existing systems 
and previous designs, material properties, and federal and state regulations.

3. Simulation. Mathematical, numerical, and other models, graphical and numerical input/
outputs, numerical methods, design variables, off-design conditions, etc.

4. Design. Use of computed results with design rules and knowledge base to obtain accept-
able designs; evaluation of designs.

5. Optimization. Design variables are adjusted to optimize chosen objective function, knowl-
edge base is used to guide the process and select the domain.
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The knowledge base is used at various stages of the design process, starting with the selection of 
an initial design and varying dimensions, geometry, materials, and other design variables to obtain 
the final design. The model used for simulation is also varied, as needed, for accurate results. The 
most important contribution of this methodology is that it includes the experience and expertise of 
a knowledgeable designer. This helps in avoiding unrealistic and impractical designs, thus focusing 
rapidly on a domain of acceptable designs. This methodology is particularly valuable in optimiza-
tion because a lot of unnecessary expense is avoided by considering the iterative improvement 
in the design in the context of the relevant knowledge base, stopping if a particular approach is 
unacceptable.

Finally, it must be pointed out that even though knowledge-based design aids are often con-
sidered nontraditional, the experience and knowledge of a designer are routinely used in design 
without actually developing a system to bring this information into the process. Therefore, the ideas 
presented here can be effectively used in the various design procedures presented in this book by 
including a knowledge base that is linked with the simulation and design evaluation processes.

11.1.5 ApplicAtion to thermAl systems

A lot of work has been done on the use of knowledge-based design aids in areas such as electronic 
and mechanical systems, particularly in the selection of components like resistors, capacitors, gears, 
bearings, cams, and dampers. As discussed in Chapter 1, selection is a much simpler process than 
design, though it may form part of the overall design process. Information on available components 
is stored in a hierarchical manner, as outlined earlier, and the given requirements are matched with 
the available items using various selection rules and logic. Expert systems have found use in many 
other areas in a similar way for selecting items and making logical decisions based on expert knowl-
edge. However, the use of knowledge-based methodology for design is a relatively recent phenome-
non because the problem is much more involved as compared to selection (Dixon, 1986; Sriram and 
Fenves, 1988; Rychener, 1988; Luger and Stubblefield, 1989; Sriram, 1997; Tong and Sriram, 2007).

The application of knowledge-based methodology to the design of thermal systems has received 
even less attention because of the complexity of these systems and the need to couple numerical sim-
ulation with design rules for typical systems. Nevertheless, there is growing interest in knowledge-
based design aids for thermal systems because the work done thus far has indicated the advantages 
and the power of this approach. Even if an entire knowledge-based system is not developed, the basic 
ideas contained in this methodology can be incorporated into the design process in order to acceler-
ate convergence to the final design and to ensure that the design is realistic and in line with current 
engineering practice and knowledge.

Most of the examples on design discussed in this book would benefit from the inclusion of 
knowledge-based engineering in the process. To some extent, this knowledge is available to the 
designer who uses it at various stages of the design process. Some of the activities where expert 
knowledge is particularly useful are

1. Obtaining a conceptual or initial design
2. Developing a suitable model
3. Choosing domain and conditions for simulation
4. Choosing appropriate materials
5. Evaluating different designs
6. Formulating the optimization problem
7. Developing the final design, considering cost, safety, environmental, and other issues

At all these stages, the experience of the designer can play a significant role. We have already 
discussed creativity and use of information available from existing and previous designs for ini-
tial concept, model development, and optimization. Similarly, knowledge of the types of materials 
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available, manufacturing processes, applicable regulations, decisions made in the past, success and 
failure in previous designs, and current trends will help in keeping the design process contained 
within a realistic domain so that the chances of a successful design are high. The following exam-
ples illustrate the use of knowledge-based design methodology for the design and optimization of 
thermal systems.

Example 11.1: Casting

Let us consider the casting of a material in an enclosed region, as sketched in Figure 1.3. This is 
an important manufacturing process and is used extensively for metals, alloys, and other materi-
als. The need for design and optimization of the system arises because of the desire to reduce 
the solidification time to enhance production rate and to improve the product quality in order to 
meet desired requirements. A large number of design parameters and operating conditions arise 
in this problem, such as materials, geometry, initial melt pour temperature, cooling fluid and its 
flow rate, and dimensions. The quality of the casting is determined by grain size, composition, 
directional strength, concentration of defects, voids, thermal stresses, etc. It is necessary to carry 
out a thermal analysis of the solidification process, using modeling and simulation, to obtain inputs 
for design and to evaluate the nature of the casting. Therefore, the decision-making module must 
be coupled with the computational module. Figure 11.6 shows the algorithm for the design of 
the thermal system for ingot casting, using inputs from expert knowledge on this process. This 
includes constraints on the time rate of temperature change ∂T/∂τ. Heuristics are useful in specify-
ing the characteristics of the casting such as the shape of liquid-solid interface, grain structure, 
and smoothness of surface.

A PROLOG-based decision-making front end was interfaced by Viswanath and Jaluria (1991) 
with a FORTRAN-based computational engine, using the various other system components dis-
cussed earlier in this chapter, for rapid design. Several different analytical and numerical models, 

FIGURE 11.6 Algorithm for the design of ingot casting process.
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with different levels of accuracy and complexity, are available for this problem (Ghosh and 
Mallik, 1986; Jaluria, 2018). These include the following:

1. Steady conduction in solid model: Melt is taken at freezing temperature, mold at fixed 
temperature, and steady conduction in the solidified region is assumed.

2. Chvorinov model: Entire thermal resistance is assumed to be due to the mold, and 
energy balance is used.

3. Lumped mold model: Temperature in the mold is assumed to be uniform and time-
dependent, melt is taken at freezing temperature, and steady conduction in the solid is 
assumed (see Example 4.8).

4. Semi-infinite model: Semi-infinite approximations are used for the mold and the solidi-
fied region.

5. One-dimensional conduction model: Transient one-dimensional temperature distribu-
tion is assumed in the mold, solidified region, and the melt (see Section 5.3.2).

6. Two- and three-dimensional models: Natural convection flow in the melt is included 
along with conduction in the mold and the solidified region.

7. More sophisticated models: Needed for alloys, generation of voids and defects, compli-
cated geometries, etc.

Three of the simpler models are shown in Figure 11.7. The governing equations and analytical/
numerical techniques for solving them were discussed previously. Therefore, different models may 
be chosen, depending on the application and materials involved. Expert knowledge plays a major 
role here. For instance, if an insulating material such as ceramic or sand is used for the mold, the 
Chvorinov model may yield good results, because most of the thermal resistance is in the mold. 

FIGURE 11.7 Different mathematical models for ingot casting. (a) Chvorinov model, (b) lumped mold 
model, and (c) semi-infinite model.
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One-dimensional models are adequate for solidification near the boundaries. Sophisticated mod-
els are needed for alloy solidification and for considering the microstructure in the casting.

The optimal design may be obtained with solidification time for a given casting being chosen 
as the objective function and employing constraints from the expert knowledge to avoid unac-
ceptable thermal stresses and defects in the casting. We can start with the simplest model and 
keep on moving to models with greater complexity until the desired details are obtained or the 
results remain essentially unchanged from one model to the next. Thus, models may be automati-
cally selected using decision-making based on accuracy considerations.

In a typical design session, the cooling parameters are first varied to reduce the solidification 
time. If the solidification time τs does not reach the desired value, the pour temperature of the 
melt may be varied. If even this does not satisfy the requirements, the thickness of the mold wall 
may be changed. The material of the wall may also be varied, if needed. Thus, by first varying 
the operating conditions and then the dimensions and materials, the solidification time may be 
minimized or brought below a desired value. Figure 11.8 and Figure 11.9 show some typical runs 
for the design of the given system. Each successful design may be stored for help in future designs. 
This is the process of improving the system through learning from past experiences. Figure 11.8 
also shows the switch to a more accurate model to improve the simulation results.

Example 11.2: Die Design

Die design is an important consideration in plastic extrusion because the operation of the extruder 
system and the quality of the final product are strongly influenced by the die. Even though a die 
is often treated as a component of the extruder, practical dies are usually subsystems consisting 
of different parts, such as entrance, flow channel, and exit regions, which are attached to each 
other through couplings and screws, as well as the heating/cooling arrangement at the outer wall 
to maintain a desired temperature. Pressure and temperature monitoring/control arrangements are 
also included.

Figure 11.10 gives a sketch of a simple extrusion die with a circular cross-section. The inlet and 
outlet diameters are given, the former from the design of the screw extruder to which the die is 
coupled and the latter from the desired outflow or extrudate diameter for the given application. 
The materials to be extruded and the allowable range of mass flow rates are also given. The design 
variables are the geometry or shape of the flow channel, entrance and land lengths, material 

FIGURE 11.8 Results for design of an ingot casting system, showing solid-liquid interface movement with 
time, and switching to a more complex model after many design trials.
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and thickness of the walls, and temperature or heat transfer conditions at the outer surface of the 
wall. Constraints arise due to the material limitations and determine the acceptable pressure and 
temperature ranges. We also want to avoid stagnation and recirculating flow in the die in order to 
avoid overheating or damage to the extrudate and thus obtain products of high quality. An accept-
able design is one that gives the desired flow rates without violating the constraints. An optimal 
design may also be obtained so that the pressure needed at the die entrance for a given flow rate 
is minimum. These considerations define the design and optimization problem. Other objective 
functions are also possible and may be used, depending on the given application.

The analysis of the flow and heat transfer in the die may be undertaken by means of avail-
able information on characterizing equations and numerical techniques (Michaeli, 2017; 

FIGURE 11.9 Results for design of an ingot casting system, showing solid-liquid interface movement with 
time for many design trials.

FIGURE 11.10 A cross-sectional view of an extrusion die and its circular outlet.
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Rauwendaal, 2014) for different designs. An initial design is taken, analyzed, and evaluated 
by using the simulation results. If the design does not satisfy the given requirements, a new 
design is generated and the procedure is repeated. This iterative process is carried out until an 
acceptable design is obtained or the objective function does not vary significantly from one 
iteration to the next (Jamalabad et al., 1994).

Knowledge-based design methodology is used effectively for selecting an initial design. Two 
strategies may be used for this purpose. The first is based on a library of designs built using 
information from earlier design efforts and from existing systems. The design closest to the given 
problem may be selected by comparing the designs in the library with the desired specifications. 
The second approach is based on expert rules for die design. Employing knowledge and experi-
ence used by an expert, rules may be set down to generate a design for the given requirements 
and constraints. Preliminary evaluations and estimates are used to develop a possible design that 
is used as an initial design. Of course, the user can always enter his or her own initial design if the 
output from the library or the expert rules is not satisfactory. Figure 11.11 shows the initial design 
module giving these different strategies.

The knowledge base is also used in the redesign module to evaluate a given design and, if 
this is not satisfactory, to generate a new design. Expert rules are written based on earlier experi-
ence and knowledge from an expert. These establish the relationship between a design variable 
and the objective function, which may be a performance indicator based on several items such 
as the pressure needed for a given flow rate, flow characteristics, temperature gradients, etc. 
Several efficient strategies can be developed for selecting the design variables to go from one 
design to the next. A single variable may be considered at a time or all the important ones may be 
varied to obtain new designs, known as spawns of the old design, or parent. Figure 11.12 shows 
a schematic of the redesign module based on these concepts. The selection of design variables 
for the new design is guided by expert rules as well as the results of the design process up to the 
given instant. Thus, the efficiency of the iterative process is substantially improved. Figure 11.13 
shows the advantage of selective search, which avoids local infeasible minima, as compared to 
an exhaustive search, in the drive toward the optimum given by a minimum value of a numeric 
heuristic performance indicator.

FIGURE 11.11 Initial design module. (Adapted from Jamalabad et al., 1994.)
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11.1.5.1 Other Examples
Several other examples where knowledge-based design methodology has a significant advantage 
over the traditional approach may be given. The computer-aided design system considered in 
Example 2.6 and the cooling system for electronics considered in Example 5.5 are two design prob-
lems that were solved earlier by traditional methods and that will benefit substantially by the use of 

FIGURE 11.12 Schematic for the redesign module. (Adapted from Jamalabad et al., 1994.)

FIGURE 11.13 Comparison of redesign strategies for a 1 cm outlet circular die for extruding low-density 
polyethylene (LDPE) at 400 kg/h. (Adapted from Jamalabad et al., 1994.)
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a knowledge base. Both of these problems are complex, even though simple mathematical models 
were employed for simulating the systems for idealized and simplified conditions. More sophisti-
cated and complex models would generally be needed for practical problems, resulting in a large 
number of design variables and additional constraints. There is a considerable amount of expert 
knowledge available on these systems that may be used to narrow the domain of feasible designs 
and to facilitate the convergence to the acceptable or optimal design.

Considering first the forced-air oven of Example 2.6, the formulation of the design problem, 
in terms of given quantities, requirements, design variables, and constraints, was given earlier. A 
knowledge-based system will enhance the design process by including variation in geometry, model 
used, materials employed, and even the conceptual design, which is often kept fixed in traditional 
design. By using symbolic notation and expert knowledge, these variables may be changed easily 
if the design does not satisfy the given requirements and constraints over the ranges of the chosen 
design variables.

Some of the important items contained in the expert knowledge base used for this problem are

1. Design rules: Problem formulation, material limitations
2. Different models: Lumped, one-dimensional, two-dimensional, etc.
3. Choice of heat transfer correlations: Laminar/turbulent flow, geometry
4. Priority for changing variables: First heat input Q, then flow rate, followed by dimensions, 

materials, and geometry
5. Different computational approaches: Runge-Kutta, finite-difference, Matlab
6. Information on existing designs: Provides starting values for Q and heat transfer coeffi-

cient h, and initial geometry and dimensions
7. Redesign within acceptable domain: From knowledge base on cost, availability, size, lim-

its on Q, flow rate, etc.
8. Material database
9. Storage/retrieval of collected information: Storage of simulation and design results for use 

in future designs
10. Different design concepts: Used to vary conceptual design

All these features make the design strategy presented here very powerful because a wide spec-
trum of changes can be made and the available material database, stored computational methods, 
different models, and knowledge base can be used to obtain a feasible or optimal design. The prior-
ity for changing design variables is based on the expert knowledge and is used to make decisions 
that would generate new designs. If the changes in Q, flow rate, and dimensions do not lead to a 
feasible design, the materials are changed, using inputs from the database for properties, cost, and 
limitations. If even this does not yield an acceptable design, the geometry may be varied, using the 
expert knowledge to consider different geometries and to obtain the relevant model and numerical 
scheme. Finally, if a feasible design is still not obtained, other conceptual designs may be consid-
ered. A similar approach may be used for obtaining an optimal design. Clearly, a versatile, efficient, 
and powerful design strategy can be developed using knowledge-based methodology to design ther-
mal systems in a given area or knowledge domain. Jaluria and Lombardi (1991) and Lombardi et al. 
(1992) have presented this approach in detail and some of the results obtained on this problem.

Similarly, the design of the cooling system for electronic equipment, considered in Example 5.5, 
may be enhanced by the use of knowledge-based design methodology. The main requirement is that 
the allowable temperature of the electronic components must not exceed a given value for proper 
functioning of the system. The expert knowledge on these systems may be used to expand the items 
that may be varied for a feasible design. For instance, we could consider

1. Different modes of cooling: Air cooling, liquid immersion, boiling
2. Different types of flow systems: Fans, blowers, natural convection
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3. Different geometries: Arrangement of boards, sources, number of boards
4. Different materials: Choice of materials from list of allowable ones
5. Dimensions: Height, width, and thickness of boards; spacing between these

Several of these variables were considered in Example 5.5 to obtain a feasible design. However, 
variation of materials is simplified by the use of the knowledge base because only acceptable mate-
rials, with appropriate properties and cost, are considered, and a materials database is available. 
Variations in geometry, mode of cooling, and flow equipment are more involved and a knowledge 
base helps in staying within realistic and practical choices. Again, if changes in dimensions and 
spacing of boards do not lead to a feasible design, other items may be varied according to a chosen 
priority to obtain a feasible or optimal design.

Knowledge-based design methodology is an important and valuable tool in the design process. It 
allows the experience and knowledge of an expert to be used in making design decisions, selecting 
materials, choosing variables to change, obtaining an initial design, and accelerating convergence 
to the final design. Expert systems may also be used to help in the development of a model 
(Ling et al., 1993). The information available from earlier design efforts, from existing systems, 
and from engineering practice is also used to stay within a domain of realistic designs. The meth-
odology substantially increases the versatility and flexibility of the design procedure. Many of these 
ideas are brought into the design process by the user anyway, but the process is facilitated by a sys-
tematic incorporation of the relevant features in the computer system used for design.

It must be noted that only a brief discussion on knowledge-based methodology has been given 
in this chapter to present its essential features and application to thermal systems. There has been 
considerable interest in design and optimization methods based on AI approaches, similar to the 
various aspects outlined here. Some of these were discussed in Chapter 7, particularly with respect to 
genetic algorithms, artificial neural networks, and fuzzy logic. Artificial neural networks incorporate 
important features like distributed, or parallel, information processing and object-oriented program-
ming. The different neurons can be programmed to perform certain simple tasks and the neurons are 
linked in the network to provide fast and efficient processing that is needed for design and optimiza-
tion. Similarly, fuzzy logic allows one to consider heuristics and imprecise characteristics to consider 
practical situations and to ensure that a realistic design has been obtained. Genetic algorithms use the 
concepts of inheritance, evolution, selection, mutation, and recombination to generate global search 
heuristics. The ideas are quite similar to those discussed here for the knowledge base in terms of par-
ent, child, individual, population, and selection. All such methods are considered as AI-based strate-
gies. Over the last decade, there has been considerable work done on improving these methods for 
design and optimization and on applying them to a wide variety of practical and complex problems.

11.2 ADDITIONAL CONSTRAINTS

Throughout this book, a wide range of constraints imposed on the design has been considered. 
Many of these were due to limitations on the materials used, space available, weight, heat input, etc. 
Such limitations result in constraints on the temperature, pressure, flow rate, and other variables in 
the problem and are generally used to define the boundaries of the domain of acceptable designs. 
Constraints also arise from conservation principles, such as mass and energy conservation, that lead 
to equations that link different variables. However, all such constraints are technical in nature and 
affect the design by restricting the ranges of the design variables and operating conditions.

There are also many nontechnical constraints that are important in the design of thermal sys-
tems and, in some cases, can have a dominant influence on the acceptability of a design. These 
constraints arise due to the following considerations:

1. Economic aspects
2. Safety issues
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3. Environmental effects
4. Legal aspects
5. Social and national issues

We have discussed the importance of economic considerations in the viability of a project and 
also at various stages in the design process. The constraints on the design generally arise in terms of 
the costs involved. If the cost per unit mass or volume of a material exceeds a certain value, it may 
be unacceptable. Similarly, the price of a component such as a fan, compressor, or heat exchanger 
may be constrained to be below specified values. The component may be changed or the design 
altered to meet such constraints. Constraints may also be placed on the maintenance and service 
costs demanded by the system. If these exceed the constraints, the design is unacceptable, even 
though it may be technically feasible. Many such considerations arise in practice and must be taken 
care of in a successful design.

Safety issues are obviously critical in the acceptability of a design. Constraints that are more 
conservative than the limitations on the pressure, temperature, stresses, etc., because of technical 
reasons are generally used to ensure the safe operation of the system. Safety factors that are based 
on possible variations in the operating conditions, the user, ambient conditions, raw materials, and 
other unpredictable parameters are used to yield an acceptable margin of safety. For instance, a 
dimension obtained as 2 cm from the feasible or optimal design may be increased to 3 cm for safety, 
giving a factor of safety of 1.5, particularly if this dimension refers to the outer wall of a system 
and may fail. Higher safety factors are used if damage to an operator may result from leakage of 
radiation, hot fluid, high-pressure gases, etc. This is particularly true in the design of nuclear reac-
tors, boilers, furnaces, and many other such systems where high temperatures and pressures arise. 
Therefore, the design obtained on technical grounds is adjusted to account for the safety of the user 
as well as of the materials and the system.

Similarly, environmental concerns can affect the design. Constraints are placed on the types of 
materials that can be used, on temperature and concentration of discharges into the environment, on 
maximum flow rates that may be used, on types and amount of solid waste, and so on. For instance, 
chlorofluorocarbons (CFCs) are not allowed because of their effect on the ozone layer. The tempera-
ture of the cooling water (from the condensers of a power plant) that is discharged into a lake or a 
river is constrained to, say, within 10°C of the ambient water temperature by federal regulations. 
This imposes an important constraint on the design of the system. Similarly, the concentration of 
pollutants and the flow rate of the fluid discharged into air are constrained by regulations to ensure a 
clean environment. Due to concerns with climate change, the amount of greenhouse gases released 
may be restricted or a carbon penalty imposed. Again, these aspects arise as additional constraints 
on the design and must be considered.

The legal issues are often related to federal and state regulations on waste disposal, zoning, 
procurement, transportation, security, permits, etc., and can generally be considered in terms of the 
cost incurred, because these involve additional expenditures by a company. Similarly, social issues 
can often be translated into costs for the company. For instance, providing housing, health care, 
child care, and other benefits to the employees results in expenses for the firm. Therefore, these 
aspects lead to financial constraints that may be quantified. However, many aspects are not easy to 
account for, such as the social effects of layoffs resulting from a particular industrial development. 
There may be substantial effect at the local level. However, these aspects are largely considered at 
higher levels of management and affect the design only as far as the viability of the overall project 
is concerned. National considerations, such as those pertaining to defense, sometimes override the 
technical and economic aspects. Items and materials that have to be imported may be substituted 
by those that are available in the domestic market. Thus, constraints may be placed on the choice of 
materials, components, and subsystems to take these concerns into account.

These additional constraints are usually considered after a feasible design has been obtained. At 
this stage, the constraints due to the costs, safety, environment, and other aspects are considered 
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to ensure that these are not violated by the design. However, some of these constraints may also be 
more effectively used at earlier stages of the design process. The temperature and pressure limi-
tations arising from safety concerns, for instance, may be built into the design and optimization 
process. The final design that is communicated to the management and fabrication facilities must 
satisfy all such additional constraints.

11.3 UNCERTAINTY AND RELIABILITY-BASED DESIGN

As discussed in Chapter 5, an important consideration in the design of thermal systems is the pres-
ence of uncertainties that could arise in the design parameters and operating conditions. Even if 
an acceptable design is obtained from deterministic models, the uncertainties can make the design 
unsatisfactory. Due to the existence of uncertainties, the traditional deterministic formulation is no 
longer reliable to generate safe and acceptable designs because it may lead to a design with high risk 
of system failure. In order to achieve high reliability in the final design, it is necessary to develop 
reliability-based design, which results in failure rate lower than an accepted level. A systematic 
strategy for the modeling and optimization of a thermal system including the effects of uncertain-
ties was presented by Lin et al. (2010), as mentioned earlier. An impingement type chemical vapor 
deposition reactor for thin film deposition, on which some results have been presented earlier in 
Figure 7.8(b) and Figure 9.16, was taken as an example. Some of the major uncertainties that arise 
in this process were also mentioned earlier.

Thus, in practical problems, the design and optimization with uncertainties is based on reliability, 
which refers to the percentage failure rate of the design. Reliability-based design optimization (RBDO) 
algorithms are developed, with chosen distributions of uncertainty in the different parameters (Tu et al., 
1999; Youn and Choi, 2004). Much of the uncertainty arises in the operating conditions, such as heat 
input, flow rates and concentration levels. Again, objectives such as product quality and production rate, 
may be considered for optimization. Normal probability distributions are frequently used, though other 
distributions may also be employed for different applications. Then the optimal solutions are obtained, 
using techniques discussed earlier, subject to the allowable level of failure probability.

Figure 11.14 shows a sampling of results for the chemical vapor deposition reactor for differ-
ent constraints, with normal distribution of the variables. The failure is brought down to less than 
0.13%, which is usually the accepted level in RBDO. The optimal point moves away from the one 
obtained for deterministic conditions due to uncertainties in order to satisfy this condition. For the 
two cases shown in this figure, the failure rate was over 40% if uncertainties are not considered. But 
by including uncertainties, a more realistic and practical optimal design is obtained. The importance 
of uncertainties in design and optimization has only recently been considered for thermal systems.

Uncertainties are particularly critical in the manufacture of microscale and nanoscale devices. 
These include processes like the fabrication of optical fibers and the fabrication of microchannels 
for use in microfluidics, in heat removal, or in other applications. The microchannel is typically in 
the range 20–100 μm in diameter, width, or height. Then uncertainties in the fabrication process can 
substantially affect the final shape, quality, and dimensions obtained.

Sensitivity analysis is also an important tool that is generally used to study the importance of 
various parameters and focus on the dominant ones for design and optimization. In the absence of 
the information from a sensitivity study, the work would consider essentially all the parameters, 
making it a fairly prohibitive task. Clearly, much work is needed for thermal systems to obtain opti-
mal designs that are more reliable and realistic.

11.4 PROFESSIONAL ETHICS

A topic that has come under considerable scrutiny in recent years is that of professional ethics. 
This is due to the large number of cases that have been uncovered indicating lack of proper 
behavior, and resulting in damage to life and property. Ethics refers to the principles that govern 
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the conduct of an individual or groups of people involved in a profession. Every profession sets 
down its own code of ethics to provide rules of behavior that are proper, fair, and morally cor-
rect. It is important for individuals involved in a profession that is self-regulated, such as engi-
neering, to know the ethical behavior that is expected of them and to preserve their integrity 
under various circumstances. Though many recent cases have involved the legal and medical 
professions, mainly because of their direct impact on people, engineers are also concerned with 
many decisions that involve professional ethics. Certainly, design is an area that has far-reaching 
implications for the profession and must, therefore, be carried out with strict adherence to ethical 
standards.

Ethics has its roots in moral philosophy, and the basic features are simply the moral values that 
govern personal behavior. Some of the important aspects of proper conduct can be listed as follows:

1. Be fair to others.
2. Respect the rights of others.
3. Do not do anything illegal.
4. Do not break contracts.

FIGURE 11.14 Results for impingement type chemical vapor deposition used for the fabrication of thin 
films. Different constraints are considered, with some given as probabilistic with normal distributions, as 
indicated by the spread in the constraint. The optimum point moves away from the deterministic results due 
to uncertainties.
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5. Help others and avoid harming anyone.
6. Do not cheat, steal ideas, or lie.

On the basis of such a set of moral values, many professional societies such as the Institute 
of Electrical and Electronics Engineers (IEEE) and Accreditation Board for Engineering and 
Technology,  Inc. (ABET) have adopted appropriate codes of ethics that are expected to guide the 
members as well as companies if ethical problems arise.

Most routine engineering activities do not involve ethical conflicts. Because profit and growth 
are major driving forces in the engineering profession, most engineers are involved with pursuing 
these goals for advancement. However, if their actions start infringing on the rights of others and 
may lead to harm to others, through damage to property or to individuals, it is important to balance 
self-interest against ethics and to follow the appropriate course of action. In some cases, the choice 
is clear, but the individual may have to sacrifice his or her self-interest in order to do the proper 
thing. An example of this is an engineer who designs a system, but finds that it has safety problems 
during testing. It is obvious that the system must be redesigned to avoid these problems. However, 
there may be deadlines to be met, the job of the engineer may be on the line, others involved in the 
design may try to downplay the problems and want to go ahead, and so on. Therefore, even a rela-
tively straightforward problem like this one may lead to a dilemma for the individuals concerned. 
However, the correct procedure is to report the problems and redesign the system. Many unethical 
actions have been revealed in recent years, particularly with respect to the side effects of medicines, 
addiction to certain materials like tobacco, and the health hazards of materials like asbestos.

Such ethical questions are frequently faced by engineers, particularly those involved in the 
development of new processes, systems, and products. Some of the common ethical situations that 
arise are

1. Preserving confidentiality
2. Giving proper credit to appropriate groups or individuals
3. Reporting data correctly
4. Meeting obligations to the public versus the employer
5. Acting in accord with personal conscience
6. Responding to inappropriate behavior by others in the company

Many readers may have already experienced some of the preceding situations. Giving proper 
credit to different people involved in a project is always a touchy issue, but it is important to be fair 
to all. Similarly, proprietary information must be maintained as confidential because access to such 
information or data is allowed only to a few individuals under the conditions of confidentiality. A 
subcontractor who is designing a component for a system manufactured by a different organization 
is often provided with essential details on the system. These details are for use in the design process 
and are not to be revealed to other parties who are not involved. Correct reporting of data has been 
in the news a lot in the last few years, as some researchers have been found to falsify experimental 
results to downplay the damaging effects of the product and to claim important advances. When 
uncovered, these actions have led to large financial settlements and public ridicule.

The issue of inappropriate behavior by others is a very difficult one and requires considerable 
care. Suppose an engineer finds out that his or her company is violating federal regulations on 
dumping of chemical hazardous wastes. Does he or she simply ignore the problem? According to 
the code of ethics, this matter has to be reported to the proper authorities. This is known as whistle 
blowing and it cannot be taken lightly. It is necessary to be sure that the activity is illegal and is 
adversely affecting public safety or welfare. Proper documentation is needed to support the accu-
sation, and it must also be confirmed that management is aware of the activities. If the problem 
lies within the company and is a consequence of oversight, a simpler solution may be possible. 
Otherwise, appropriate regulatory bodies may be contacted. Whistle blowing obviously requires 
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great moral courage, and the present position as well as the future advancement of anyone who 
undertakes this effort are at stake. Such instances are rare, but they have been increasing and they 
test the professional code of ethics.

In most cases where ethical conflicts need to be resolved, internal appeal processes are ade-
quate. These start with the immediate supervisor, or with someone outside the region of conflict, 
and follow the internal chain of command. Satisfactory documentation is crucial in such appeals. 
Conflicts arise, for instance, due to unfair treatment, improper credit being given, falsification of 
data, improper use of funds, etc. Only if the internal appeal process is unsuccessful does one need 
to resort to external options. These include contacting professional societies, the media, regulatory 
agencies, personal legal counsel, and other external sources for settling the conflict. Many case 
studies are given by Ertas and Jones (1997) and the IEEE code of ethics is given by Dieter (2000) to 
indicate the basic issues involved and the types of ethical conflicts encountered in practice.

11.5 SOURCES OF INFORMATION

An important ingredient in design is availability of relevant information on a variety of topics that 
are needed for developing a successful design. Information is needed to provide accurate data for 
the modeling and simulation of the system and to use past experience and results for help with the 
design process. Without adequate information on previous design efforts and existing systems, we 
could repeat past mistakes, spend time on obtaining information that is readily available, or gener-
ate designs that do not meet appropriate regulations and standards. Therefore, it is crucial that we 
spend extensive effort on gathering the most accurate and up-to-date information available on all 
facets of the given design problem.

The types of information needed for design are obviously functions of the system under con-
sideration. However, the information sought for the design of thermal systems is generally in the 
following main areas:

1. Material property data, including cost and availability
2. Design and operation of existing or similar systems and processes
3. Availability and cost of different types of components
4. Manufacturing processes available and the costs involved
5. Available computer software
6. Available empirical results, including heat transfer correlations, relevant technical data, 

and characteristics of equipment
7. Federal, state, and local regulations on safety and environment
8. Standards and specifications set by appropriate professional bodies
9. Current financial parameters, including rates of interest and inflation, different costs, and 

market trends

We have seen in earlier chapters that all this information is needed at various stages of the design 
process to obtain the desired inputs as well as to evaluate the design. Property data are particularly 
important because the accuracy of the simulation results, which are crucial to the design process, is 
determined by the data provided to the model. Economic data are needed to evaluate costs, make 
economic decisions during design, and determine if a project is financially viable. The design must 
meet the standards and regulations specified for the given process or application and, therefore, it 
is necessary to obtain accurate information on these. Finally, information on existing systems, soft-
ware, manufacturability, and technical results helps in minimizing the effort and avoiding duplica-
tion of work.

Throughout this book, references have been made to books, papers, and other publications that 
deal in depth with a particular topic or area. Certainly, textbooks in the areas of heat transfer, 
thermodynamics, and fluid mechanics are a good starting point for the design of thermal systems. 
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Similarly, text and reference books on numerical methods, engineering economics, optimization, 
and design are important sources of relevant information. These can be used to provide the basic 
technical background needed for the various aspects that are involved in design. Different methods 
for analyzing various processes and systems, including mathematical, numerical, and experimental 
techniques, are given in detail in such books, along with characteristic results. Some information 
is also available on common materials; components of interest in thermal systems such as pumps, 
compressors, and heat exchangers; and general features of standard systems, such as air condition-
ers and diesel engines. The references quoted in these books and papers may be further used to 
expand the source base. However, for detailed information on material properties, applicable regu-
lations, current economic parameters, existing systems, characteristics of available equipment, and 
current trends in industry, other sources of information are needed.

There are two main types of sources of information for design. These are

1. Public sources: Libraries, universities, research organizations, departments and agencies 
of the federal, state, and local government

2. Private sources: Manufacturing and supplying companies, banks, professional societies, con-
sultants, individuals, computer software companies, and membership and trade associations

Public sources are extensively used because the information obtained is free or relatively inex-
pensive. Government reports and publications from departments such as commerce, defense, 
energy, and labor are very valuable because these provide detailed information on results obtained, 
requirements and regulations, methods used, material property data, and various other guidelines. 
Patents issued also provide an excellent source of information on existing systems. These are avail-
able from public sources, through libraries and the Internet.

Private sources are usually expensive, but a lot of information can be obtained through company 
brochures and websites used for advertising their products. The specifications, cost, maintenance, 
servicing, and performance of available equipment can be obtained from the supplier. In many 
cases, additional details on the materials used, tests performed, basic design of the component, and 
even samples can be obtained if one is interested in a particular item. Though complete information 
on the component is generally confidential, enough information can be obtained to decide if a given 
item is appropriate for the system being designed. Similar considerations apply to commercially 
available software. Extensive catalogs of manufacturers and suppliers are available from various 
listings and the Internet, which is an important and expanding source of such information.

Most engineering companies maintain their own libraries that contain books, technical maga-
zines, journals, reports, information on their own products and systems, listing of suppliers, and 
so on. In the present information age, they also have access to information available in the public 
domain, through the Internet, library exchanges, and agreements with other research or professional 
establishments. Such a collection may be large or small, depending on the size of the company 
itself, but the available methods of literature search and procurement make it an important source 
of information. In addition, results from earlier efforts, information on existing systems, properties 
of materials used in the past, information on relevant regulatory and legal aspects, and so on, as 
applicable to the given industry, are probably best stored here.

Therefore, there are many important sources of information on materials, detailed technical 
data, existing processes and systems, items available in the market, economic data, and on other 
inputs needed for design. These may be listed as follows:

1. Handbooks
2. Encyclopedias
3. Monographs and books
4. Journals: technical and professional
5. Catalogs
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6. Indexes and abstracts
7. Technical reports
8. Internet
9. Patents

Handbooks and encyclopedias are very useful in obtaining relevant and detailed technical infor-
mation for a given process or system. Encyclopedias are available on physics, materials science, 
chemistry, fluid mechanics, and so on. McGraw-Hill’s Encyclopedia of Science and Technology is 
an example of such reference books. Similarly, handbooks are available on pumps, air conditioning, 
heat exchangers, material properties, industrial engineering, manufacturing, etc. Marks’ Standard 
Handbook for Mechanical Engineering, also published by McGraw-Hill, is an example. A substan-
tial amount of relevant and focused information is generally available in such sources. Listings of 
indexes and abstracts allow one to search for the appropriate source rapidly, particularly if the infor-
mation exists in journals, translations, and published reports. Technical and professional journals 
are also good sources, though these are often either too detailed or too sketchy. Nevertheless, these 
can be used effectively to narrow the search to specific and relevant sources of information. The 
Internet is certainly one of the most important sources of information today.

11.6 AN OVERVIEW OF DESIGN OF THERMAL SYSTEMS

Basic aspects. In this book, we have considered the design and optimization of systems in which 
thermal transport, which involves heat and mass transfer, fluid flow, and thermodynamics, play 
a dominant role. Many different types of thermal systems, ranging from refrigeration, heating, 
transportation, and power systems to manufacturing and electronic equipment cooling systems, 
are employed as examples. The complicated nature of these systems, particularly their typically 
nonlinear, time-dependent, three-dimensional, geometrically complex, and combined-mode char-
acteristics, leads to coupled systems of partial differential equations that describe the system. These 
equations are simplified through modeling to obtain algebraic equations and ordinary differential 
equations in many cases. Such models are combined with experimental results, material property 
data, and other available information, often using curve fitting, to obtain a complete model for the 
system. This model is then used to simulate the system and obtain detailed results, which can be 
used for the design and optimization of the system. Thus, modeling and simulation form the core 
of the design effort for thermal systems, and the successful completion of a project is closely linked 
with the accuracy and validity of the model. This aspect of design is stressed throughout the book.

The design of a thermal system starts with a close look at the problem. This involves determin-
ing what is given or fixed in the problem, what can be varied to obtain an acceptable design, what 
the main requirements are, and what constraints or limitations must be satisfied by the design. This 
consideration leads to the problem formulation in terms of given quantities, design variables, oper-
ating conditions, requirements, and constraints. It also defines the feasible domain for the design. 
The next step is to obtain a conceptual design to achieve the desired goals. Different ideas for the 
system are considered based on what is presently in use and the design of other similar systems. 
Innovative concepts are employed as well. A particular conceptual design is chosen by employing 
simple estimates and contrasting different ideas.

With the design problem formulated and a conceptual design chosen, we can now proceed to a 
detailed design process, the main steps of which are

1. Characterization of the physical system
2. Modeling
3. Simulation
4. Evaluation of different designs
5. Iteration to obtain an acceptable design
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6. Optimization
7. Automation and control
8. Communication of the final design

Workable or acceptable design. Though all the preceding steps are involved in the develop-
ment of a successful design, modeling and simulation are particularly crucial because most of 
the relevant inputs for design and optimization are obtained from a simulation of the system 
using analytical, numerical, and experimental approaches to study the model developed for the 
system. Different types of models and simulation strategies are available to generate the inputs 
needed for design. Even though the basic approach to modeling can be established and applied 
to common thermal processes and systems, modeling remains a very elusive and difficult ele-
ment in the design process. It involves simplification, approximation, and idealization to obtain a 
model that may be used to study the behavior of the actual physical system. Creativity and expe-
rience are important ingredients in the development of a model. A good understanding of the 
physical characteristics of the system and the basic processes that govern its behavior is essential 
in deciding what to neglect or how to approximate. The governing equations are obtained based 
on the conservation principles for mass, momentum, and energy, taking these simplifications 
into account.

A very important question that must be answered for a model is if it accurately and correctly 
predicts the characteristics of the actual system. This requires a detailed validation of the model and 
estimation of the accuracy of the results obtained. In many cases, simple models are first obtained 
by neglecting many effects that complicate the analysis. These models are then improved by includ-
ing additional effects and features to bring them closer to the real system. This fine-tuning of the 
model is generally based on the simulation, experimental, and prototype testing results. The model 
is used to study the system response and behavior under a wide variety of conditions, including 
those that go beyond the expected region of operation to establish safety limits and ensure satisfac-
tory operation in real life. Simulation results are also used to determine if a particular design, speci-
fied in terms of the design variables, satisfies the requirements and the constraints.

All these ideas concerning problem formulation, conceptual design, modeling, simulation, and 
design evaluation may then be put together for obtaining acceptable designs. Different areas such as 
manufacturing, energy, transportation, and air conditioning, where thermal systems are of interest, 
are considered to apply the various steps in the design process. It can again be seen that modeling 
and simulation are at the very core of the design effort since the results obtained are used to choose 
the appropriate design variables, evaluate different designs, and obtain a domain of acceptable 
designs. Many additional aspects, such as safety and environmental issues, may also be considered 
at this stage. A unique solution is generally not obtained and several acceptable designs are often 
generated. Thus, the systematic progression from problem formulation and conceptual design to an 
acceptable design is highlighted in the first five chapters. Though relatively simple thermal systems 
are considered in many cases to present the methodology, much more complicated problems that 
typically arise in actual practice can be treated in a similar way. Some actual industrial systems are 
considered to demonstrate the use of this methodology.

Optimization. Economic considerations and optimization need to be considered to complete the 
design and optimization process. Economic aspects are obviously very important in most problems 
of practical interest and are of particular significance in optimization because minimization of costs 
and maximization of profit are important criteria for an optimal design. Economic considerations, 
such as cost, return, payment, investment, depreciation, inflation, and time value of money, in the 
design process are discussed. Examples are given to show how economic considerations can affect 
decisions on design in areas such as material selection, choice of components, energy source, and 
so on. The importance of financial aspects in design cannot be exaggerated because the viability 
and success of the project itself is usually determined by the profit, return, stock price, etc. Again, 
several relatively simple situations are discussed to illustrate the approach for considering economic 
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factors. However, these ideas can easily be extended to more complicated circumstances where 
several different considerations may arise and interact with each other.

Optimization is discussed in detail to stress the crucial need to optimize thermal systems in 
today’s competitive international market. The design process generally leads to a domain of accept-
able designs with no unique solution. Optimization with respect to a chosen criterion or objective 
function narrows this domain substantially, as desired for a given application, so that the final design 
is chosen from a small range of design variables, making it close to a unique solution. Optimization 
in terms of the design variables as well as in terms of the operating conditions is considered.

Many different strategies are available for optimization. Search methods are particularly useful 
for thermal systems because discrete values of the variables are often encountered and simulation is 
complicated and time-consuming, making it necessary to limit the number of runs. Methods such 
as Fibonacci and univariate searches are efficient and easy to use. Hill climbing techniques can also 
be used with numerically determined derivatives. Calculus methods and geometric programming 
are useful if the simulation results are curve fitted to obtain continuous expressions to represent 
system characteristics. Other methods such as linear and dynamic programming have limited use 
for thermal systems. Efficient computer programs are available for most of the techniques presented 
here as well as for new and emerging techniques, and may be used when dealing with the large and 
complicated systems encountered in actual practice.

The choice of the optimization method is guided by the form in which the simulation results 
are available and how involved each simulation run is. Several simple examples are employed here 
to illustrate the basic ideas and the techniques. These may be extended easily to many of the more 
complicated problems discussed in earlier chapters and examples of practical thermal systems given 
in the book. Typical large systems are considered first in terms of the components and subsystems, 
with the overall model and simulation scheme obtained by coupling the simpler sub-models. The 
complete model is simulated to obtain the characteristics and behavior of the system. These results 
are then used for developing acceptable designs, followed by an optimal design. There are obviously 
cases where an acceptable design is not obtained, with the given requirements and constraints, or 
where acceptable designs lie within a narrow range of variables, making it unnecessary to optimize 
the system.

Concluding remarks. The design and optimization of thermal systems is an important, though 
complicated, field. Many different situations can arise in actual practice and may require special-
ized treatment. However, the basic approach given in this book provides the general framework 
under which the design and optimization of a thermal system may be undertaken. Some modifica-
tions may be necessary in a few cases and additional information pertaining to materials, economic 
parameters, regulations, available components, and so on, may have to be obtained for specific 
applications. Creativity and originality are also important ingredients in design, particularly in the 
development of the concept and the model. In engineering practice, commercially available soft-
ware packages are often used for system simulation and optimization. However, some of the soft-
ware may be developed or programs in the public domain may be employed to provide the flexibility 
and versatility needed in many cases. Additional aspects, such as safety and environmental issues, 
are of concern in most problems and are built into the decision making. The final design is commu-
nicated to the appropriate groups such as the management and fabrication facilities. Depending on 
management decisions, this could lead to prototype development, testing, marketing, and sales. All 
these aspects are expected to be considered in the design projects included at the end of this chapter.

11.7 SUMMARY

This chapter concludes the presentation on the design and optimization of thermal systems by con-
sidering some recent trends, particularly knowledge-based design aids, and some additional consid-
erations. Knowledge-based, or expert, systems, which use the expertise of people who are proficient 
in given areas, have been used effectively in several fields, such as medicine, chemical analysis, and 
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mining. In traditional design, such expertise is traditionally brought in by the designer, who uses 
his or her knowledge of the process, materials, and system to make decisions throughout the design 
process in order to obtain a realistic and practical design. Expert systems use computer software 
based on AI techniques to bring such considerations into the design process. The basic components, 
including expert knowledge and databases, in knowledge-based design methodology are discussed. 
The advantages of this approach over traditional design methods are indicated. Several examples 
of thermal systems are taken to illustrate the use of this methodology. There is growing interest in 
these methods and many relevant techniques have been developed in recent years to help conver-
gence to a realistic acceptable or optimal design.

This chapter also discusses the important topics of uncertainty, reliability-based design, pro-
fessional ethics, sources of information, and additional constraints. These aspects arise in most 
engineering endeavors, but these are particularly significant for design because of the innovative 
and creative ideas that are often involved. Uncertainties are encountered in most engineering pro-
cesses and systems. A brief discussion of uncertainty and reliability-based design is given. Different 
sources of information are discussed, indicating methods to locate these and extract the relevant 
information from them. Professional ethics can play a significant role in the development of the 
design, in the use of available information, in the implementation of the design, and in the progress 
of the entire project. A brief discussion of the important issues is given. Additional constraints that 
could affect the feasibility of a design are presented and discussed in the context of the material cov-
ered in the book. These could be of crucial importance in many cases and could determine whether 
it is worthwhile to proceed with the implementation of a given design. Finally, the chapter integrates 
all the ideas presented in this book as an overview of the design of thermal systems and includes a 
few design projects as problems.
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PROBLEMS

 11.1 For any thermal system mentioned in Chapter 1, draw a simple sketch of the system con-
sidered. Give the main assumptions you would make to obtain an appropriate mathemati-
cal model. Justify these and discuss changes that you would make in order to improve the 
accuracy of your model. In addition, considering yourself an expert, what expert knowledge 
would be worth including in the design process?

 11.2 An expert system is to be developed for the solution of algebraic equations. Using the infor-
mation presented in Chapter 4, give a suitable tree structure for the storage and retrieval of 
the relevant expert knowledge. Consider single and multiple equations, as well as linear and 
nonlinear systems. Also, include the various methods available for solution.

 11.3 List the important knowledge that may be used for developing an expert system for the 
design of a building air conditioning system. The relevant information may be obtained 
from reference books, as outlined in this chapter. Of particular interest are current practice, 
available equipment, and costs involved. Be brief.

 11.4 For the design of a solar thermal energy storage system, using water for storage, choose 
a conceptual design and give the design variables. Then discuss the knowledge base that 
could be employed, in conjunction with the basic design process, to obtain an optimal, prac-
tical design of the system.

 11.5 Present the knowledge base for the design of a furnace for heat treatment of steel rods as 
a tree structure. Consider different types of furnaces, different heat sources, and different 
configurations.

 11.6 What would the material knowledge base for the design of an electronic cooling system 
consist of? Use the information given in earlier chapters on such systems and a few relevant 
references.
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 11.7 An expert system is to be developed for solving ordinary differential equations (ODEs). List 
the expert knowledge needed to solve an ODE, analytically or numerically. Also, present 
the tree structure for storing this knowledge. Outline the scheme employed by the expert 
system to solve a given ODE.

 11.8 You are working as an engineer in the testing division of a large company. The division is 
involved in testing and evaluating equipment from various subcontractors and recommend-
ing the best ones to the production department. You are asked to test two different heaters, 
A and B, for durability and performance. You find that heater B is superior and inform your 
boss of your recommendation. Then you find out that he has already recommended heater 
A because of time constraints and he just wanted you to confirm his cursory evaluation of 
the heaters. Now he wants you to manipulate the data so that heater A is shown to be better. 
What are the ethical questions involved and how will you handle the situation? Your job is 
probably on the line here.

 11.9 After working as a design engineer in Company A for 4 years, you are hired by Company 
B, which is a competitor of Company A. You are asked to reveal various items concerning 
your previous employer, such as the new products being developed and new facilities being 
acquired. Discuss the ethical issues involved here, for you as well as for the new employer. 
How would you handle this problem?

 11.10 You and a colleague discussed the solution to a problem found to arise in a manufacturing 
process. During the discussions, an interesting solution is proposed. You do not remember 
who suggested it or how it was brought in. Nevertheless, it is a promising idea and it is 
decided that both of you should look into the proposed concept in detail. However, you 
have to travel for a couple of days and when you come back you find that your colleague 
has already passed on the idea to management as his own, with no acknowledgment of your 
contribution. Initial tests have shown that the concept will work and this would mean a pat-
ent for your colleague and possible advancement. Obviously, you are hurt at this betrayal of 
trust. But, you have no written proof of your discussions with your colleague. How will you 
proceed with this situation?

 11.11 For the design of the thermal systems corresponding to the following applications, list the 
sources that may be consulted and the type of information being sought:
a. Residential air conditioning and heating
b. Hot water storage and transportation in a large industrial building
c. Manufacture of molded plastic parts
d. Annealing of steel rods
e. Air conditioning of aircraft cabins
f. Cooling of a data center

 11.12 Choose any thermal system on the basis of your experience. Discuss its basic features and 
formulate the design and optimization problem for the system. Develop a simple mathemati-
cal model and the corresponding simulation scheme. Outline how you would proceed to 
obtain an acceptable design and then an optimal one. Do you expect to find any use for the 
knowledge base available on similar systems?

DESIGN PROJECTS

Give the following information on the various design projects:

1. Problem statement: Fixed quantities, design variables, requirements, and constraints.
2. Conceptual design: Sketch various possible systems, evaluate each, and select one for 

design.
3. Mathematical modeling of the chosen design: Obtain the equations that represent the sys-

tem, constraints, and requirements.
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4. Computer simulation of the system: Off-design conditions, effect of various parameters.
5. Economic analysis and optimization of the system: Discuss the initial cost and the operat-

ing costs. Also, outline the control and safety of your design.
6. Final report: Description of design and operation of the system, numerical results, draw-

ings, references, specifications of components. The design report should be concise, but 
complete and detailed.

Complete the design and optimization of the following problems, making appropriate assump-
tions and obtaining the relevant inputs:

1. A plastic reclamation system employs the extrusion of heated plastic to obtain cylindri-
cal rods from scrap plastic. Design a system to heat and extrude the plastic at the rate of 
10 kg/h, assuming the maximum allowable temperature to be 250°C and the minimum 
temperature for extrusion to be 100°C.

2. In a solar energy collection and storage system, hot water is available at 90°C, when the 
ambient temperature is 20°C. If a total flow rate of 500 kg/s is possible, design a system for 
power generation, employing a low-boiling fluid like R134a for the turbines.

3. A storage room 3 m × 3 m × 3 m is to be maintained at −5°C, when the ambient temperature 
is 30°C in Arizona, for food storage. Design a vapor refrigeration system for the purpose.

4. Steel is to be heat-treated in a furnace, which contains an inert nitrogen gas atmosphere and 
which is heated electrically. The process involves steel rods of length 1 m and diameter 
20 cm. These are placed on a conveyor, which takes the rods through the furnace. The rods 
must be heated up to 700°C, with a maximum allowable temperature of 850°C, followed by 
water-spray cooling after the furnace. Design the furnace and the conveyor for the system.

5. A three-bedroom house in Boston is to be maintained at 25°C during windy winter days 
when the outside temperature is −15°C. Design a heat pump for heating, assuming a one-
story house that has no other heat input.

6. Design a flat-plate solar collector system for heating applications. It is to be used in Denver, 
Colorado, in winter and we wish to obtain water at 60°C at the rate of 200 kg/h. Assume 
solar flux incident on a normal surface to be 200 W/m2.

7. In a manufacturing process, only the surface of spherical steel balls of diameter 10 cm is 
to be heat-treated. Interest lies in heating the material to a depth of at least 1 mm, with a 
maximum of 2 mm, and then cooling it in air. The desired temperature for heat treatment 
is 550°C, with a maximum of 650°C. Design a system to accomplish this at the rate of one 
ball per second.

8. Design the heat exchanger system to remove the heat rejected by a power plant of 500 MW 
capacity and 33% efficiency. Assume that the heat exchangers are cooled by cold water at 
10°C from a neighboring lake.

9. An industrial heat rejection system supplies 20 MW of thermal energy in the form of hot 
water at 60 K above the ambient temperature. Design a system to recover as much as pos-
sible of this waste energy and to provide it as electricity.

10. Design an internal combustion engine, using the Otto cycle, to obtain a power of 150 kW. 
The maximum temperature and pressure in the system must not exceed 2000 K and 
2.5 MPa, respectively. A heat loss of 10% to 15% of the total energy input may be assumed 
to the surroundings.

11. A piece of electronic equipment dissipates a total of 400 W. Its base dimensions must not 
exceed 40 cm × 30 cm and the height must be less than 15 cm. A maximum of six boards 
can be employed to mount the components. Design a system to restrict the temperature 
anywhere in the system to less than 120°C, using an appropriate cooling method.

12. Design a hot water storage and supply system to fit in a cubic region of side 1 m. An electric 
heater located in the water tank is to be used for the energy input, and the inflow of water 
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is at 20°C. The hot water must be supplied at 70°C ± 5°C, at a flow rate of 0 to 5 kg/s. The 
system must be capable of handling both steady-flow and transient situations.

13. Design a continuous thermal annealing system in which spherical aluminum pieces of 
diameter 2 cm are heat treated by moving them on a conveyor belt and heating them by 
overhead radiation lamps. The pieces must undergo fast heating to a given temperature 
of 350°C, held at this temperature for a given time period of 30 seconds, and then cooled 
slowly for annealing at a rate of less than 1.5°C/min. The system is to be designed to 
achieve the given temperature cycle, within an allowable tolerance of ±5%. The conveyor, 
the heating configuration, and the enclosure have to be designed and fabricated.

14. Design an experimental system for the visualization of flow over 2 to 5 isolated heat sources, 
representing electronic components, located on a flat horizontal plate in a wind tunnel. The 
system must be able to move, rotate, and position the sources, as well as the board, and 
then visualize the flow by means of smoke and a schlieren optical system. The heat input 
by each source is 100 W and the airflow velocity ranges from 4 to 15 m/s. The sources may 
be taken to be 1 cm wide and 0.5 cm high, being large in the transverse direction so that a 
two-dimensional flow may be assumed.

15. Design an applicator for polymer coating of optical fibers. The manufacture of optical 
fibers involves a process where a thin coat of polymer coating is applied on the fiber. 
To maintain strength and integrity, coatings must be concentric, continuous, and free of 
bubbles. Many experimental coating applicators have limitations of performance because 
of their large size and difficulty of alignment. The fiber diameter is 200 μm and the speed 
is 5 to 15 m/s. The clearance between the fiber and applicator surfaces should not exceed 
50 μm. Design an applicator that will meet these requirements.

16. Model and design a carbon furnace for use in a vacuum chamber. A cylindrical carbon 
furnace is used in the materials processing of special reactive materials, and the heating 
elements, which are made of carbon, break. The heating capacity of the furnace depends 
upon these element sizes, and their arrangement. The design problem would be to choose 
the right size and number of elements for uniform heating. Ease of repair is also a design 
criterion. The maximum temperature should be 2000 K ± 5%, and the height and length of 
the furnace are given as 0.4 m and 0.2 m, respectively.

17. Design a warm air medication dispensing system. The employment of aerosol as a method 
for drug dispensing is used widely with both liquid and dry powder. What all devices that 
produce aerosolized drugs have in common is that the inhaled aerosol is at, or below, room 
temperature. Preliminary testing with liquid aerosol has shown that a warm aerosol is more 
comfortable to inhale and thus more effective than a cold aerosol. The scope of this project 
is to design and build the handheld portion of an aerosol delivery system that delivers warm 
aerosol at the mouthpiece. Ideal temperatures are around body temperature. Use typical 
breathing air volume for calculating the flow rate. Assume fluid properties to be those of air.

18. An impingement oven is to be designed for cooking. Hot air at temperatures in the range 
80°C–120°C impinges on food items that are placed on a conveyor. If the total load is 
50 kg/hour, obtain a conceptual design, formulate the design problem, and obtain an 
acceptable design.

19. Hollow hemispherical glass bowls, each weighing 4 kg and 20 cm in diameter, are to 
be annealed after forming. The temperature gradient must be less than 10°C/min for the 
annealing process. Design a system to anneal bowls that are at temperature 750°C after the 
forming process. Annealing is complete at a temperature of 300°C and the system should 
be able to anneal 10 bowls per minute.
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MATLAB

A.M.1: Common MATLAB commands for matrices
A.M.2: Common MATLAB commands for polynomials
A.M.3: Programs for root solving
A.M.4: Solution of a system of linear or nonlinear equations
A.M.5: Interpolation and curve fitting
A.M.6: Solution of ordinary differential equations
A.M.7: Solution of partial differential equations

FORTRAN

A.F.1: Gaussian elimination method for a tridiagonal system of linear equations
A.F.2: Gauss-Seidel iterative method for solving a system of linear equations
A.F.3: Secant method for finding the roots of an algebraic equation
A.F.4: Newton-Raphson method for finding the real roots of an algebraic equation
A.F.5: Successive over-relaxation method for the Laplace equation
A.F.6: Successive substitution method for solving the system of nonlinear algebraic equations 

in Example 4.6
A.F.7: Runge-Kutta method for second-order ODE

A NOTE ON THE COMPUTER PROGRAMS

This appendix presents several computer programs that are commonly used for the numerical 
modeling and simulation of thermal systems and processes. The numerical methods covered here 
include those for curve fitting, solution of a system of linear equations, root solving, solution of 
ordinary and partial differential equations, and solution of a system of nonlinear equations. Details 
on the methods used are given in Chapter 3 and Chapter 4, as well as in references cited therein.

The programs are written for MATLAB, which has become the most frequently used numerical 
computing environment and software for solving mathematical equations that arise in scientific and 
engineering problems, and in Fortran, which was probably the most common programming lan-
guage used in engineering applications in the past and which continues to be important even today. 
The Fortran programs have been compiled and executed on a Unix-based computer system and may 
easily be modified for other versions of Fortran, programming languages and computer systems. A 
few MATLAB commands were discussed in Chapter 3 and Chapter 4, and several references for 
numerical analysis and computer solutions were given. Additional MATLAB commands and pro-
grams are given here. The results obtained from some of the programs given in this appendix are 
discussed in the text. The main purpose of presenting these computer programs is to provide ready 
access to a few important and simple programs that may be used for obtaining the inputs necessary 
for the design and optimization of thermal systems. In addition, the programs present the basic algo-
rithm and the logic employed for code development. This information may be used for developing a 
desired numerical model or for linking with available codes in the public or commercial domain to 
obtain the results needed for design.
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A.M.1

For mAtrices A AnD b:

a.*b a./b a.\b    element by element arithmetic; a and b must have identical rows 
and columns

a*b a/b a\b    matrix algebra; a and b must have appropriate rows and col-
umns to perform these operations

rand(n)   generates random numbers between 0 and 1 for a n x n matrix
b=25*rand(3)-10   generates 3 x 3 matrix of random numbers between -10 and 15
max(a)   gives maximum element in one-dimensional array a
min(a)   gives minimum element in array a
max(max(a))   gives maximum element in matrix a
min(min(a))   gives minimum element in matrix a
[i,j]=find(a==   gives row and column where maximum 
max(max(a)))   element is located

For system oF equAtions Ax = b

inv(a)   gives inverse A-1 of the matrix A
aa-1 = I   identity matrix
x = a-1b   yields the solution x; b is column vector
Therefore,
x = inv(a)*b   yields the solution vector x
x = a\b   backslash operator; also gives the solution x
[l,u,p] = lu(a)   L U matrix decomposition; p is permutation matrix
Y = l/(p*b); x = u/y yields the solution x

output:

>> a = 2.0;
>> b = 4.5;
>> s = ['The number that is obtained is ', num2str(a)]
Yields

The number that is obtained is 2.0

>> s = sprintf('The number %.5g is modified to %.5g.',a,b)
yields

The number 2.0 is modified to 4.5.

Similarly, try other formats. %.0g gives integers. Try %8.3f for floating point numbers, and so on.
Use of disp(s) suppresses the printing of s =

input:

>> x = input ('Enter the value of x, x = ' ) ;
>> x = input ('Initial guess  =' ) ;

Functions may be defined by using the function file as:
function z = fn1 (x,y)
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z = 2*y + 3*x
end

function [s, p] = addmult (x, y)
% Compute sum and product of two matrices
s = x + y;
p = x*y;
end

Thus

>>[s, p] = addmult (x,y)

Will yield the values of the sum and product, respectively

These functions are stored as fn1.m and addmult.m, respectively, and can be used in the computa-
tions as functions.

Functions may also be defined within the program by the use of inline function as:

f = inline ('x.^3 + 3 * x.^2 – 4*x + 2') 
f1 = inline ('(2/(pi^0.5)*exp(-x.*x)', 'x' ) ;
f2 = inline ('exp(x) +x^2', 'x' ) ;

Anonymous functions may also be used to define functions as:

g=@(x) sin(x)/x
to give g(2) for x = 2
g=@(x,r) sin(r*pi*x)/x
to give g(3, 2) for x = 3 and r = 2

A.M.2

polynomiAls

Roots
>> p = [1 -4 7 -6 2]

represents

x4 - 4x3 + 7x2 - 6x + 2
>> r = roots(p)
gives the roots as:

1.00 + 1.00 i
1.00 - 1.00 i
1.00
1.00

>> pp = poly(r)
pp =
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1.00  -4.00  7.00 +0.00 i  -6.00 - 0.00 i  2.00 + 0.00 i
gives the polynomial with the array r as the roots.

Algebra
>> a = [1 2 3 4];
>> b = [1 4 9 16];
>> c =  conv (a,b)  % convolution (multiplication) of 

polynomials
c =
1 6 20 50 75 84 64
>> d = a + b % addition
d =
2 6 12 20
>> d = b - a % subtraction 

d =
0 2 6 12
>> [q,r] =deconv(c,b) % division

q =
1 2 3 4 % quotient polynomial

r =
0 0 0 0 % remainder polynomial

>> g = [1 6 20 48 69 72 44];
>> h = polyder(g)
h =
6 30 80 144 138 72
>> x = [0 .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0];
>> y = [-.45 1.98 3.28 6.16 7.08 7.34 7.66 9.56 9.48 9.30 11.2];

Curve Fitting, Plotting
>> n = 2; order of the polynomial for best fit
>> p = polyfit(x,y,n) gives best fit with nth order polynomial
p =
-9.81 20.13 -0.03 arranged in descending powers of x

>> xi = linspace(0, 1, 100);  100 evenly spaced points between 0 and 1
>> yi = polyval(p, xi); values of polynomial at given x values
>> plot (x,y,'g*',xi,yi,'b-')  plotting with given symbols, color, labels 

and title
>> xlabel('x'), ylabel('y = f(x)')
>> title ('Second Order Curve Fitting')

A.M.3 ROOT SOLVING

A.m.3.1

% Bisection Method for Finding Roots of Equation f(x) = 0
%
format short g
%
%
f=inline('0.6*5.67*10^-8*(850^4-x^4)-40*(x-350)');
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%
% Enter limits of the domain
%
a = input ('Enter lowest value of interval, a =');
b = input ('Enter highest value of interval, b =');
%
% Apply Bisection method
%
for i = 1:20
fa = f(a);
fb = f(b);
c(i) = (a+b)/2;
fc = f(c(i));
%
% Check for convergence
%
if(abs(fc) <= 0.02)
disp (sprintf('Iteration converged'))
break
end
%
% Next iteration
%
if(fa*fc < 0)
b = c(i);
else
a = c(i);
end
end
c=c'

A.m.3.2

% Secant Method for Root Solving
%
function [p1,err,k] = secant(f,p0,p1,delta,max1)
%
% Apply Secant method
%
for k=1:max1
p2=p1 - feval(f,p1)*(p1-p0)/(feval(f,p1)-feval(f,p0));
%
% Calculate error
%
err=abs(p2-p1);
%
% Update values
%
p0=p1;
p1=p2;
%
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% Apply convergence condition
%
if (k>2)&(err<delta)
break
end
end
%
% Indicate convergence not achieved
%
if(k==max1)
disp('Max number of iterations reached')
end
sprintf('The root is = %7.3f',p1)

A.m.3.3

% Newton-Raphson Method for Root Solving
%
% Given equation: f1(x) = exp(x) – x2 = 0
%
format short g
%
f1=@(x) exp(x)-x^2;
%
% Enter starting value of the root
%
x(1) = input('Enter the initial guess, x(1) = ');
%
% Apply Newton-Raphson method
%
for i=1:20
x(i+1) = x(i) - f1(x(i))/(exp(x(i))-2*x(i));
%
% Check for convergence
%
if(abs(x(i+1)-x(i)) <= 0.01)
disp(sprintf('Iteration converged'))
break
end
end
x=x'

A.m.3.4

% Successive Substitution Method for Root Solving
%
% Given equation: f(x) = 0, rewritten as x = z = g(x)
%
% The equation considered is the one obtained by 
%  eliminating P from the two equations in Example 4.7 to obtain a 
% single nonlinear equation for R
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%
% conv is the convergence parameter, x is the 
% current approximation to the root and z the next approximation
%
% Enter initial guess for the root and convergence % parameter
%
x = input('Enter the value of x, x =  ');
conv=input('Enter the value of Convergence Parameter, conv='); 
fprintf('X=  %.2f   CONV=  %.4f\n',x,conv);
%
% Apply successive substitution 
%
for i=1:20
z = (((((15-x)/(7.5*10^-5))^ .5)-80)/10.5)^ .6;
fprintf('X=%.4f  Z=%.4f\n',x,z);
%
% Check for divergence of scheme
%
if abs(z-x)>1/conv
disp('Convergence not achieved');
break
end
%
% Check for convergence
%
if abs(z-x)<conv
%
% Print results
%
fprintf('THE REQUIRED ROOT IS X=%.4f\n',x);
break
elseif abs(z-x)>=conv
x=z;
end
end

A.M.4 LINEAR OR NONLINEAR EQUATIONS

A.m.4.1

% Direct Solution of a System of Linear Equations
%
% Enter given coefficients and constants
%
% Solving the problem given in Example 4.1
%
a = [2 1 0 6; 5 2 0 0; 0 7 2 2; 0 0 8 9];
b = [64;37;66;104];
%
% Obtain solution by matrix inversion
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%
x = inv(a)*b;
x1 = a\b;
%
% Obtain solution by LU decomposition
%
[l,u,p] = lu(a);
y = l\(p*b);
x3 = u\y;
x
x1
x3

A.m.4.2

% Gauss-Seidel Method for Linear Equations
%
% Solving the problem given in Example 4.1
%
% Enter Initial Guess
%
x=[0 0 0 0];
%
% Gauss Seidel Iteration
%
for k=1:100
%
% Store Old Values
%
xold=x;
%
% Calculate New Values
%
x(1)=(37-2*x(2))/5;
x(2)=(66-2*x(3)-2*x(4))/7;
x(3)=(104-9*x(4))/8;
x(4)=(64-2*x(1)-x(2))/6;
%
% Check for Convergence
%
if abs(x-xold)<=0.001
disp(sprintf('No. of iterations = %g x(1)= %5.3f x(2)= %5.3f x(3) . . .  
= %5.3f,x(4)=%5.3f',k,x))
break
end
end

A.m.4.3

% Gauss-Seidel Method for Finite Difference Solution of ODE
%
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% Problem in Example 4.4
%
% Enter initial guess
%
for i=1:31
x(i)=0.0;
xold(i)=0.0;
end
S=50.41*(0.01^2)+2
%
% Enter boundary values
%
x(1)=100;
x(31)=100;
%
% Apply Gauss-Seidel method
%
for k=1:1000
xold(i)=x(i);
for i=2:30
x(i)=(x(i+1)+x(i-1))/S;
end
%
% Check for convergence
%
if abs(x(i)-xold(i))<=0.001
sprintf('The Solution is:')
%
% Print the results obtained
%
x
break
end
end
%
% Plot the results
%
j=1:31;
plot(j,x)

A.m.4.4

% Gaussian Elimination for a Tridiagonal Coefficient Matrix (TDMA)
%
% Problem in Example 4.4
%
% n is the number of unknowns, s is a parameter from the problem 
% being solved, a, b and c are coefficients in the tridiagonal
%  matrix, f is the constant vector and tp is the physical 
% temperature
%
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% Enter input data
%
s=0.071^2;
n=29;
f(1)=100;f(29)=100;
f(2:28)=0;
a(2:n)=-1;b(1:n)=2+s;c(1:n-1)=-1;
%
% Apply tridiagonal matrix algorithm
%
for i=2:n;
d=a(i)./b(i-1);
b(i)=b(i)-c(i-1).*d;
f(i)=f(i)-f(i-1).*d;
end
%
% Apply back-substitution
%
t(n)=f(n)./b(n);
for i=1:n-1;
j=n-i;
t(j)=(f(j)-c(j).*t(j+1))./b(j);
end
%
% Plot the results obtained
%
tp(2:30)=t(1:29)+20;
tp(1)=120;tp(31)=120;
x=linspace(0,30,31);
plot(x,tp,'k')
xlabel('Distance x (cm)', 'Fontsize' ,14)
ylabel( 'Physical Temperature Tp (Degrees C)', 'Fontsize' ,14)

A.m.4.5

%  Successive Substitution Method for Solving a System of Nonlinear 
% Algebraic Equations
%
% Problem in Example 4.6
%
% ep is the convergence parameter, b, p, f1, f2 are parameters
%  in the problem, and c is the total flow rate of the mixture 
% entering the plant
%
ep=0.0000001;
b=0.1;
c=180.0;
bo=b;
                disp('ARGON     TOTAL FLOW  AMMONIA')
for i=1:50
    f1=0.9/(1.0-b);
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    p=1.0-0.57*exp(-0.0155*f1);
    f2=90.0/(1.0-b*p);
    b=1.0-23.5/(4.0*f2*p+f1);
    c=f1+4.0*f2;
    d=0.57*exp(-0.0155*f1)*2.0*f2;
        fprintf('%.4f    %.4f    %.4f\n',f1,c,d)
    if (abs(b-bo))<ep
        disp('Iteration has converged')
        disp('Converged results are')
         fprintf('ARGON=%.4f   TOTAL FLOW= %.4f   AMMONIA=. . . 

%.4f\n',f1,c,d)
        break
    end
    bo=b;
end

A.m.4.6

%  Newton's Method for Solving a System of Nonlinear Algebraic 
% Equations
%
% Problem in Example 4.7
%
% r and p are parameters in the problem, ep is the convergence
% parameter and dr, dp are the increments in r and p, respectively
%
% Enter starting values
%
r = input('Enter the value of parameter r, r =');
p = input('Enter the value of parameter p, p =');
ep = input('Enter the value of convergence parameter ep, ep =');
for i=1:10
    r1=((p-80)/10.5)^0.6-r;
    p1=((15-r)*(10^6)/75)^0.5-p;
    b=r1^2+p1^2;
%
% Check for convergence
%
            if b<ep
                disp('THE REQUIRED SOLUTION IS:')
     fprintf('The flow rate R = %.4f   The pressure P = %.4f\n',r,p)
    break
            end
% 
% Calculate partial derivatives
%
    rr=-1;
    rp=3/(5*(10.5^0.6)*((p-80)^0.4));
    pr=-1/(2*((7.5*10^-5)^0.5)*((15-r)^0.5));
    pp=-1;
    d=rr*pp-rp*pr;
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%
% Determine increments for the next iteration
% 
   dr=(-r1*pp+p1*rp)/d;
    dp=(-p1*rr+r1*pr)/d;
%
% Calculate values of r and p for the next iteration
% 
   r=r+dr;
    p=p+dp;
%
% Print results
%
    fprintf('R =%.4f   P =%.4f\n',r,p)   
end

A.M.5

A.m.5.1

% Interpolation
%
% Exact fit with general form of the polynomial given in Eq. (3.29)
%
% Enter data
%
x=[1 2 3 4 5 6];
y=[106.4 57.79 32.9 19.52 12.03 7.67]';
%
% Fifth order polynomial for exact fit of 6 data points
% Form Matrix for exact fit
%
c=[x.^0;x;x.^2;x.^3;x.^4;x.^5]';% Find coefficients of polynomial
%
disp('Coefficients of the polynomial are:')
a=c\y
plot(x,y,'*')
hold
%
% Find value at x = 3.4
%
p=a(6:-1:1);
x1=3.4;
y1=polyval(p,x1);
fprintf('Interpolated value from exact fit y = %.4f\n',y1)

A.m.5.2

% Use of Matlab functions
%
y2=interp1(x,y',x1,'linear');
y3=interp1(x,y',x1,'spline');
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fprintf('Value from linear interpolation y = %.4f\n',y2)
fprintf('Value from spline interpolation y = %.4f\n',y3)
x=linspace(1,6,20);
y=polyval(p,x);
plot(x,y,'-g')
xlabel('x','Fontsize',14);ylabel('y','Fontsize',14)

A.m.5.3

% Curve Fitting
%
% Enter data
%
x=[1 2 3 4 5 6];
y=[106.4 57.79 32.9 19.52 12.03 7.67];
%
% Use MATLAB function "polyfit" for curve fitting
%
p1=polyfit(x,y,1)
p2=polyfit(x,y,2)
%
% Plot results
%
xi=linspace(1,6,100);
z1=polyval(p1,xi);
z2=polyval(p2,xi);
plot(x,y,'*',xi,z1,'g',xi,z2,'b')

A.m.5.4

% Exponential Expressions
%
% Solving problem given in Example 3.8
%
% Enter data
x=[0.2  0.6  1.0  1.8  2.0  3.0  5.0  6.0  8.0];
y=[146.0  129.5  114.8  90.3  85.1  63.0  34.6  25.6  14.1];
%
% Define New Variables for Linearization
%
z=log(y);
%
% Use MATLAB function "polyfit" for curve fitting
%
p=polyfit(x,z,1)
%
% Obtain Constants A and a
%
  a=p(1)
  A=exp(p(2))
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A.m.5.5

% Plotting Polynomials
 x=0:0.01:2.5;
 p1=[1 -4 7 -6 2];
 p2=[1 -10 35 -50 24];
 p3=[1 -7 17 -17 6];
 y1=polyval(p1,x);
 y2=polyval(p2,x);
 y3=polyval(p3,x);
 plot(x,y1,'g',x,y2,'b',x,y3,'m')
 hold on
 y = zeros(size(x));
 plot(x,y,'r')

A.M.6

A.m.6.1

% Ordinary Differential Equations
%
% Given ODE: dh/dt = [6x10-4 – 3x10-4 x h0.5]/0.03
%
% Enter given ODE
%
dhdt=inline('(6*10^(-4) - 3*10^(-4)*(h^(0.5)))/0.03','t','h');
%
% Choose step size and total time
%
dt=10;
tn=200*dt;
h0=0;
t=(0:dt:tn)';
n=length(t);
h=h0*ones(n,1);
%
% Euler's Method
%
for j=2:n;
  h(j)=h(j-1)+dt*dhdt(t(j-1),h(j-1));
end
  plot(t,h,'-b')
%
% Heun's Method
%
t=(0:dt:tn)';
for j=2:n
  h1=h(j-1)+dt*dhdt(t(j-1),h(j-1));
  h(j)=h(j-1)+(dt/2)*(dhdt(t(j),h1) + dhdt(t(j-1),h(j-1)));
end
  hold on
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  plot(t,h,'-g')
%
% Using ode23
%
[t,h] = ode23(dhdt,2000,0);
Plot(t,h,'-r')

A.m.6.2

% Fourth Order Runge-Kutta Method
%
% Similar to problem in Example 4.3
%
% Enter the function f for the ODE dv/dt=f(t,v)
%
f=inline('-9.8-(0.01*v+0.001*v^2)');
%
% Choose time step and enter initial conditions
%
dt=input('Step size dt =');
t=0;
x=0;
v=100.0;
i=1;
%
while v>=0
%
% Initialize variables
%
    q=x;z=v;
    tp(i)=t;xp(i)=x;vp(i)=v;
%
% Apply 4th order Runge-Kutta formulas
%
rk1x=dt*z;
rk1v=dt*f(z);
rk2x=dt*(z+rk1v/2);
rk2v=dt*f(z+rk1v/2);
rk3x=dt*(z+rk2v/2);
rk3v=dt*f(z+rk2v/2);
rk4x=dt*(z+rk3v);
rk4v=dt*f(z+rk3v);
x=q+(rk1x+2*rk2x+2*rk3x+rk4x)/6;
v=z+(rk1v+2*rk2v+2*rk3v+rk4v)/6;
%
% Advance to next time step
%
t=t+dt;
i=i+1;
end
%
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% Plot results
%
plot(tp,xp,'-',tp,vp,'--')

A.m.6.3

% Higher order ODE
%
% Second order ODE: d2x/dt2 = 9.8 – 0.05 (dx/dt)
%  Replaced by two first order ODEs: dx/dt = y; dy/dt = 9.8 – 0.05 y
%
% Enter two first-order equations
%
dxdt=inline('y','t','x','y');
dydt=inline('9.8-0.05*y','t','x','y');
%
% Give step size, end point and starting conditions
%
dt=0.5;
tn=40*dt;
x0=0;
y0=0;
t=(0:dt:tn)';
n=length(t);
x=x0*ones(n,1);
y=y0*ones(n,1);
%
% Euler's Method
%
for j=2:n;
  x(j)=x(j-1)+dt*dxdt(t(j-1),x(j-1),y(j-1));
  y(j)=y(j-1)+dt*dydt(t(j-1),x(j-1),y(j-1));
end
 plot(t,x,'-b',t,y,'-g')

A.m.6.4

% Using ode45
%
% Define function
%
function dydt=rhs(t,y)
dydt=[y(2);9.8-0.05*y(2)];
end

% Solve ODE given by function 'rhs'
%
y0=[0;0];
[t,y] = ode45('rhs',20,y0)
%
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% Then y(1) gives t and y(2) gives y
Plot(t,y,'-b')

A.m.6.5

% Finite Difference Method for Solving Second-Order ODE
%
% s, p are parameters in the problem, nt is the total number of 
% grid points, a, b and c are coefficients in the tridiagonal
% matrix, f is the constant vector, t is the dimensionless 
% temperature and tp is the physical temperature
%
%     Enter input data
%
p=input('Parameter P = ');
nt=input('Total number of grid points = ');
n=nt-2;
s=2+(p^2)*((1.0/(nt-1))^2);
%
% Enter boundary conditions and form tridiagonal matrix
%
f(1)=1;f(n)=0.5;
f(2:n-1)=0;
a(2:n)=-1;b(1:n)=s;c(1:n-1)=-1;
%
% Apply tridiagonal matrix algorithm
%
for i=2:n;
d=a(i)./b(i-1);
b(i)=b(i)-c(i-1).*d;
f(i)=f(i)-f(i-1).*d;
end
%
% Apply back-substitution
%
t(n)=f(n)./b(n);
for i=1:n-1;
j=n-i;
t(j)=(f(j)-c(j).*t(j+1))./b(j);
end
%
% Calculate resulting temperature distribution
%
tp(2:nt-1)=t(1:n);
tp(1)=1;tp(nt)=0.5;
%
% Plot the results obtained
%
x=linspace(0,1,51);
plot(x,tp,'k')
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xlabel('Distance X', 'Fontsize' ,14)
ylabel( 'Temperature T', 'Fontsize' ,14)

A.M.7

A.m.7.1

% Forward Time Central Space (FTCS) Method
%
%  Solution of 1D transient conduction problem by the FTCS method, 
% see Ch. 4, Section 4.2.4
%
% th is the unknown theta, or dimensionless temperature, tint is the 
% initial value of th taken as uniform, kmax is the maximum number of
% time steps, kprint the steps after which results are printed or 
% plotted,dx is the grid size, dt the time step, n the number of grid 
% points, k represents the time step and i the spatial grid point
%
% Enter starting values
%
tint=input('Enter the initial condition tint = ');
n=input('Enter number of grid points n = ');
kmax=input('Enter maximum number of time steps kmax = ');
kprint=input('Time steps after which results are plotted kprint = ');
%
% Specify boundary conditions
%
th(1,2:n)=tint;
th(1:kmax,1)=1.0;
dx=1/(n-1);
%
% Calculate maximum time step to avoid numerical instability
%
dt=(dx^2)/2;
    for k=2:kmax;   
%
% Apply FTCS method
%
        for i=2:n-1;
         th(k,i)=th(k-1,i)+dt*(th(k-1,i+1)-2*th(k-1,i) . . . 

+th(k-1,i-1))/(dx^2);
        end
    end
%   
% Store results for plotting
%
    for j=1:10;
        m=kprint*j+1;
        time=(m-1)*dt;
        fprintf('Time = %.4f\n',time)
        tp(j,1:n)=th(m,1:n);
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    end
%
%    Plot results
%
x=linspace(0,1,n);
plot(x,tp)
xlabel('X');ylabel('Dimensionless temperature, \theta');
title('Temperature Versus Distance at Different Times')

A.m.7.2

% Crank-Nicolson Method
%
% See Example 4.5
%
%  t is the unknown dimensionless temperature, tint is the initial
%  value of t taken as uniform,kmax is the maximum number of time
%  steps, kprint the steps after which results are printed or plotted,
% dx is the grid size, dt the time step, n the number of grid points,
%  k represents the time step and i the spatial grid point, and
% a, b, c and f are the parameters of the tridiagonal system
%
% Enter starting values
%
tint=input('Enter the initial condition tint = ');
n=input('Enter number of grid points n = ');
dt=input('Enter the time step dt = ');
kmax=input('Enter maximum number of time steps kmax = ');
kprint=input('Time steps after which results are plotted . . . 
kprint = ');
%
% Specify boundary conditions
%
t(1,2:n)=tint;
t(1:kmax,1)=1.0;
dx=1/(n-1);
%
% Calculate the parameters of the tridiagonal system
%
for k=2:kmax;
    a(1:n-2)=-dt/(2*dx^2);
    b(1:n-2)=1+dt/(dx^2);
    c(1:n-2)=-dt/(2*dx^2);
    for i=2:n-1;
         f(i-1)=t(k-1,i)+dt*(t(k-1,i+1)-2*t(k-1,i)+t(k-1,i-1))/ . . . 

(2*dx^2);
    end
    f(1)=f(1)-a(1)*t(k,1);
    a(n-2)=a(n-2)-c(n-2)/3;
    b(n-2)=b(n-2)+4*c(n-2)/3;
%
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%  Use the TDMA function file to obtain temperatures at the next 
% time step
%
    t(k,2:n-1)=tdma(a,b,c,f,n-2);
%
% Apply boundary condition at the right boundary
%
    t(k,n)=4*t(k,n-1)/3-t(k,n-2)/3;
end
%   
% Store results for plotting
%
    for j=1:10;
        m=kprint*j+1;
        time=(m-1)*dt;
        fprintf('Time = %.4f\n',time)
        tp(j,1:n)=t(m,1:n);
    end
%
% Plot results
%
x=linspace(0,1,n);
plot(x,tp)
xlabel('X');ylabel('Dimensionless Temperature, \theta');
title('Temperature Versus Distance at Different Times')

% Function tdma
function t = tdma( a,b,c,f,n)
for i=2:n;
d=a(i)./b(i-1);
b(i)=b(i)-c(i-1).*d;
f(i)=f(i)-f(i-1).*d;
end
%
%   Apply back-substitution
%
t(n)=f(n)./b(n);
for i=1:n-1;
j=n-i;
t(j)=(f(j)-c(j).*t(j+1))./b(j);
end

A.m.7.3

% Gauss-Seidel Method for an Elliptic PDE
%
% Laplace Equation
%
% See Ch. 4, Section 4.2.4
%
%  m and n are grid points in x and y directions, imax is maximum 
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%  number of iterations, phi is the unknown dependent variable, 
%  phiol the value of phi at the previous iteration, and ep the 
% convergence parameter
%
% Input given data
%
m=input('Enter number of grid points in x direction m = ');
n=input('Enter number of grid points in y direction n = ');
phint=input('Enter initial guess for phi taken as uniform phint = ');
imax=input('Enter maximum number of iterations imax = ');
ep=input('Enter convergence parameter ep = ');
%
% Calculate grid or mesh lengths
%
dx=1/(m-1);
dy=1/(n-1);
%
% Apply boundary conditions
%
phi(2:m-1,2:n-1)=phint;
phi(1,1:n)=0;
phi(m,1:n)=0;
phi(1:m,1)=0;
phi(1:m,n)=1;
%
% Apply Gauss-Seidel iterative scheme
%
for i=1:imax;
    phiol(1:m,1:n)=phi(1:m,1:n);
    for j=2:m-1;
        for k=2:n-1;
             phi(j,k)=((phi(j+1,k)+phi(j-1,k))/ . . . 

(dx^2)+(phi(j,k+1)+ phi(j,k-1))/(dy^2))/. . .  
(2/(dx^2)+2/(dy^2));

        end
    end
%
% Check for convergence
%
    if abs(phi-phiol)<ep
        break
    end
end
%
% Plot results
%
xp=linspace(0,1,m);
nn=(n+1)/2;
plot(xp,phi(1:m,nn-4),xp,phi(1:m,nn-3),xp,phi(1:m,nn-2), . . . 
xp,phi(1:m,nn-1),xp,phi(1:m,nn))



524 Appendix A: Computer Programs

A.m.7.4

% SOR Method for an Elliptic PDE
%
% Laplace Equation
%
% See Ch.4, Section 4.2.4
%
%  m and n are grid points in x and y directions, respectively, 
% imax is maximum number of iterations, phi is the unknown
% dependent variable, phiol the value of phi at the previous
% iteration, and ep the convergence parameter
%
% Input given data
%
m=input('Enter number of grid points in x direction m = ');
n=input('Enter number of grid points in y direction n = ');
phint=input('Enter initial guess for phi taken as uniform phint = ');
imax=input('Enter maximum number of iterations imax = ');
ep=input('Enter convergence parameter ep = ');
%
% Calculate grid or mesh lengths
%
dx=1/(m-1);
dy=1/(n-1);
%
% Specify relaxation parameter w
%
w=0.5;
%
% Apply boundary conditions
%
phi(2:m-1,2:n-1)=phint;
phi(1,1:n)=0;
phi(m,1:n)=0;
phi(1:m,1)=0;
phi(1:m,n)=1;
%
% Apply SOR iterative scheme
%
for i=1:imax;
    phiol(1:m,1:n)=phi(1:m,1:n);
    for j=2:m-1;
        for k=2:n-1;
             phi(j,k)=w*((phi(j+1,k)+phi(j-1,k))/(dx^2)+(phi . . . 

(j,k+1)+ phi(j,k-1))/(dy^2))/(2/(dx^2)+2/. . . 
(dy^2))+(1-w) *phiol(j,k);

        end
    end
%
% Check for convergence
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%
    if abs(phi-phiol)<ep
        break
    end
end
%
%   Plot results
%
xp=linspace(0,1,m);
nn=(n+1)/2;
plot(xp,phi(1:m,nn-4),xp,phi(1:m,nn-3),xp,phi(1:m,nn-2), . . . 
xp,phi(1:m,nn-1), xp,phi(1:m,nn))

A.F.1

C GAUSSIAN ELIMINATION FOR A TRIDIAGONAL SYSTEM
C 
C A(I), B(I) AND C(I) ARE THE THREE ELEMENTS IN EACH ROW OF
C THE GIVEN SYSTEM OF EQUATIONS, F(I) REPRESENTS THE CONSTANTS
C  ON THE RIGHT-HAND SIDE OF THE EQUATIONS, T(I) ARE THE 
C  TEMPERATURE DIFFERENCES TO BE COMPUTED, G IS A PARAMETER
C DEFINED IN THE GIVEN PROBLEM, N IS THE NUMBER OF EQUATIONS
C AND TP REPRESENTS THE PHYSICAL TEMPERATURE, WHERE
C TP = T + 20. THE SYSTEM OF EQUATIONS TO BE SOLVED IS THE
C ONE GIVEN IN EXAMPLE 4.4.
C 
 PARAMETER (IN=30)
 DIMENSION A(IN),B(IN),C(IN),T(IN),F(IN)
C 
C SPECIFY INITIAL PARAMETERS
C 
 CALL INPUT(A,B,C,F,N)
 CALL TDMA(A,B,C,F,N,T)
C 
C  COMPUTE ACTUAL TEMPERATURES FROM THE TEMPERATURE 
C DIFFERENCES T(I)
C 
 WRITE (6,7)
 7  FORMAT(2X,'THE REQUIRED PHYSICAL TEMPERATURES IN CELSIUS ARE'/)
 DO 8 I=1,N
  TP=T(I)+20.0
  WRITE (6,9)I,TP
 8 CONTINUE
 9 FORMAT(2X,'TP(',I2,')=',F10.4)
 STOP
 END
C*****************************************************************
C GET THE INPUT DATA
C*****************************************************************
 SUBROUTINE INPUT(A,B,C,F,N)
 PARAMETER (IN=30)
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 DIMENSION A(IN),B(IN),C(IN),F(IN)
 PRINT *, 'GIVE THE VALUE OF N'
 READ *, N
 G=50.41*(0.01**2)
C 
C 'FMTDM' FORMS THE TRIDIAGONAL MATRIX AND THE RIGHT HAND SIDE
C COLUMN MATRIX
C 
 CALL FMTDM(G,N,A,B,C,F)
 RETURN
 END
C*****************************************************************
C  THE FOLLOWING SUBROUTINE FORMS THE TRIDIAGONAL MATRIX OF 
C THE FORM
C 
C A*T(I-1) + B*T(I) + C*T(I+1) = R
C*****************************************************************
 SUBROUTINE FMTDM(G,N,A,B,C,R)
 DIMENSION A(N),B(N),C(N),R(N)
C 
C ENTER THE CONSTANTS ON THE RIGHT-HAND SIDE OF THE EQUATIONS
C 
 R(1)=100.0
 R(N)=100.0
 NN=N-1
 DO 1 I=2,NN
 R(I)=0.0
 1 CONTINUE
C 
C ENTER THE MATRIX COEFFICIENTS
C 
 DO 2 I=1,N
 B(I)=2.0+G
 2 CONTINUE
 DO 3 I=1,NN
 C(I)=-1.0
 3 CONTINUE
 DO 4 I=2,N
  A(I)=-1.0
 4 CONTINUE
 RETURN
 END
C***************************************************************** 
C TRIDIAGONAL MATRIX ALGORITHM
C***************************************************************** 
 SUBROUTINE TDMA(A,B,C,F,N,T)
C 
C N IS THE ORDER OF THE TRIDIAGONAL MATRIX
C A IS THE SUBDIAGONAL OF THE TRIDIAGONAL MATRIX
C B IS THE DIAGONAL OF THE TRIDIAGONAL MATRIX
C C IS THE SUPERDIAGONAL OF THE TRIDIAGONAL MATRIX
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C F IS THE RIGHT HAND SIDE VECTOR
C T IS THE SOLUTION VECTOR
C 
 DIMENSION A(N),B(N),C(N),F(N),T(N)
 NN=N-1
 DO 5 I=2,N
  D=A(I)/B(I-1)
  B(I)=B(I)-C(I-1)*D
  F(I)=F(I)-F(I-1)*D
 5 CONTINUE
C 
C APPLY BACK SUBSTITUTION
C 
 T(N)=F(N)/B(N)
 DO 6 I=1,NN
  J=N-I
  T(J)=(F(J)-C(J)*T(J+1))/B(J)
 6 CONTINUE
 RETURN
 END

A.F.2

C  GAUSS-SEIDEL METHOD FOR SOLVING A SYSTEM OF LINEAR 
EQUATIONS

C 
C 
C T(I) REPRESENTS THE TEMPERATURE DIFFERENCES FROM THE AMBIENT
C TEMPERATURE, TO(I) DENOTES THE TEMPERATURE DIFFERENCES AFTER
C THE PREVIOUS ITERATION, TP IS THE ACTUAL TEMPERATURE, S IS A
C CONSTANT DEFINED IN THE PROBLEM AND N IS THE NUMBER OF
C EQUATIONS. THE PROBLEM CONSIDERED IS THE ONE GIVEN IN
C EXAMPLE 4.4.
C 
C 
C ENTER VALUES OF RELEVANT PARAMETERS
C 
 PARAMETER (IN=30)
 DIMENSION T(IN),TO(IN)
 S=50.41*(0.01**2)+2.0
 PRINT *, 'GIVE THE NUMBER OF EQUATIONS : '
 READ (5,*) N
 NN=N-1
 EPS=0.1
C 
C DIFFERENT CONVERGENCE PARAMETER EPS
C 
 DO 10 K=1,5
C 
C INPUT STARTING VALUES
C 



528 Appendix A: Computer Programs

 J=0
 DO 1 I=1,N
  T(I)=0.0
 1  CONTINUE
C 
C STORE COMPUTED VALUES AFTER EACH ITERATION
C 
 2  DO 3 I=1,N
   TO(I)=T(I)
 3  CONTINUE
C 
C COMPUTE THE END VALUES T(1) AND T(N)
C 
  T(1)=(T(2)+100.0)/S
  T(N)=(100.0+T(N-1))/S
C 
C COMPUTE INTERMEDIATE VALUES
C 
  DO 4 I=2,NN
   T(I)=(T(I+1)+T(I-1))/S
 4  CONTINUE
C 
C CHECK FOR CONVERGENCE
C 
  J=J+1
  DO 5 I=1,N
   IF(ABS(TO(I)-T(I)) .GT. EPS) GO TO 2
 5  CONTINUE
  WRITE(6,6)EPS
 6  FORMAT(//2X,'EPS=',F10.5)
  WRITE(6,7)J
 7  FORMAT(/2X,'NUMBER OF ITERATIONS=',I4/)
C 
C COMPUTE ACTUAL TEMPERATURES
C 
  DO 8 I=1,N
   TP=T(I)+20.0
   WRITE(6,9)I,TP
 8  CONTINUE
 9  FORMAT(2X,'TP(',I2,')=',F12.4)
  EPS=EPS/10.0
 10 CONTINUE
 STOP
 END

A.F.3

C ROOT SOLVING WITH THE SECANT METHOD

C X IS THE INDEPENDENT VARIABLE, FUN(X) IS THE GIVEN FUNCTION,
C X1 AND X2 ARE THE X VALUES FROM THE TWO PREVIOUS ITERATIONS,
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C STARTING WITH THE TWO POINTS BOUNDING THE REGION, X3 IS THE
C  APPROXIMATION TO THE ROOT, F1, F2 AND F3 ARE THE CORRESPONDING
C VALUES OF THE FUNCTION, AND EPS IS THE CONVERGENCE CRITERION
C THE FUNCTION USED IS THE ONE IN EXAMPLE 4.2.
C 
 EXTERNAL FUN 
 PRINT *, 'ENTER THE TWO STARTING VALUES OF X' 
 READ (5,*) X1,X2
C 
C STORE STARTING VALUES

 X1I=X1 
 X2I=X2 
 XOLD=X1 
 WRITE(6,12) X1,X2 
 12 FORMAT(/10X,'INITIAL X1=',F7.2,10X,'INITIAL X2=',F7.2//) 
 EPS=0.01 
 DO 2 I=1,4 
 1  F1=FUN(X1) 
  F2=FUN(X2)
C  
C COMPUTE THE APPROXIMATION TO THE ROOT
C 
  X3=(X1*F2-X2*F1)/(F2-F1) 
  F3=FUN(X3) 
  XNEW=X3
C  
C CHECK FOR CONVERGENCE

  IF (ABS(XNEW-XOLD) .GT. EPS) THEN 
   X1=X2 
   X2=X3 
   XOLD=X3 
   WRITE(6,10)X3,F3 
 10    FORMAT(2X,'TEMPERATURE T =',F10.4,4X,'FUNCTION 
 $  F(T) =', F12.6) 
   GO TO 1 
  ELSE 
 11   WRITE(6,13)EPS,X3,F3 
 13   FORMAT(//2X,'EPS=',F9.6,4X,'TEMPERATURE T =',F10.4,4X, 
 $   'FUNCTION F(T)=',F12.6//) 
  END IF
C  
C VARY CONVERGENCE CRITERION
C  
  EPS=EPS/10 
  X1=X1I 
  X2=X2I 
  XOLD=X1 
 2 CONTINUE 
 STOP 
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 END
C 
C DEFINE THE FUNCTION
C 
  FUNCTION FUN(X) FUN=(0.6*5.67*((850.0**4.0)-(X**4.0))/
 $  (10.0**8.0))-40.0*(X-350.0) 
 RETURN 
 END 

A.F.4

C THIS PROGRAM FINDS THE REAL ROOTS OF AN EQUATION F(X)=0
C BY THE NEWTON-RAPHSON METHOD
C 
C 
C 
C HERE X IS THE INDEPENDENT VARIABLE, Y1 THE VALUE OF THE
C  FUNCTION AT X, Y2 THE FUNCTION AT X+0.001, YD THE 
C DERIVATIVE, DX THE INCREMENT IN X FOR THE NEXT ITERATION, 
C EPS THE CONVERGENCE CRITERION ON THE FUNCTION AND XMAX
C THE MAXIMUM VALUE OF X. THE FUNCTION USED IS THE ONE IN 
C EXAMPLE 4.2.
C 
C 
C DEFINE FUNCTION AND SPECIFY INPUT PARAMETERS
C 
 EXTERNAL Y
 EPS=0.001
 WRITE(6,15)EPS
 15 FORMAT(2X,'EPS=',F8.4/)
 PRINT *, ' ENTER AN INITIAL GUESS FOR X'
 READ (5,*) X
 XMAX=850.0
 1 Y1=Y(X)
 WRITE(6,10) X,Y1
C 
C CHECK FOR CONVERGENCE
C 
 IF (ABS(Y1) .GT. EPS) THEN
  XN=X+0.001
  Y2=Y(XN)
  YD=(Y2-Y1)/0.001
C 
C CHECK IF RESULTS DIVERGE
C 
  IF (YD .GE. (1.0/EPS)) GO TO 20
C 
C COMPUTE NEW APPROXIMATION TO THE ROOT
C 
  DX=-Y1/YD
  X=X+DX
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  IF (X .GE. XMAX) GO TO 20
  GO TO 1
 ELSE
 5  WRITE(6,12) X,Y1
 12   FORMAT(/2X,'TEMPERATURE T =',F8.4,4X,'FUNCTION 
 $  F(T)=',F12.6)
 10   FORMAT(2X,'TEMPERATURE T =',F8.4,4X,'FUNCTION 
 $  F(T)=',F12.6)
 END IF
 20 STOP
 END
C 
C DEFINE THE FUNCTION
C 
 FUNCTION Y(X)
  Y=(0.6*5.67*((850.0**4.0)-(X**4.0)))/(10.0**8.0) 
 $ - 40.0*(X-350.0)
 RETURN
 END

A.F.5

C THIS PROGRAM SOLVES THE LAPLACE EQUATION BY EMPLOYING
C THE SUCCESSIVE OVER RELAXATION (SOR) ITERATION METHOD.
C 
C  WHEN THE PROGRAM IS RUN IT PROMPTS FOR THE INPUT VALUES 
C REQUIRED.
C  ENTER THE INPUT VALUES AND YOUR OUTPUT WILL BE IN A FILE CALLED
C 'SOR.DAT'
C 
C 
C DESCRIPTION OF INPUT PARAMETERS:
C 
C IL  IS THE NUMBER OF GRID POINTS IN THE X DIRECTION.
C JL  IS THE NUMBER OF GRID POINTS IN THE Y DIRECTION.
C DX IS THE GRID SIZE IN X DIRECTION.
C DY IS THE GRID SIZE IN Y DIRECTION.
C OMEGA IS THE RELAXATION PARAMETER
C PHIINT  IS THE INITIAL GUESS FOR PHI TAKEN UNIFORM OVER THE
C  WHOLE DOMAIN.
C ITMAX  IS THE NUMBER OF MAXIMUM ITERATIONS BEFORE STOPPING.
C EPSI IS THE CONVERGENCE CRITERION.
C 
C 
C DESCRIPTION OF OTHER VARIABLES:
C 
C PHI IS THE SOLUTION VARIABLE AT NTH TIME STEP.
C PHIOL IS THE SOLUTION VARIABLE AT N-1TH TIME STEP.
C 
C 
 CHARACTER*2 XFILE(5)
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 CHARACTER*2 YFILE(5)
 DIMENSION PHI(11,11),PHIOL(11,11)
 PRINT*,'ENTER INITIAL GUESS FOR PHI TAKEN UNIFORM OVER THE'
 PRINT*,'WHOLE DOMAIN'
 READ(5,*)PHIINT
 PRINT*,'ENTER GRID SIZE DX=, DY='
 READ(5,*)DX,DY
 PRINT *,'ENTER NO. OF GRID POINTS IL= , JL= '
 PRINT*,' MAXIMUM POSSIBLE IS 11 FOR BOTH IL AND JL,'
 PRINT*,'UNLESS DIMENSION STATEMENTS ARE CHANGED.'
 READ(5,*)IL,JL
 PRINT *,'ENTER THE RELAXATION PARAMETER'
 READ(5,*)OMEGA
  PRINT*, 'ENTER MAXIMUM NO. OF ITERATIONS ALLOWED BEFORE 
   $   STOPPING'
 READ(5,*)ITMAX
 PRINT *,'ENTER CONVERGENCE CRITERION'
 READ(5,*)EPSI
 PRINT*,'THE INPUT VALUES ARE:'
 PRINT*,'INITIAL GUESS FOR PHI=',PHIINT
 PRINT*,'DX=',DX,'DY=',DY
 PRINT*,'IL=',IL,'JL=',JL
 PRINT*,'MAX NO. OF ITERATIONS=',ITMAX
 PRINT*,'CONVERGENCE CRITERION=',EPSI
 ITERATION=0
C 
C OPEN THE DATA FILES FOR GRAPHING
C 
 XFILE(1)='X1'
 XFILE(2)='X2'
 XFILE(3)='X3'
 XFILE(4)='X4'
 XFILE(5)='X5'
 YFILE(1)='Y1'
 YFILE(2)='Y2'
  YFILE(3)='Y3'
  YFILE(4)='Y4'
  YFILE(5)='Y5'
C
C  SET INITIAL DISTRIBUTION OF PHI
C 
  DO 51 I=1,IL
   DO 5 J=1,JL
    PHI(I,J)=PHIINT
 5  CONTINUE
 51 CONTINUE
C 
C START SOLVING FOR PHI.
C 
 15  ITERATION=ITERATION+1
  IF(ITERATION.GE.ITMAX)GO TO 40
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C 
C  SAVE THE FIELD AT PREVIOUS TIME STEP.
C 
  DO 101 I=1,IL
   DO 10 J=1,JL
    PHIOL(I,J)=PHI(I,J)
 10   CONTINUE
 101 CONTINUE
C 
C DO SOR ITERATIONS ON PHI ON INTERIOR POINTS.
C 
  DO 201 J=2,JL-1
   DO 20 I=2,IL-1
    PHIGS=(PHI(I+1,J)+PHI(I-1,J))/DX**2+
   $    (PHI(I,J+1)+PHI(I,J-1))/DY**2
    PHIGS=PHIGS/(2./DX**2+2./DY**2)
    PHI(I,J)=OMEGA*PHIGS+(1.-OMEGA)*PHIOL(I,J)
 20  CONTINUE
 201 CONTINUE
C 
C IMPOSE THE BOUNDARY CONDITIONS
C 
  CALL BCOND(PHI,IL,JL)
C 
C  CHECK FOR CONVERGENCE
C 
  DO 351 I=1,IL
   DO 35 J=1,JL
    IF(ABS(PHI(I,J)-PHIOL(I,J)).GE.EPSI)GO TO 15
 35  CONTINUE
 351 CONTINUE
 GO TO 50
 40 PRINT*,'SOLN. DOES NOT CONVERGE IN',ITMAX,'ITERATIONS'
 50 OPEN(UNIT=10,FILE='SOR.DAT')
 WRITE(10,110)EPSI
 110 FORMAT(1X,'CONVERGENCE CRITERION ='1X,E9.1)
  WRITE(10,115)OMEGA
 115 FORMAT(//,1X,'W=',F5.2)
  WRITE(10,120)ITERATION
 120 FORMAT(//,1X,'NO. OF ITERATIONS TO CONVERGE=',1X,I4,//)
  WRITE(10,130)
 130 FORMAT(1X,'PHI DISTRIBUTION IS:',//)
  WRITE(10,140)(I,I=1,IL)
 140 FORMAT(1X,'I=',8X,11(I2,8X))
  DO 60 J=1,JL
   WRITE(10,100)J,(PHI(I,J),I=1,IL)
 60 CONTINUE
 100 FORMAT(1X,'J=',I2,3X,11(F8.5,2X))
C 
C  OUTPUT FOR GRAPHICS
C 
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  II=1
  DO 70 I=1,5
   II=II+1
   OPEN (UNIT=12,FILE=XFILE(I))
   DO 66 J=1,JL
    WRITE(12,*)PHI(II,J)
 66   CONTINUE
   CLOSE(UNIT=12)
 70  CONTINUE
  JJ=1
  DO 71 J=1,4
   JJ=JJ+2
   OPEN(UNIT=12,FILE=YFILE(J))
   DO 72 I=1,IL
    WRITE(12,*)PHI(I,JJ)
 72   CONTINUE
   CLOSE(UNIT=12)
 71 CONTINUE
 OPEN(UNIT=12,FILE='XX')
  DO 73 I=1,IL
   XX=FLOAT(I-1)*DX
   WRITE(12,*)XX
 73  CONTINUE
 CLOSE(UNIT=12)
 OPEN(UNIT=12,FILE='YY')
 DO 74 J=1,JL
  YY=FLOAT(J-1)*DY
  WRITE(12,*)YY
 74 CONTINUE
 CLOSE(UNIT=12)
 STOP
 END
C*******************************************************
 SUBROUTINE BCOND(PHI,IL,JL)
C 
C THIS SUBROUTINE IMPLEMENTS APPROPRIATE BOUNDARY CONDITIONS.
C 
 DIMENSION PHI(11,11)
C SET THE CONDITIONS ON I=1 AND I=IL SURFACES.
C 
 DO 25 J=1,JL
  PHI(1,J)=0.
  PHI(IL,J)=0.
 25 CONTINUE
C 
C SET THE CONDITIONS ON J=1 AND J=JL SURFACES
C 
 DO 30 I=1,IL
  PHI(I,1)=0.
  PHI(I,JL)=1.
 30 CONTINUE
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 RETURN
 END

A.F.6

C THE SUCCESSIVE SUBSTITUTION METHOD FOR NONLINEAR EQUATIONS
C
C
C HERE F1 IS THE FLOW RATE OF ARGON IN MOLES/S, F2 IS THE FLOW
C RATE OF NITROGEN, C IS THE TOTAL FLOW RATE, B AND P ARE THE
C PARAMETERS DEFINED IN THE PROBLEM (EXAMPLE 4.6), D IS THE
C AMOUNT OF AMMONIA COLLECTED IN MOLES/S, CO IS THE VALUE OF C
C AFTER THE PREVIOUS ITERATION AND EPS IS THE CONVERGENCE
C CRITERION APPLIED TO THE TOTAL FLOW RATE C
C 
C
C INPUT OF STARTING VALUES
C
 EPS=0.0001
 B=0.1
 C=180.0
 1 CO=C
C
C COMPUTATION OF UNKNOWN QUANTITIES
C
  F1=0.9/(1.0-B)
  P=1.0-0.57*EXP(-0.0155*F1)
  F2=90.0/(1.0-B*P)
  B=1.0-23.5/(4.0*F2*P+F1)
  C=F1+4.0*F2
  D=0.57*EXP(-0.0155*F1)*2.0*F2
 WRITE (6,2)F1,C,D
 2 FORMAT(2X,'ARGON:',F12.5,4X,'FLOW:',F12.5,4X,'NH3:', F12.5)
C
C CONVERGENCE CHECK
C
 IF (ABS(C-CO) .LE. EPS) THEN
  PRINT*,'THE SOLUTION HAS CONVERGED'
  PRINT*,'THE SOLUTION IS:'
  WRITE (6,3)F1,C,D
 3  FORMAT(/2X,'ARGON:',F12.5,4X,'TOTAL FLOW:',F12.5,4X,
   $  'AMMONIA:',F12.5)
  ELSE
   GO TO 1
 END IF
 STOP
 END

A.F.7

C     RUNGE-KUTTA METHOD
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C     
C    THIS PROGRAM NUMERICALLY SOLVES A SECOND ORDER DIFFERENTIAL 
C   EQUATION USING THE 4TH ORDER RUNGE-KUTTA METHOD                                             
C                                                                               
C   IN THE FOLLOWING PROGRAM                                                     
C                                                                               
C         T STANDS FOR TIME          DT STANDS FOR STEP SIZE IN T            
C                                                                               
C         X STANDS FOR DISPLACEMENT      V STANDS FOR VELOCITY                   
C                                                                               
C          A AND B ARE THE CONSTANTS APPEARING IN THE 
C       DIFFERENTIAL EQN.     
C                                                                               
C         G IS THE ACCELERATION DUE TO GRAVITY = 9.8 M/(SEC**2)                  
C                                                                               
         IMPLICIT REAL (A-H,O-Z)                                                
          OPEN(UNIT=14,FILE='RT')                                                
         OPEN(UNIT=15,FILE='RX')                                                
         OPEN(UNIT=16,FILE='RV')                                                
C                                                                               
C   VALUES OF T ARE WRITTEN IN FILE RT                                           
C  VALUES OF X ARE WRITTEN IN FILE RX                                           
C   VALUES OF V ARE WRITTEN IN FILE RV                                           
C                                                                               
C                                                                               
C    INPUT PARAMETERS                                                            
          PRINT*,'INPUT PARAMETERS'                                              
          PRINT*,'A=  ','B=  '                                                       
         READ*,A,B                                                              
          PRINT*,'DT=  '                                                           
          READ*,DT                                                               
          G=9.8                                                                  
C                                                                               
C   SET INITIAL CONDITIONS                                                       
C                                                                               
         T=0.                                                                   
          X=0.                                                                   
         V=100.                                                                 
          WRITE(14,*)T                                                           
          WRITE(15,*)X                                                           
          WRITE(16,*)V                                                           
C                                                                               
C    NEXT TIME STEP                                                              
C                                                                               
 11       Q=X                                                                    
          Z=V                                                                    
C                                                                               
C  Q AND Z ARE VALUES OF X AND V, AT PREVIOUS TIME STEP             
C                                                                               
C  CALCULATIONS FOR NEXT STEP USING 4TH ORDER RK METHOD             
C                                                                               
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          RK1X = DT*Z                                                                                                                           
          RK1V = DT*(-G -A*Z -B*(Z**2))
          RK2X = DT*(Z + RK1V/2.)
          RK2V = DT*(-G -A*(Z + RK1V/2.) -B*(Z + RK1V/2.)**2)                    
         RK3X = DT*(Z + RK2V/2.)
          RK3V = DT*(-G -A*(Z + RK2V/2.) -B*(Z + RK2V/2.)**2)                    
          RK4X = DT*(Z + RK3V)
          RK4V = DT*(-G -A*(Z + RK3V) -B*(Z +RK3V)**2)                           
          X = Q +(RK1X +2.*RK2X + 2.*RK3X + RK4X)/6.                                 
          V = Z +(RK1V + 2.*RK2V + 2.*RK3V + RK4V)/6.                            
          T = T + DT
C                                                                               
C  CALCULATIONS ARE STOPPED WHEN V BECOMES ZERO.                                
C                                                                               
          IF(V.GT.0.) THEN
          WRITE(14,*)T                                                           
          WRITE(15,*)X                                                           
          WRITE(16,*)V                                                           
          GO TO 11  
          END IF
C
C      OUTPUT RESULTS
C
          PRINT*,'THE VELOCITY HAS BECOME ZERO OR NEGATIVE'
           PRINT*,'TOTAL TIME TAKEN TO REACH MAXIMUM HEIGHT 
    $  =',T,'SEC'              
           PRINT*,'TOTAL HEIGHT REACHED BY THE PROJECTILE = 
    $  ',X,'METERS'
          CLOSE(UNIT=14)
          CLOSE(UNIT=15)
          CLOSE(UNIT=16)
          STOP                                                                   
          END
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Appendix B: Material Properties

B.1: Properties of dry air at atmospheric pressure—SI units
B.2: Property values of gases at atmospheric pressure
B.3: Properties of saturated water
B.4: Properties of common liquids—SI units
B.5: Thermal properties of metals and alloys
B.6: Properties of other materials
B.7:  Emissivities εn of the radiation in the direction of the normal to the surface and ε of the 

total hemispherical radiation for various materials for the temperature T

A NOTE ON MATERIAL PROPERTIES

These tables on the properties of common materials are provided for quick reference and conve-
nience. However, for detailed design and optimization of practical systems, the various handbooks, 
encyclopedias, and references cited in the text should be used instead, for the most appropriate and 
accurate property data.

TABLE B.1
Properties of Dry Air at Atmospheric Pressure—SI Units

(Continued)
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TABLE B.1 (CONTINUED)
Properties of Dry Air at Atmospheric Pressure—SI Units
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TABLE B.1 (CONTINUED)
Properties of Dry Air at Atmospheric Pressure—SI Units

(Continued)
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TABLE B.1 (CONTINUED)
Properties of Dry Air at Atmospheric Pressure—SI Units

TABLE B.2
Property Values of Gases at Atmospheric Pressure

Helium

T, K ρ, kg/m3 cp, Ws/kg · K μ, kg/ms ν, m2/s k, W/m · K α, m2/s Pr

3 5.200 × 103 8.42 × 10−7 0.0106

33 1.4657 5.200 50.2 3.42 × 10−6 0.0353 0.04625 × 10−4 0.74

144 3.3799 5.200 125.5 37.11 0.0928 0.5275 0.70

200 0.2435 5.200 156.6 64.38 0.1177 0.9288 0.694

255 0.1906 5.200 181.7 95.50 0.1357 1.3675 0.70

366 0.13280 5.200 230.5 173.6 0.1691 2.449 0.71

477 0.10204 5.200 275.0 269.3 0.197 3.716 0.72

589 0.08282 5.200 311.3 375.8 0.225 5.125 0.72

700 0.07032 5.200 347.5 494.2 0.251 6.661 0.72

800 0.06023 5.200 381.7 634.1 0.275 8.774 0.72

900 0.05286 5.200 413.6 781.3 0.298 10.834 0.72

Hydrogen
30 0.84722 10.840 × 103 1.606 × 10−6 1.895 × 10-6 0.0228 0.02493 × 10−4 0.759

50 0.50955 10.501 2.516 4.880 0.0362 0.0676 0.721

100 0.24572 11.229 4.212 17.14 0.0665 0.2408 0.712

150 0.16371 12.602 5.595 34.18 0.0981 0.475 0.718

200 0.12270 13.540 6.813 55.53 0.1282 0.772 0.719

250 0.09819 14.059 7.919 80.64 0.1561 1.130 0.713

300 0.08185 14.314 8.963 109.5 0.182 1.554 0.706

350 0.07016 14.436 9.954 141.9 0.206 2.031 0.697

400 0.06135 14.491 10.864 177.1 0.228 2.568 0.690

450 0.05462 14.499 11.779 215.6 0.251 3.164 0.682

500 0.04918 14.507 12.636 257.0 0.272 3.817 0.675

550 0.04469 14.532 13.475 301.6 0.292 4.516 0.668
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(Continued)

600 0.04085 14.537 14.285 349.7 0.315 5.306 0.664

700 0.03492 14.574 15.89 455.1 0.351 6.903 0.659

800 0.03060 14.675 17.40 569 0.384 8.563 0.664

900 0.02723 14.821 18.78 690 0.412 10.217 0.676

1000 0.02451 14.968 20.16 822 0.440 11.997 0.686

1100 0.02227 15.165 21.46 965 0.464 13.726 0.703

1200 0.02050 15.366 22.75 1107 0.488 15.484 0.715

1300 0.01890 15.575 24.08 1273 0.512 17.394 0.733

1333 0.01842 15.638 24.44 1328 0.519 18.013 0.736

Oxygen
100 3.9918 0.9479 × 103 7.768 × 10−6 1.946 × 10−6 0.00903 0.023876 × 10−4 0.815

150 2.6190 0.9178 11.490 4.387 0.01367 0.05688 0.773

200 1.9559 0.9131 14.850 7.593 0.01824 0.10214 0.745

250 1.5618 0.9157 17.87 11.45 0.02259 0.15794 0.725

300 1.3007 0.9203 20.63 15.86 0.02676 0.22353 0.709

350 1.1133 0.9291 23.16 20.80 0.03070 0.2968 0.702

400 0.9755 0.9420 25.54 26.18 0.03461 0.3768 0.695

450 0.8682 0.9567 27.77 31.99 0.03828 0.4609 0.694

500 0.7801 0.9722 29.91 38.34 0.04173 0.5502 0.697

550 0.7096 0.9881 31.97 45.05 0.04517 0.6441 0.700

600 0.6504 1.0044 33.92 52.15 0.04832 0.7399 0.704

Nitrogen
100 3.4808 1.0722 × 103 6.862 × 10−6 1.971 × 10−6 0.009450 0.025319 × 10−4 0.786

200 1.7108 1.0429 12.947 7.568 0.01824 0.10224 0.747

300 1.1421 1.0408 17.84 15.63 0.02620 0.22044 0.713

400 0.8538 1.0459 21.98 25.74 0.03335 0.3734 0.619

500 0.6824 1.0555 25.70 37.66 0.03984 0.5530 0.684

600 0.5687 1.0756 29.11 51.19 0.04580 0.7486 0.686

700 0.4934 1.0969 32.13 65.13 0.05123 0.9466 0.691

800 0.4277 1.1225 34.84 81.46 0.05609 1.1685 0.700

900 0.3796 1.1464 37.49 91.06 0.06070 1.3946 0.711

1000 0.3412 1.1677 40.00 117.2 0.06475 1.6250 0.724

1100 0.3108 1.1857 42.28 136.0 0.06850 1.8591 0.736

1200 0.2851 1.2037 44.50 156.1 0.07184 2.0932 0.748

Carbon Dioxide
220 2.4733 0.783 × 103 11.105 × 10−6 4.490 × 10−6 0.010805 0.05920 × 10−4 0.818

250 2.1657 0.804 12.590 5.813 0.012884 0.07401 0.793

300 1.7973 0.871 14.958 8.321 0.016572 0.10588 0.770

350 1.5362 0.900 17.205 11.19 0.02047 0.14808 0.755

400 1.3424 0.942 19.32 14.39 0.02461 0.19463 0.738

450 1.1918 0.980 21.34 17.90 0.02897 0.24813 0.721

500 1.0732 1.013 23.26 21.67 0.03352 0.3084 0.702

550 0.9739 1.047 25.08 25.74 0.03821 0.3750 0.685

600 0.8938 1.076 26.83 30.02 0.04311 0.4483 0.668

TABLE B.2 (CONTINUED)
Property Values of Gases at Atmospheric Pressure

T, K ρ, kg/m3 cp, Ws/kg · K μ, kg/ms ν, m2/s k, W/m · K α, m2/s Pr
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Carbon Monoxide

220 1.55363 1.0429 × 103 13.832 × 10−6 8.903 × 10−6 0.01906 0.11760 × 10−4 0.758

250 0.8410 1.0425 15.40 11.28 0.02144 0.15063 0.750

300 1.13876 1.0421 17.843 15.67 0.02525 0.21280 0.737

350 0.97425 1.0434 20.09 20.62 0.02883 0.2836 0.728

400 0.85363 1.0484 22.19 25.99 0.03226 0.3605 0.722

450 0.75848 1.0551 24.18 31.88 0.0436 0.4439 0.718

500 0.68223 1.0635 26.06 38.19 0.03863 0.5324 0.718

550 0.62024 1.0756 27.89 44.97 0.04162 0.6240 0.721

600 0.56850 1.0877 29.60 52.06 0.04446 0.7190 0.724

Ammonia, NH3

220 0.3828 2.198 × 103 7.255 × 10−6 1.90 × 10−5 0.0171 0.2054 × 10−4 0.93

273 0.7929 2.177 9.353 1.18 0.0220 0.1308 0.90

323 0.6487 2.177 11.035 1.70 0.0270 0.1920 0.88

373 0.5590 2.236 12.886 2.30 0.0327 0.2619 0.87

423 0.4934 2.315 14.672 2.97 0.0391 0.3432 0.87

473 0.4405 2.395 16.49 3.74 0.0467 0.4421 0.84

Steam (H2O vapor)
380 0.5863 2.060 × 103 12.71 × 10−6 2.16 × 10−5 0.0246 0.2036 × 10−4 1.060

400 0.5542 2.014 13.44 2.42 0.0261 0.2338 1.040

450 0.4902 1.980 15.25 3.11 0.0299 0.307 1.010

500 0.4405 1.985 17.04 3.86 0.0339 0.387 0.996

550 0.4005 1.997 18.84 4.70 0.0379 0.475 0.991

600 0.3652 2.026 20.67 5.66 0.0422 0.573 0.986

650 0.3380 2.056 22.47 6.64 0.0464 0.666 0.995

700 0.3140 2.085 24.26 7.72 0.0505 0.772 1.000

750 0.2931 2.119 26.04 8.88 0.0549 0.883 1.005

800 0.2739 2.152 27.86 10.20 0.0592 1.001 1.010

850 0.2579 2.186 29.69 11.52 0.0637 1.130 1.019

Source: Eckert, E.R.G., & Drake, R.M. (1972). Analysis of heat and mass transfer. New York: McGraw-Hill.

TABLE B.2 (CONTINUED)
Property Values of Gases at Atmospheric Pressure

T, K ρ, kg/m3 cp, Ws/kg · K μ, kg/ms ν, m2/s k, W/m · K α, m2/s Pr
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TABLE B.3
Properties of Saturated Water

T
(°C)

cp

(kJ/kg · °C)
ρ

(kg/m3)
μ × 103

(kg/m · s)
ν × 106

(m2/s)
k

(W/m · °C)
α × 107

(m2/s)
β × 103

(1/K) Pr

0 4.218 99.8 1.791 1.792 0.5619 1.332 −0.0853 13.45

5 4.203 1000.0 1.520 1.520 0.5723 1.362 0.0052 11.16

10 4.193 999.8 1.308 1.308 0.5820 1.389 0.0821 9.42

15 4.187 999.2 1.139 1.140 0.5911 1.413 0.148 8.07

20 4.182 998.3 1.003 1.004 0.5996 1.436 0.207 6.99

25 4.180 997.1 0.8908 0.8933 0.6076 1.458 0.259 6.13

30 4.180 995.7 0.7978 0.8012 0.6150 1.478 0.306 5.42

35 4.179 994.1 0.7196 0.7238 0.6221 1.497 0.349 4.83

40 4.179 992.3 0.6531 0.6582 0.6286 1.516 0.389 4.34

45 4.182 990.2 0.5962 0.6021 0.6347 1.533 0.427 3.93

50 4.182 998.0 0.5471 0.5537 0.6405 1.550 0.462 3.57

55 4.184 985.7 0.5043 0.5116 0.6458 1.566 0.496 3.27

60 4.186 983.1 0.4668 0.4748 0.6507 1.581 0.529 3.00

65 4.187 980.5 0.4338 0.4424 0.6553 1.596 0.560 2.77

70 4.191 977.7 0.4044 0.4137 0.6594 1.609 0.590 2.57

75 4.191 974.7 0.3783 0.3881 0.6633 1.624 0.619 2.39

80 4.195 971.6 0.3550 0.3653 0.6668 1.636 0.647 2.23

85 4.201 968.4 0.3339 0.3448 0.6699 1.647 0.675 2.09

90 4.203 965.1 0.3150 0.3264 0.6727 1.659 0.702 1.97

95 4.210 961.7 0.2978 0.3097 0.6753 1.668 0.728 1.86

100 4.215 958.1 0.2822 0.2945 0.6775 1.677 0.755 1.76

120 4.246 942.8 0.2321 0.2461 0.6833 1.707 0.859 1.44

140 4.282 925.9 0.1961 0.2118 0.6845 1.727 0.966 1.23

160 4.339 907.3 0.1695 0.1869 0.6815 1.731 1.084 1.08

180 4.411 886.9 0.1494 0.1684 0.6745 1.724 1.216 0.98

200 4.498 864.7 0.1336 0.1545 0.6634 1.706 1.372 0.91

220 4.608 840.4 0.1210 0.1439 0.6483 1.674 1.563 0.86

240 4.770 813.6 0.1105 0.1358 0.6292 1.622 1.806 0.84

260 4.991 783.9 0.1015 0.1295 0.6059 1.549 2.130 0.84

280 5.294 750.5 0.0934 0.1245 0.5780 1.455 2.589 0.86

300 5.758 712.2 0.0858 0.1205 0.5450 1.329 3.293 0.91

320 6.566 666.9 0.0783 0.1174 0.5063 1.156 4.511 1.02

340 8.234 610.2 0.0702 0.1151 0.4611 0.918 7.170 1.25

360 16.138 526.2 0.0600 0.1139 0.4115 0.485 21.28 2.35

Source: A.J. Chapman. (1984). Heat transfer (4th ed.). New York: Macmillan. Reprinted with permission of Simon & 
Schuster, copyright © 1984.
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TABLE B.6
Properties of Other Materials

Description/
Composition

Temperature,
K

Density,
ρ, kg/m3

Thermal
Conductivity, 

k, W/m · K

Specific
Heat, cp,
J/kg · K

Asphalt 300 2115 0.062 920

Bakelite 300 1300 1.4 1465

Brick, refractory

Carborundum 872 — 18.5 —

1672 — 11.0 —

Chrome brick 473 3010 2.3 835

823 2.5

1173 2.0

Diatomaceous silica, fired 478 — 0.25 —

1145 — 0.30

Fire clay, burnt 1600 K 773 2050 1.0 960

1073 — 1.1

1373 — 1.1

Fire clay, burnt 1725 K 773 2325 1.3 960

1073 1.4

1373 1.4

Fire clay brick 478 2645 1.0 960

922 1.5

1478 1.8

Magnesite 478 — 3.8 1130

922 — 2.8

1478 1.9

Clay 300 1460 1.3 880

Coal, anthracite 300 1350 0.26 1260

Concrete (stone mix) 300 2300 1.4 880

Cotton 300 80 0.06 1300

Foodstuffs

Banana (75.7% water content) 300 980 0.481 3350

Apple, red (75% water content) 300 840 0.513 3600

Cake, batter 300 720 0.223 —

Cake, fully baked 300 280 0.121 —

Chicken meat, white 198 — 1.60 —

(74.4% water content) 233 — 1.49

253 1.35

263 1.20

273 0.476

283 0.480

293 0.489

Glass

Plate (soda lime) 300 2500 1.4 750

Pyrex 300 2225 1.4 835

Ice 273 920 1.88 2040

253 — 2.03 1945

Leather (sole) 300 998 0.159 —
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Paper 300 930 0.180 1340

Paraffin 300 900 0.240 2890

Rock

Granite, Barre 300 2630 2.79 775

Limestone, Salem 300 2320 2.15 810

Marble, Halston 300 2680 2.80 830

Quartzite, Sioux 300 2640 5.38 1105

Sandstone, Berea 300 2150 2.90 745

Rubber, vulcanized

Soft 300 1100 0.13 2010

Hard 300 1190 0.16 —

Sand 300 1515 0.27 800

Soil 300 2050 0.52 1840

Snow 273 110 0.049 —

500 0.190 —

Teflon 300 2200 0.35 —

400 0.45 —

Tissue, human

Skin 300 — 0.37 —

Fat layer (adipose) 300 — 0.2 —

Muscle 300 — 0.41 —

Wood, cross gain

Balsa 300 140 0.055 —

Cypress 300 465 0.097 —

Fir 300 415 0.11 2720

Oak 300 545 0.17 2385

Yellow pine 300 640 0.15 2805

White pine 300 435 0.11 —

Wood, radial

Oak 300 545 0.19 2385

Fir 300 420 0.14 2720

Source: Incropera, F.P., & Dewitt, D. P. (1990). Fundamentals of heat and mass transfer (3rd ed.). New York: 
Wiley. Copyright © 1990. Used with permission of John Wiley & Sons, Inc.

TABLE B.6 (CONTINUED)
Properties of Other Materials

Description/
Composition

Temperature,
K

Density,
ρ, kg/m3

Thermal
Conductivity, 

k, W/m · K

Specific
Heat, cp,
J/kg · K
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TABLE B.7
Emissivities εn of the Radiation in the Direction of the Normal to the 
Surface and ε of the Total Hemispherical Radiation for Various 
Materials for the Temperature T †‡

Surface T, °C εn ε

Gold, polished 130 0.018

400 0.022

Silver 20 0.020

Copper, polished 20 0.030

Lightly oxidized 20 0.037

Scraped 20 0.070

Black oxidized 20 0.78

Oxidized 131 0.76 0.725

Aluminum, bright rolled 170 0.039 0.049

500 0.050

Aluminum paint 100 0.20–0.40

Silumin, cast polished 150 0.186

Nickel, bright matte 100 0.041 0.046

Polished 100 0.045 0.053

Manganin, bright rolled 118 0.048 0.057

Chrome, polished 150 0.058 0.071

Iron, bright etched 150 0.128 0.158

Bright abrased 20 0.24

Red rusted 20 0.61

Hot rolled 20 0.77

130 0.60

Hot cast 100 0.80

Heavily rusted 20 0.85

Heat-resistant oxidized 80 0.613

200 0.639

Zinc, gray oxidized 20 0.23–0.28

Lead, gray oxidized 20 0.28

Bismuth, bright 80 0.340 0.366

Corundum, emery rough 80 0.855 0.84

Clay, fired 70 0.91 0.86

Lacquer, white 100 0.925

Red lead 100 0.93

Enamel, lacquer 20 0.85–0.95

Lacquer, black matte 80 0.970

Bakelite lacquer 80 0.935

Brick, mortar, plaster 20 0.93

Porcelain 20 0.92–0.94

Glass 90 0.940 0.876
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Ice, smooth, water 0 0.966 0.918

Rough crystals 0 0.985

Waterglass 20 0.96

Paper 95 0.92 0.89

Wood, beech 70 0.935 0.91

Tarpaper 20 0.93

†: From measurements by E. Schmidt and E. Eckert.
‡: For metals, the emissivities rise with rising temperature, but for nonmetallic substances (metal 

oxides, organic substances) this rule is sometimes not correct. Where the exact measurements are 
not given, take for bright metal surfaces an average ratio ε/εn = 1.2 and for other substances with 
smooth surfaces ε/εn = 0.95; for rough surfaces use ε/εn = 0.98.

Source: Eckert, E.R.G., & Drake, R.M. (1972). Analysis of heat and mass transfer. New York: 
McGraw-Hill.

TABLE B.7 (CONTINUED)
Emissivities εn of the Radiation in the Direction of the Normal to the 
Surface and ε of the Total Hemispherical Radiation for Various 
Materials for the Temperature T †‡

Surface T, °C εn ε
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Appendix C: Interest Tables

C.1: 4 percent compound interest rate
C.2: 10 percent compound interest rate
C.3: 16 percent compound interest rate

A NOTE ON INTEREST TABLES

These tables are provided as a convenient reference for checking calculations on economic analysis. 
Some additional factors are also introduced. For other interest rates and compounding frequencies 
(these tables are for annual compounding), the formulas given in Chapter 6 may be used and other 
references cited in the chapter may be consulted.

(Continued)

TABLE C.1 
4 Percent Compound Interest Rate
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TABLE C.1 (CONTINUED)
4 Percent Compound Interest Rate
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(Continued)

TABLE C.2 
10 Percent Compound Interest Rate
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TABLE C.2 (CONTINUED)
10 Percent Compound Interest Rate



563Appendix C: Interest Tables

(Continued)

TABLE C.3
16 Percent Compound Interest Rate

Single Payment Uniform Annual Series

Compound-
Amount
Factor

Present-
Worth
Factor

 Series
Present-Worth

Factor

 Capital- 
Recovery
 Factor

(1 + i )n 1/(1 + i )n [(1 + i )n − 1]/[i(1 + i )n] [i(1 + i )n]/[(1 + i )n − 1]

P to F F to P S to P P to S

n F/P P/F P/S S/P

1 1.1600E 00 8.6207E-01 8.6207E-01 1.1600E 00

2 1.3456E 00 7.4316E-01 1.6052E 00 6.2296E-01

3 1.5609E 00 6.4066E-01 2.2459E 00 4.4526E-01

4 1.8106E 00 5.5229E-01 2.7982E 00 3.5738E-01

5 2.1003E 00 4.7611E-01 3.2743E 00 3.0541E-01

6 2.4364E 00 4.1044E-01 3.6847E 00 2.7139E-01

7 2.8262E 00 3.5383E-01 4.0386E 00 2.4761E-01

8 3.2784E 00 3.0503E-01 4.3436E 00 2.3022E-01

9 3.8030E 00 2.6295E-01 4.6065E 00 2.1708E-01

10 4.4114E 00 2.2668E-01 4.8332E 00 2.0690E-01

11 5.1173E 00 1.9542E-01 5.0286E 00 1.9886E-01

12 5.9360E 00 1.6846E-01 5.1971E 00 1.9241E-01
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Uniform  
Gradient Series

 Depreciation Series

Capitalized-
Cost

Factor

Present-
Worth
Factor

Sum-of-Digits
Present-Worth

Factor

Straight-Line
Present-Worth

Factor

[(1 + i )n]/[(1 + i )n − 1] [(P/S) − (nP/F )]/i [n − (P/S)]/[0.5n(n + 1)i ] 1/[ni(K/P)]

P to K C to P

n K/P P/C

1 7.2500E 00 0.0000E 00 8.6207E-01 8.6207E-01

2 3.8935E 00 7.4316E-01 8.2243E-01 8.0262E-01

3 2.7829E 00 2.0245E 00 7.8553E-01 7.4863E-01

4 2.2336E 00 3.6814E 00 7.5114E-01 6.9955E-01

5 1.9088E 00 5.5858E 00 7.1904E-01 6.5486E-01

6 1.6962E 00 7.6380E 00 6.8907E-01 6.1412E-01

7 1.5476E 00 9.7610E 00 6.6103E-01 5.7694E-01

8 1.4389E 00 1.1896E 01 6.3479E-01 5.4295E-01

9 1.3568E 00 1.4000E 01 6.1020E-01 5.1184E-01

10 1.2931E 00 1.6040E 01 5.8713E-01 4.8332E-01

11 1.2429E 00 1.7994E 01 5.6547E-01 4.5715E-01

12 1.2026E 00 1.9847E 01 5.4510E-01 4.3309E-01

13 6.8858E 00 1.4523E-01 5.3423E 00 1.8718E-01

14 7.9875E 00 1.2520E-01 5.4675E 00 1.8290E-01

15 9.2655E 00 1.0793E-01 5.5755E 00 1.7936E-01

16 1.0748E 01 9.3041E-02 5.6685E 00 1.7641E-01

18 1.4463E 01 6.9144E-02 5.8178E 00 1.7188E-01

20 1.9461E 01 5.1385E-02 5.9288E 00 1.6867E-01

25 4.0874E 01 2.4465E-02 6.0971E 00 1.6401E-01

30 8.5850E 01 1.1648E-02 6.1772E 00 1.6189E-01

35 1.8031E 02 5.5459E-03 6.2153E 00 1.6089E-01

40 3.7872E 02 2.6405E-03 6.2335E 00 1.6042E-01

45 7.9544E 02 1.2572E-03 6.2421E 00 1.6020E-01

50 1.6707E 03 5.9855E-04 6.2463E 00 1.6010E-01

Reproduced with permission from Jelen, F.C. (Ed.). (1970). Cost and optimization engineering. New York: 
McGraw-Hill.

TABLE C.3 (CONTINUED)
16 Percent Compound Interest Rate

Single Payment Uniform Annual Series

Compound-
Amount
Factor

Present-
Worth
Factor

 Series
Present-Worth

Factor

 Capital- 
Recovery
 Factor

(1 + i )n 1/(1 + i )n [(1 + i )n − 1]/[i(1 + i )n] [i(1 + i )n]/[(1 + i )n − 1]

P to F F to P S to P P to S

n F/P P/F P/S S/P
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Uniform  
Gradient Series

 Depreciation Series

Capitalized-
Cost

Factor

Present-
Worth
Factor

Sum-of-Digits
Present-Worth

Factor

Straight-Line
Present-Worth

Factor

[(1 + i )n]/[(1 + i )n − 1] [(P/S) − (nP/F )]/i [n − (P/S)]/[0.5n(n + 1)i ] 1/[ni(K/P)]

P to K C to P

n K/P P/C

13 1.1699E 00 2.1590E 01 5.2594E-01 4.1095E-01

14 1.1431E 00 2.3217E 01 5.0789E-01 3.9054E-01

15 1.1210E 00 2.4728E 01 4.9086E-01 3.7170E-01

16 1.1026E 00 2.6124E 01 4.7479E-01 3.5428E-01

18 1.0743E 00 2.8583E 01 4.4525E-01 3.2321E-01

20 1.0542E 00 3.0632E 01 4.1878E-01 2.9644E-01

25 1.0251E 00 3.4284E 01 3.6352E-01 2.4388E-01

30 1.0118E 00 3.6423E 01 3.2020E-01 2.0591E-01

35 1.0056E 00 3.7633E 01 2.8556E-01 1.7758E-01

40 1.0026E 00 3.8299E 01 2.5737E-01 1.5584E-01

45 1.0013E 00 3.8660E 01 2.3405E-01 1.3871E-01

50 1.0006E 00 3.8852E 01 2.1448E-01 1.2493E-01
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Appendix D: Heat Transfer 
Correlations

D.1: Summary of natural convection correlations for external flows over isothermal surfaces
D.2:  Correlation equations for natural convection in vertical two-dimensional rectangular 

enclosures
D.3: Summary of forced convection heat transfer correlations for external flow
D.4: Summary of forced convection correlations for flow in a circular tube

A NOTE ON HEAT TRANSFER CORRELATIONS

These tables present some of the most frequently used correlations for the convective heat transfer 
coefficients for a few common geometries and conditions. For other circumstances, various hand-
books, encyclopedias, and other reference books mentioned in the text may be consulted.

TABLE D.1 
Summary of Natural Convection Correlations for External Flows over  
Isothermal Surfaces
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TABLE D.3 
Summary of Forced Convection Heat Transfer Correlations for External Flow
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TABLE D.3 (CONTINUED)
Summary of Forced Convection Heat Transfer Correlations for External Flow

TABLE D.3.1 
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TABLE D.3.3 

TABLE D.3.2 
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(Continued)

TABLE D.3.4 

TABLE D.4 
Summary of Forced Convection Correlations for Flow in a Circular Tube
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TABLE D.4 (CONTINUED)
Summary of Forced Convection Correlations for Flow in a Circular Tube
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Note: Page numbers in bold indicate tables; those in italics 
indicate figures.

A

ABET, see Accreditation Board for Engineering and 
Technology, Inc. (ABET)

Acceptable designs, 13, 81, 235–296
boundaries of, 344
component vs. system designs, 283–285
considerations for large practical systems, 285–293
constraints or limitations, 42
domain of, 64, 340
environmental systems, 263–269
evaluation, 63–65
fluid flow systems, 275–282
heat transfer equipment, 269–275
initial design, 236–243
inverse problems, 293–294
optimum at boundaries of domain, 395, 395
overview, 235–236
selection of, 247–249
for solar collector/storage tank system, 248
solar energy collection systems example, 248, 248–249
strategies, 243–253
system design applications, 253–285
uncertainties, 294–295
workable and, 496

Accreditation Board for Engineering and Technology, 
Inc. (ABET), 492

Accumulated interest, 305, 305, 306, 308, 315
Active variables vs. slack variables, 461
Actuators, 68
ADI; see Alternating direction implicit (ADI) method
Aerospace systems, 26
AI; see Artificial intelligence (AI)
Air conditioning, 16, 27–28, 44, 67, 342

components, 27
selection of, 237

single-variable problems for, 406
Air cooling, 23
Air-cycle refrigeration system, 237–238
Algebraic equations

converting minimum/maximum problem into 
systems, 375

from curve fitting, 59
Algorithm

genetic, 351, 488
simplex, 459–462

Allocation problems
linear programming example, 458–459
software procedures for, 462
using slack variables, 459

Alloys, 82, 548–553
Alternating direction implicit (ADI) method, 191
Ambient conditions, in environmental processes, 265
Ammonia production system, 210

algebraic equation examples, 212–215

Analog models, 100, 100
limitations in engineering design, 100

Analysis, of thermal systems, 17–20
vs. design, 2–3

Analytical and experimental procedures, 58
Analytical solution, 103, 107, 121, 124, 200, 

215–217, 376
lumped systems dynamic simulation, 215–217

Annealing furnace, 286, 287
system design example, 286–291

Annealing temperature, 38
Annual costs, 328–329
Ansys, 17, 137, 166, 193, 195, 221
Approaches for optimization, 354–355
Artificial intelligence (AI), 472, 478, 488, 498
Artificial neural networks (ANN), 351, 488
Asymptotic convergence factor, 176
Automation, 67–68, 496
Axial fans, 277
Axial flow compressors, 278
Axial pumps, 277
Axisymmetry, in batch-annealing system  

design, 288

B

Back-of-the-envelope calculations, 45–46
Ball valves, 279, 279
Batch-annealing furnace, 287

acceptable design example, 286–291
Bell Telephone Laboratories, 72
Bernoulli’s equation, 280
Best fit method

air-cooled copper sphere example, 150–151
circular pipes flow rate example, 152
in curve fitting, 145–150
vs. exact fit method, 141–142, 145
linear regression in, 146–147
multiple independent variables in, 149–150
nonpolynomial forms and linearization, 148–149
polynomial best fit, 147–148

Biot number, 110, 127, 131, 132, 135, 140, 220, 255, 289
Bisection method, 174, 228
Blade profiles, in fans, 277–278, 278
Blending problems, software procedures for, 462
Block representation, of information flow, 205–207
Blowers, 16, 202, 277, 284
Boilers, 43, 50, 54, 59, 269
Boiling, heat transfer coefficients for, 260
Bonds, 321–323
Bottom wall location, 137
Boundary conditions, 59, 60, 76, 107, 121

complexities in thermal systems, 110
in environmental systems design, 267
for forced convective cooling, 262
simplification of, 110–111
for time-dependent flow of flue gases, 294

Boundary element method, 20, 193, 222
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Boundary-value problems, 179, 184
ordinary differential equations, 184–188
steady-state temperature example, 185–188

Bracketing methods, 174
Brayton cycle, 237, 237
Buckingham Pi theorem, 130, 139
Building cost index, 312
Butterfly valves, 279, 279

C

C++, 166, 477, 478
CAD; see Computer-aided design (CAD)
Calculation of interest, 304–308

compound interest, 305, 305–306, 310
continuous compounding, 306
effective interest rate, 306–307
example, 307–308
simple interest, 304–305

Calculus methods, 348, 389, 404, 426, 429, 435, 497
equality constraints and, 393
in fan and duct system example, 418–419
and Lagrange multipliers, 373–375
vs. multivariable geometric programming, 448
vs. single-variable geometric programming, 445

Capital raising, 321–323
bonds, 321–322
industrial bond example, 322–323
stocks, 323

Capital recovery factor, 315
Casting process,

in enclosed region, 4
knowledge-based system for, 481–483

Centrifugal compressors, 278
Centrifugal fans, 277
Centrifugal pumps, 276, 277
Ceramics, 82
CFCs; see Chlorofluorocarbon (CFCs)
Chain rule, 382
Chances of success, 9–11
Change

of concept/model, 367–368
in schedule, 320

Changing amount in series of payments, 317–318
Characterizing equations, 130
Check valves, 279
Chemical bonding, 84
Chemical manufacturing plant, uniform exhaustive search 

example, 407–409
Chemical reactions, in environmental processes, 265
Chemical vapor deposition (CVD), 352, 432, 432
Chlorofluorocarbons (CFCs), 9, 39, 489
Chvorinov model, 482, 482
Closed-ended problems, 2
Coefficient of performance (COP), 67, 240
Coils

in batch-annealing system design, 288, 289
slow transient response of, 290

Colebrook formula, 280
Combinations of variables, 130
Communicating design, 11, 55, 63, 69–71, 496
Communication modes, 70–71, 71
Complete pivoting, 169
Component design vs. system design, 283–285

Components, 16–17
availability, as source of design information, 493
block representations, 205
defined, 285
modeling, 196

effects on system performance, 202
isolating system parts, 196
mathematical modeling, 196–197
numerical modeling, 197–198

selection
for heating systems, 237
in initial design, 237–238

Composite functions, combining objective function and 
constraints as, 423

Composite materials, 84
Compound amount factor, 310
Compounding frequency, effect on resulting sum, 308
Compound interest, 305, 305–306, 310

rate tables, 559–565
Compressors, 278, 285

costs, 349
Computational modules, 473

in knowledge-based systems, 474–475
Computer-aided design (CAD), 76, 486

main features, 76–77
results from iterative redesign, 81
of thermal systems, 77–78
typical numerical results, 80

Computer programs and simulation results, 
communicating design through, 71

Computer software, 74, 76, 503
Crank-Nicolson method, 521–522
curve fitting, 515
direct solution of a system of linear equations, 509–510
dissection method for finding roots of equation, 

506–507
Euler’s method, 516
expert systems, 472
exponential expressions, 515
finite difference method for solving second-order 

ODE, 519–520
FORTRAN, 503
forward time central space (FTCS) method, 520–521
fourth order Runge-Kutta method, 517–518
Gauss-Seidel method

for an elliptic PDE, 522–524
for finite difference solution of ODE, 510–511
for linear equations, 510

Heun’s method, 516–517
higher order ODE, 518
interpolation, 514
for linear programming, 456
MATLAB, 503, 514–515
for matrices, 504–505
Newton-Raphson method

for real roots of an equation, 530–531
for root solving, 508

Newton’s method for nonlinear algebraic equations, 
513–514

ordinary differential equations, 516
polynomials, 505–506, 516
procedures for linear programming problems, 462
Runge-Kutta method, 536–537
secant method for root solving, 507–508, 529–530
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SOR method for an elliptic PDE, 524–525
as source of design information, 493
successive substitution method

for nonlinear algebraic equations, 512–513, 
535–536

for root solving, 508–509
Concentric pipe counter-flow heat exchangers, 6
Concentric pipe parallel-flow heat exchangers, 6
Conceptual design, 45–54, 480; see also Design(s)

example, 46–47
existing system design modifications, 45, 50–52
innovative, 46–47
physical system, 56–57
selection from available concepts, 48–50
for thermoforming application, 257, 257

Condensation, 192
geometric programming, 455
soldering facility, 48, 49, 54
for surface mounted components, 49
technique, 455

Condensers, 269
Confidentiality and professional ethics, 492
Conservation laws

constraints due to, 488
and constraints of thermal systems, 383
and equality constraints, 423
for mass, 113–115
in mathematical modeling, 113–115

Constrained multivariable problems, 435
Constrained optimization, 387–389, 405

conversion to unconstrained, 386–387, 403
geometric programming with, 451–452
hot-rolling process geometric example, 453–454
for Lagrange multipliers, 380–381
manufacturing cost example, 452–453

Constrained steepest descent method, 430
Constraints, 42–45, 342–345

choice of components and, 236
combining with objective function, 423
dependence on mechanical strength and structural 

integrity, 286
in environmental systems design, 265
equality, see equality constraints
for extrusion die design, 484, 485
in heat transfer system design, 272
nontechnical, 488–489
optimization, 342–345
reducing number of, 347
relationship to slack variables, 458

Constructal law, 465; see also Conservation laws
Construction cost index, 312
Consumer-oriented systems, 342
Consumer price index (CPI), 311, 312
Continuous casting, 21
Continuous compounding, 306

in a series of amounts, 316–317
Continuous models, 103
Continuous processes, difficulty of dividing into steps, 464
Contour plots, 416

in Lagrange expressions, 377
Control strategies, 68
Control systems, 285, 286
Control thermocouple, 290, 291
Convective cooling, 109

Convective heating, 256
Convector plates, 288
Convergence

in environmental systems design, 267
in fluid flow system design, 282
for iterative redesign, 249–251
with steepest ascent methods, 422

Cooling, of electronic equipment, 23–24, 24, 258–263, 
344, 487–488

tree structure for, 473, 473
COP; see Coefficient of performance (COP)
Copyrights, 72–73; see Patents and copyrights
Correlation coefficient, 147
Cost

annual, 328–329
comparison, 327–330
considerations, 285

as constraint on materials selection, 252
function, in metal-rolling process example, 442–443

Counterflow heat exchanger, 61, 62, 271, 272
acceptable design example, 272–275
effectiveness of, 270

CPI; see Consumer price index (CPI)
Crank-Nicolson method, 190–191

software, 521–522
for thermoforming application, 256

Creativity, 46
Critical-path problems, software procedures for, 462
Cross-flow heat exchangers with unmixed fluids, 6
Cubic spline interpolation, 143
Curve fitting, 77–78, 99, 104, 141–150, 390

best fit method, 145–146
CAD systems in, 77–78
exact fit method, 141–144
examples of, 99
software, 515

CVD; see Chemical vapor deposition (CVD)
Cylindrical furnace, 119, 119–122
Cylindrical storage tank, optimization problem, 386–387
Czochralski crystal-growing process

acceptable design example, 291–293
industrial facility for, 292
schematic diagram of, 292

D

Data reporting and professional ethics, 492
Decision making, in expert systems, 472
Declining balance, 325
Degree of difficulty

in geometric programming, 440–441, 452–453
in industrial hot water example, 444
nonzero, 455

DENDRAL, 472
Dependence on objective function, trade-offs, 364
Depreciation, 325–326, 327
Descriptive model, 97
Design(s), 11–12, 39, 479, 495–497

acceptable, see Acceptable designs
vs. analysis, 2–3
basic aspects, 495–496
communicating, 496
constraints, see Constraints
defined, 1, 2
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economic factor in, 327–352
engineering, 1–6
evaluation, 201, 480, 495
information sources, 493–495
initial, 236–243
iterative, 249–253
libraries, 236, 485
methodology in knowledge-based systems, 479–480
optimization, see Optimization
parameters, 251, 252
as part of engineering enterprise, 7–16
problem formulation, 37–45

additional considerations, 43–44
constraints or limitations, 42–43
design variables, 40–41
given quantities, 39–40
hardware, 41
for heat transfer equipment, 271–272
operating conditions, 41
requirements and specifications, 37–39

procedure, schematic of, 5
process, 54–56

acceptable design evaluation, 63–65
communicating design, 11, 55, 63, 69–71
example, 61–63
materials selection, 86–88
modeling, 57–59
optimal design, 13, 65–67
patents and copyrights, 71–74
physical system, 56–57
safety features, automation, and control, 67–68
simulation, 59–61
steps in, 54–56, 55, 56

projects, 500–502
requirements, see Design requirements

choice of components and, 236
electronic equipment in cooling, 260
in environmental systems design, 265, 266
in heat transfer system design, 272

role in engineering enterprise, 7–16
rules, 479, 487

for die design, 485
vs. selection, 5–6, 480
specifications, 11, 14, 31, 39, 63

communicating design through, 71
for thermal systems, 65

strategies, 243–253, see Design strategies
adjusting design variables, 243
commonly used design approach, 243
ingot casting system example, 243–247
iterative redesign procedure, 249–253
multiple designs, 243, 244
and selection of acceptable designs, 247–249

synthesis, 4–5
variables, see Design variables
workable design, 496

Design variables, 40–41
adjusting, 243
continuous changes in, 390
for die design, 483–484
electronic equipment cooling, 260
in environmental systems design, 265, 266, 293
in heat transfer system design, 272
inputs for fixed operating conditions, 243, 244

interdependence of, 252
operating conditions, 41
priority for changing, 253
quantities in problem of, 57
selection of, 246
varying for system redesign, 252

Determinant, 168
Deterministic models, 103
Diagonally dominant, 171
Dichotomous search methods, 349, 404, 435

for single-variable problems, 409–410
uniform dichotomous search, 409–410, 410

Die design
initial design module, 485
with knowledge-based systems, 483–486
redesign model, 486

Different frequencies, 319
Differential formulations., 115
Different materials

ceramics, 82
characteristics of, 85, 85–86
composite materials, 84
liquids and gases, 84
material selection, 81–86
metals and alloys, 82
other materials, 84
polymers, 83
semiconductor materials, 84

Dimensional analysis, 59, 98–99, 128–133
Dimensionless equations, and dynamic similarity, 139
Dimensionless groups, 131

in fluid mechanics and heat and mass transfer, 132
Dimensionless temperature, 193–195
Dimensionless variables, 108
Direct methods, for linear algebraic equations, 168–170
Direct solution of linear equations, 509–510
Dirichlet conditions, 191
Discounted cash flow, 330
Discrete models, 103
Distributed models, 103

partial differential equations for, 114
Distributed systems, 220–222

linearization for, 221–222
Dittus-Boelter equation, 271, 274
Dividends, 323
Domain

of acceptable designs
Fibonacci search methods for narrowing, 

410–412
minimizing number of, 403
penalty function method for, 425
of thermal systems, 235–236

of workable designs, 339–340, 340
Doping, 84
Dot product, 378
Draw speed, 431
Draw tower, 57
Dry air, at atmospheric pressure, 539–542
Drying, 342
Ducts, unconstrained multivariable search example, 

418–419
Dynamic model, 103; see also Model/modeling
Dynamic programming, 350, 350, 463–465, 466; see also 

Geometric programming; Linear programming
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applicability to, 439
transportation cost minimization with, 463–464, 464

Dynamic similarity, in physical models, 139
Dynamic simulation of lumped systems

analytical solution, 215–217
metal plate casting simulation example, 218–220
numerical simulation methods, 216, 217, 217–220

Dynamic systems, 18

E

Eckert number, 132
Economic considerations, 303–333

application to thermal systems, 332–333
calculation of interest, 304–308

compound interest, 305, 305–306, 310
continuous compounding, 306
effective interest rate, 306–307
example, 307–308
simple interest, 304–305

capital raising, 321–323
bonds, 321–322
industrial bond example, 322–323
stocks, 323

constraints based on, 488–489
decisions based on, 332
factor in design, 327–332

cost comparison, 327–330
rate of return, 330–332

overview, 303–304
series of payments, 313–321, 314

changes in schedule, 320
changing amount in series of payments,  

317–318
continuous compounding in a series of amounts, 

316–317
different frequencies, 319
food-processing system example, 316
future worth of uniform series of amounts, 314
packaging facility acquisition example, 320–321
present worth of a series of amounts, 314–315
shift in time, 318

taxes, 324–326
depreciation, 325–326, 327
income tax, 324
local taxes, 324
real estate, 324

worth of money as function of time, 308–313
example, 311, 312–313
future worth (FW), 310
inflation, 311–312
present worth (PW), 309–310

Economic data, as source of design information, 493
Effective interest rate, 306–307
Effectiveness, in heat transfer system design, 270
Efficiency

exergetic, 360
of Fibonacci search methods, 414
lattice search method, 417
thermal, 355

Electric circuit board model, 262
Electric furnace, 207
Electric heat treatment furnace, 125

validation model example, 126–128

Electronic components
cooled by forced convection and heat pipe, 3, 3
forced air cooling acceptable design example, 260–263
heat treatment system for silicon wafers, 238, 238
minimizing heat loss as constrained/unconstrained 

problem, 390–391
optimization without vortex promoter, 434
physical arrangement of cooling system, 261
search methods for cooling problem, 432–435
single-variable problems for, 406

Electronic equipment cooling, 487–488
acceptable design, 258–263

example, 260–263
Electronic systems, 46, 133–137, 355; see also Electronic 

components
Elements or modules for CAD system, 77
Elimination methods, 404–405, 408, 416

comparison for single-variable problems, 413–415
converting constrained to unconstrained problems 

using, 403
Emissivities, 556–557
Empirical models, 101

as source of design information, 493
Encapsulation, 479
Encyclopedia of Science and Technology, 495
Encyclopedias, 495
Energy balance constraints, minimizing heat loss with, 

390–391
Energy balance equations, 281
Energy consumption, 342
Energy losses, 17, 444–445

in heat transfer system design, 269
Energy rating, 13
Energy supply rate, 444

maximizing with multivariable geometric 
programming, 446–448

Energy systems, 21–23, 355
examples, 21
source, 22

Energy transfer, in environmental systems design, 265
Engine efficiency and drag force example, 357–358
Engineering design, 1–6

design vs. analysis, 2–3
examples, 3–4
feasibility, 9–16
selection vs. design, 5–6
synthesis, 4–5

Engineering drawings, communicating design 
through, 71

Engineering enterprise, 7–16
chances of success, 9–11
design as part of, 7–16
evaluation of, 8–9
feasibility, 9, 11
market analysis, 8–9
need or opportunity, 7–8

Entropy, 360
Environmental and safety systems, 24–26
Environmental impact, 285, 286

constraints based on, 489
Environmental requirements, 9
Environmental systems, 24–26

acceptable design of, 263–266
heat rejection in, 263–269
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intake-outfall location decisions, 268
system design applications in, 263–269

Equality constraints, 343–344, 381
with calculus methods, 393
linear programming with, 451
vs. number of independent variables, 387, 423, 425

Equipment, 28–29; see also Cooling, of electronic 
equipment

costs, 443
heat transfer, 29–31
selection, in fluid flow systems, 276–279

Ethics, 490–493
Euler number, 132
Euler’s method, software, 516
Evaluation, in engineering design, 8–9
Evaporators, 269
Exact fit method, 141–144

vs. best fit method, 145
best fit modeling for circular pipes, 152
in curve fitting, 141–144

Exchangers; see Heat exchangers
Exergetic efficiency, 360
Exergy, 360
Exhausters, 277
Exhaustive search, 349, 404, 435

relative inefficiency of, 409
vs. selective search, 485
for single-variable problems, 407–409

Existing systems
information on, 487
initial design, 238

Experimental results, falsification of, 492
Expertise, 478
Expert knowledge

in ingot casting design, 482–483
initial design, 239
in knowledge-based systems, 478–479

Expert systems, 77, 472, 479
Explicit method, 190
Exponential expressions, software, 515
Extrema, 373, 379
Extrusion die design, with knowledge-based systems, 

483–486
Extrusion facility, minimum cost example, 385–386

F

Fabrication, 13–16
Factor in design, 327–332

cost comparison, 327–330
rate of return, 330–332

Fans, 277, 284
axial, 277
blade profiles, 277–278, 278
centrifugal, 277
propeller, 277
size of, 349
unconstrained multivariable search example, 

418–419
FDM; see Finite-difference method (FDM)
Feasibility

chances of success, 9–11
engineering design, 11–12
engineering enterprise, 7–16

fabrication, 13–16
measure of success, 9
optimization, 13
production, 13–16
research and development, 12–13
testing, 13–16

FEM; see Finite-element methods (FEM)
Fibonacci search methods, 349, 404, 413, 414, 414, 

417, 435, 497
efficiency of, 414
and golden section search, 412–413
reducing interval of uncertainty with, 412
for single-variable problems, 410–412

Fidap, 166, 195
Financial aspects, in design, 496
Finite-difference method (FDM), 76, 186, 189–191, 

190, 192–193, 218, 222, 487
in knowledge-based systems, 475
of partial differential equations, 189–191

Finite-element methods (FEM), 76, 191–192, 192
in knowledge-based systems, 475
of partial differential equations, 191–192
for second-order ODE, 519–520

Finite-volume method, 114, 193
First law of thermodynamics, 72
Fixed control volume, 345
Fixed costs, 332
Fixed roof storage vessels, 279
Flat curve, 373
Flow

in enclosed region, 115
in a pipe, 115
and temperature due to fire, 26
through a turbine, 115

Flow rate; see also Total flow rate
mass, 38, 281, 442
pressure difference, 213
temperature variation with, 38
volume, 37

Flue gases
in batch-annealing furnace design, 287, 287
in batch-annealing system design, 288
fast transient response of, 290

Fluent, 195
Fluid flow, 28–29, 281, 285

acceptable design of, 275–276
analytical results, 2
electronic equipment cooling, 260
heat transfer from heated body, 102
physical modeling of, 102
pipes and pumps in, 276
piping systems, 280
selection of, 276–279
velocity profile for, 2
water distribution system design example,  

281–282
Fluorocarbon coolants, for cooling of electronic 

equipment, 260
Food-processing system example, 316
Forced air cooling, 24, 50

acceptable design example, 260–263, 261
in electronic system, 133
heat transfer coefficients in, 260
variation of board width for components, 262, 263
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Forced-air oven
CAD development of, 78
knowledge-based design of, 487

Forced convection
heat transfer correlations

for external flow, 570–571
for flow in circular tube, 573–574

and thermal radiation, 53
Fortran, 151, 166, 223, 477, 481, 503
Forward time central space (FTCS), 190

software, 520–521
Fouling factor, in heat transfer system design, 271
Fourier number, 132
Fractional depreciation, 326
Front end, 473, 474, 474

in knowledge-based systems, 474
Froude number, 132
FTCS; see Forward time central space (FTCS)
Furnace temperature, in optical fiber drawing, 431
Furnace walls, in batch-annealing system design, 288
Future worth (FW), 310

effect of interest rate on, 310
factor, 310
of uniform series of amounts, 314

Fuzzy logic, 351, 488

G

Galerkin method, 192
Gases, 84

inert, see Inert gases
properties at atmospheric pressure, 542–544

Gas holders, 279
Gate valves, 278, 279
Gaussian elimination, 168–170
Gauss-Jordan elimination, 168, 170, 461

in knowledge-based systems, 474
simplex algorithm basis in, 459

Gauss-Seidel method, 170–171, 173, 179, 187, 209, 213, 
226–227, 229

for an elliptic PDE, software, 522–524
for finite difference solution of ODE, 510–511
for linear equations, 510

General form of polynomial method, 141, 142
Generalized reduced gradient method, 426, 430
General-purpose simulation system (GPSS), 223
Genetic algorithms (GAs), 351, 488
Geometrical configuration, 477
Geometric programming, 350, 439

applicability, 440–441
constrained optimization with, 451–454
degree of difficulty in, 440–441
expanding application of, 455
industrial hot water example, 443–445
manufacturing cost example, 447–448
mathematical proof, 448–450
metal-rolling process example, 442–443
with multiple independent variables, 445–448
with nonzero degree of difficulty, 455
rate of energy supply example, 463–465
with single independent variable, 441–445
unconstrained optimization with, 441–445

Geometric similarity, 138
scale models for flow and heat transfer with, 129

Geometry, for cooling of electronic equipment, 259
Given quantities, 39–40

electronic equipment cooling, 259
in environmental systems design, 259, 266
in heat transfer system design, 272

Global extrema, 373
in allowable design domain, 394

Global maximum, 394, 394–395, 407
Global minimum, 394, 394–395
Globe valves, 278, 279
Golden mean, 413
Golden section search method, 404, 417, 431

for single-variable problems, 412–413
Governing equations, 4, 18, 55, 60, 101, 163, 208, 253, 

272, 347
for distributed systems, 220–221
Lagrange multipliers, 395–396
simplifying in mathematical modeling, 148–189

GPSS; see General-purpose simulation system (GPSS)
Gradient projection method, 426, 430
Gradient vectors, 388

in Lagrange multipliers, 377–379
in steepest/ascent methods, 420
use in optimization, 384

Graphical input/output, 473
in knowledge-based systems, 475, 477

Graphical interpretation of Euler’s method, 181
Graphical representation models, for linear programming, 

456–458, 457
Graphics and visual aids, communicating design through, 

71
Grashof number, 132
Grid Fourier number, 190
Guessed values, 170, 396

H

Handbooks, 495
Hardware, as design variable, 41
Head losses

in fluid flow systems, 276, 282
in piping systems, 280

Heated moving rod velocity, 359
Heat exchanger(s), 5–6, 6, 269, 284, 340

block representation, 205
concentric pipe counter-flow, 6
concentric pipe parallel-flow, 6
convergence criterion selection for, 250
counterflow, see Counterflow heat exchanger
cross-flow with unmixed fluids, 6
examples for, 117
fin-tube compact heat exchanger cores, 6
fouling of, 271
given requirements, 250
heat transfer rate in a, 349
insulated outer surface of, 112, 112
outer diameter constraints on, 272
selection vs. design for, 5–6
shell-and-tube, 6

Heat flux, step change in, 112, 112
Heating, 27–28, 342

component selection for, 237
cooling systems and, 355–356
Fibonacci search method example, 411–412
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heat delivered per unit energy consumed in, 411
single-variable problems for, 406
of solid solder, 53

Heat losses
in environmental systems design, 265
minimizing in electronic circuitry, 390–391
minimizing while meeting energy balance constraints, 

390–391
Heat pipes, 23
Heat rejection, 291

acceptable system design example, 266–269
to ambient air and water, 266–269
in environmental systems, 266–269
example, 356–357
three-dimensional problem, 267
two-dimensional surface flow due to, 268, 268

Heat removal rate, 39
Heat sinks, 23
Heat transfer, 285

coefficient, 43, 391
for cooling of electronic equipment, 260
effect on solidification rate, 245
in environmental systems design, 265
in heat transfer system design, 270
relationship to Reynolds number, 272

combined modes in environmental processes, 265
from cooling ponds, 265
correlations, 567–574

forced convection correlations for flow in circular 
tube, 573–574

forced convection heat transfer correlations for 
external flow, 570–571

natural convection correlations for external flows 
over isothermal surfaces, 567

for natural convection in 2D rectangular 
enclosures, 568–569

equipment, 29–31
acceptable design strategies, 269
counterflow heat exchanger design example, 

272–275
design problem, 271–275
modeling and simulation of, 269–271

fluid flow equipment, 356
length constraints in system design, 275
rate, 356

in electronic cooling problem, 432
in a heat exchanger, 349

Heat treatment, 344
energy balance for materials undergoing, 395
of silicon wafers, 238, 238

Hemstitching method, 426, 427
cost function example, 428–430

Heun’s method, 182
software, 516–517

Heuristics, 355, 488
in knowledge-based systems, 474

High thermal conductivity, 82
Hill-climbing techniques, 405, 416, 435, 497

steepest ascent method as, 419, 419
Hot rolling, 21

calculus-based optimization example, 373–374
constrained optimization geometric programming 

example, 453–454
Hydrofluorocarbon, 206, 260

I

Idealizations, in mathematical modeling, 112, 112
Ideal turbine behavior, 112
IEEE; see Institute of Electrical and Electronics Engineers 

(IEEE)
Immersion cooling, heat transfer coefficients for, 260
Impingement type chemical vapor deposition reactor, 294
Imprecise characteristics, in knowledge-based design, 488
Income tax, 324
Increment present worth factor, 317
Independent variables, 361, 361, 374

data points for exact fit with second-order polynomials, 
141–142

and gradient vector direction in steepest ascent 
method, 420

multiple, 149–150
vs. number of equality constraints for optimization, 

387, 423, 425
Industrial bond example, 322–323
Industrial hot water, geometric programming single-

variable example, 443–445
Inequality constraints, 343–344, 393–394, 425, 425, 

426–427
converting to equality constraints, 374
penalty function method for domain with, 425, 425

Inert gases
in annealing furnace, 287
in batch-annealing system design, 288
cooling of a heated moving rod, 359
velocity, 359

Inflation, 304, 311–312
Inflection point, 373, 374
Influence of ambient conditions

in thermal systems, 17
Information flow, 206, 207

block representation of, 205–207
for screw extrusion system, 205–206, 206
in system simulation, 204

Information sources
private, 494
public, 494
for thermal systems design, 493–495

Ingot casting
algorithm for the design of, 481
geometrical configuration, 477
knowledge-based systems design example, 481–483
one-dimensional conduction model, 482
semi-infinite model of solidification, 482
solid-liquid interface movement, 483
system design strategy example, 243–247
three-dimensional model, 482
two-dimensional model, 482

Inheritance, in object-oriented programming, 479
Initial cost, 441
Initial design, 236–243

component selection in, 237–238
existing systems, 238
expert knowledge, 239
library of previous designs, 238–239
power plant example, 241, 241–243

Initial-value problems, 179–184
ordinary differential equations for, 179–184
solving in MATLAB, 182
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Injection molding, 39, 40
ram-fed, 40
screw-fed, 40

Institute of Electrical and Electronics Engineers 
(IEEE), 492

Insulated wire manufacturing, dynamic programming 
example, 463–465

Intellectual property, 71
Interaction between models, 102–103
Interest factors, 319
Interest; see also Rate tables

calculation of, 304–308
compound, 305–306, 559–565
continuous compounding, 306
effective interest rate, 306–307
effect on future worth, 310
nominal, 304, 308
simple, 304–305
tables, 559–565

Internal appeal processes, 493
Internal rate of return, 330
Internet, as source of design information, 494
Interpolation, software, 514
Interval of uncertainty, 404, 408

reducing with Fibonacci method, 412
reduction in uniform exhaustive search, 408
in sequential dichotomous search method, 410
in uniform dichotomous search method, 408

Inverse problems, 3, 293–294
Isentropic turbine and pump, 242
Iterations, 354, 495

hill-climbing techniques, 405
with slack variables, 462

Iterative methods, 236–238
in numerical modeling, 166
for solving linear algebraic systems, 170–173

Iterative process, 55, 56, 174–176, 209
Iterative redesign, 249–253

convergence criterion for, 249–251
employed for solving nonlinear algebraic equations, 

251
initial design effects on convergence of, 236, 238
system redesign, 251–253

J

Jacobian, 209
Java, 478
Jet compressors, 278
Judgment, role in design, 3

K

Karmarkar scheme, 462
Kinematic similarity

with convective motion, 139
in physical models, 138–139

Knowledge-based systems, 77, 471–488
application to thermal systems, 480–488
basic components, 473–478
computational modules, 474–475
design methodology, 479–480
expert knowledge in, 478–479
extrusion die design example, 483–486

front end of, 474
graphical input/output, 475, 477
ingot casting example, 481–483
languages employed in, 477–478
material databases, 475
miscellaneous examples, 486–488
problems, 499–500
subclasses, 472
tree structures in, 472, 473

L

Laasonen method, 191
Lagrange expression, 375–376
Lagrange interpolation method, 141, 142
Lagrange multipliers, 348, 364, 373–401

applicability to thermal systems, 389–397
basic approach, 375–376
and calculus methods, 373–375
computational approach, 395–397
for constrained optimization, 380–381
gradient vector, 377–379
and inequality constraints, 393–394
method, 375–384, 406, 449
optimization examples, 390–393
optimization of constrained problems, 387–389
and optimization of unconstrained problems, 383–387
physical interpretation, 376–382, 380
practical considerations, 394–395
problems, 398–401
proof of method, 381–382
significance of, 382–383
for unconstrained optimization, 379–380
and use of curve fitting, 390

Laminar flows
in heat transfer system design, 274
and Reynolds number, 280

Laplace equation, 191
Large-system design, 285–286

batch-annealing furnace example, 286–291
Czochralski crystal-growing process, acceptable 

design example, 291–293
Large-system simulation, 222–223
Lattice search method, 405, 435

inefficiency of, 435
in two-variable space, 416, 417
for unconstrained multivariable problems, 416–417

LCS; see Life-cycle savings (LCS)
LDPE; see Low-density polyethylene (LDPE)
Learning, in expert systems, 472
Least squares method, in knowledge-based systems, 474
Left wall location, 137
Legal issues, 285, 286, 303

constraints based on, 489
Lewis number, 132
Library exchanges, as source of design information, 494
Licensing of a patented invention, 74
Life-cycle savings (LCS), 329, 330
Lightweight engine, 29
Linear algebraic systems, 167–173

direct methods for deriving, 168–170
iterative methods for solving, 170–173
output and production rate example, 172–173

Linearization
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in best fit method, 148–149, 148–150
for distributed systems, 221–222

Linear programming, 349, 455–456, 466; see also 
Dynamic programming; Geometric 
programming

allocation problem optimization example, 
458–459, 462

blending problem, 462
critical-path problems, 462
formulation and graphical method, 456–458, 457
graphical solution, 460
requirements for, 439
simplex algorithm in, 459–460
slack variables in, 458
software, 456
transportation problem, 462

Linear regression, in best fit method, 146–147
Linux operating system, 165–166
Liquid, material properties, 546–547
Liquid(s), 84

immersion, 23
properties of, 546–547

LISP, 477
LMTD; see Logarithmic mean temperature differences 

(LMTD)
Local extrema, 373

in allowable design domain, 394
Local maximum, 394, 394
Local minimum, 394, 394
Local taxes, 324
Logarithmic mean temperature differences (LMTD), 

270, 273
Losses

energy, see Energy losses
head, see Head losses
heat, see Heat losses
pressure, 280

Low-density polyethylene (LDPE), 486
Lower triangular matrices, 168, 170
Lumped mass approximation, 109–110
Lumped models, 103; see also Model/modeling
Lumped mold model, 482, 482
Lumped systems, 18

dynamic simulation of, 215–218
steady, 208–215

M

Mach number, 132
MACSYMA, 472
Maintenance costs, 441
Manufacturability of materials, 475
Manufacturing, 20–21, 21, 22, 355

acceptable designs for, 253–254
PVC cord coiling example, 254–258

Manufacturing cost
constrained optimization geometric example, 

452–453
optimizing with multivariable geometric 

programming, 447–448
single independent variables in optimizing, 441

MAP, 223
Maple, 223
Market analysis, 8–9

Marks’ Standard Handbook for Mechanical 
Engineering, 495

Mass flow rate, 38
in single-variable geometric programming 

example, 442
in water distribution system, 281

Mass transfer, 285
analogy between heat and, 100
dimensionless groups used in, 132
in environmental processes, 265
in fluid flow systems, 275
in physical models, 140

MAST, 223
Material databases, 473, 475, 487

knowledge-based systems, 475
manufacturability of materials in, 475

Material processing systems, 20–21
Material properties, 85–86

coefficient of volumetric thermal expansion, 85, 143
density, 85, 99–100, 554–555
dry air at atmospheric pressure, 539–542
gases at atmospheric pressure, 542–544
latent heat during phase change, 85
liquid, 546–547
manufacturing process dependence on, 254
mass diffusivity, 85, 143
in mathematical modeling, 112–113
metals and alloys, 548–553
miscellaneous materials, 554–555
radiation emissivities, 556–557
saturated water, 545
as source of design information, 493
specific heat, 85–86, 105
temperature, 85, 554–555
thermal conductivity, 85–86, 86, 554–555
viscosity, 85, 86, 112

Material selection, 81–88, 285, 286, 480
characteristics, 85–86
cost constraints on, 252
different materials, 82–85
material properties, 85–86
procedure, 87–88
and substitution, 86–88
types of, 82–85

MATHCAD, 223
Mathematical formulation for optimization, 346–347
Mathematical model/modeling, 60, 100–101, 103, 104–116

conservation laws in, 113–115
for Czochralski crystal-growing process, 291
final model and validation of, 125–126
general procedure, 104
idealizations in, 112
individual components, 196–197
lumped mass approximation, 109–110
material properties in, 112–113
negligible effects in, 111
simplification of boundary conditions in, 110–111
simplification of the basic equations in, 115
spatial dimensions in, 107–109
for thermal systems, 60
transient/steady state in, 104

Mathematical proof
for geometric programming, 448–450
multivariable geometric programming, 450
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MathWorks, 351
MATLAB, 17, 32, 76, 167, 223, 351, 456, 487, 503, 

514–515
Matrix

decomposition methods, 168, 170
inversion methods, 168, 170, 479

Maximum, 374
conditions for, 384
determining for unconstrained design problems, 

384–386
determining with calculus methods, 373
of unconstrained problem, 379

Mechanical strength, 285, 286
Message passing, 479
Metal(s)

casting, 39
extrusion, 344
process, 358, 358
thermal properties of, 548–553

Metal mandrel, 254, 255
Metal-rolling process, 442–443
Metals and alloys, 82

material properties, 548–553
Methods, in object-oriented programming, 479
Minimum, 374

conditions for, 384
determining for unconstrained design problems, 

384–386
determining with calculus methods, 373
in hill-climbing techniques, 405
of unconstrained problem, 379

Mixed conditions, 191
Mixed flow pumps, 277
Model/modeling, 97–153, 480, 495

analog models, 100
classifications, 103
engineering, 98
features of, 97–99
heat transfer equipment, 269–271
importance in design, 97
interaction, 102–103
individual components, 196–198
lumped mass approximation, 109–110
mathematical model, 100–101, 103, 104
merging of different models, 198–199
numerical models, 101–102, 103
physical model, 101, 128–141
problems, 154–162
types of, 99–104
validation, 99, 125–126

Modified accelerated cost recovery, 325, 327
Modified Gauss-Seidel method, 179
Mold, 39

polymeric materials, 83
Mold cavity, 39
Money

as function of time, 308–313
example, 311, 312–313
future worth (FW), 310
inflation, 311–312
present worth (PW), 309–310

interest calculation, 304–307
purchasing power of, 304

Monotonically varying objective functions, 395, 395

Monotonicity analysis, 351, 465
Moody’s chart, 280
Multi-objective optimization, 364–367, 366

electronic component cooling example, 432–435
Multivariable constrained optimization, 423, 435

cost as objective function example, 425–426
penalty function method for, 423–426
search along constraint method, 426–430

Multivariable geometric programming, 445–448; 
see also Geometric programming

Multivariable search methods, 416–422; 
see also Search methods

MYSIN, 472

N

National issues, constraints based on, 489
Natural convection correlations, 567

in 2D rectangular enclosures, 568–569
Need for engineering design, 7–8
Net present worth (NPW), 330
Neumann conditions, 191
Neuroscience, 351
Newton-Raphson method, 175, 175, 209–210, 282, 395

failure to converge, 175
iterative, 175, 175
for real roots of an equation, 530–531
results, 215
for root solving, 175, 508
for steady lumped systems, 209–210

Newton’s divided-difference polynomial, 141, 142–143
Nominal interest rate, 304, 308
Nonlinear algebraic equations, 178–179, 512–514
Nonlinear algebraic systems, 173–179; see also Linear 

algebraic systems
geometric programming and, 439
manufacturing process heat transfer example, 176–178
single equation, 173–178
steady-state temperature example, 185–188
system of nonlinear equations, 178–179

Non-Newtonian behavior, of fluid in extrusion 
process, 406

Nonpolynomial forms, in best fit method, 148–149
Nontechnical constraints, 488–489; see also Constraints
Nonzero degree of difficulty, geometric programming 

with, 455
Nonzero elements, 168, 170
NPW; see Net present worth (NPW)
Nuclear energy, 22, 23, 43

based on power, 43
on radioactive releases, 43

Nuclear systems
discharge of pollutants, 43
discharge thermal energy, 43
on radioactive releases, 43

Number
Biot, 132, 255, 289
constraints for reducing, 347
domain of acceptable designs minimizing, 403
Eckert, 132
Euler, 132
Fourier, 132
Froude, 132
Grashof, 132
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Lewis, 132
Mach, 132
Nusselt, 132, 271, 274, 390, 434
Peclet, 132
Prandtl, 132, 390, 434
Reynolds, see Reynolds number
Schmidt, 132
Sherwood, 132
Stanton, 434
Weber, 132

Numerical algorithm, 61
Numerical integration, in knowledge-based systems, 474
Numerical model/modeling, 32, 101–102, 103, 163–164, 

197–198, 208, 384; see also Modeling
accuracy and validity, 165, 199
available software, 166–167
development, 165–166
general features, 164–165
linear algebraic systems, 167–168
methods for, 168–173
model development, 165–166
nonlinear algebraic systems, 173–179
for nonlinear equations and large sets, 376
ordinary differential equations, 179–188
partial differential equations, 101, 188–194
problems, 225–234
solution procedures, 167–195
step in, 164
for systems, 195–199
system simulation, 200–207

Numerical simulation, 60–61, 208, 415; 
see also Simulations

in batch-annealing system design, 290, 290, 291
distributed systems, 220–222
dynamic simulation of lumped systems, 215–220, 

216, 217
individual component, 197–198
large-system simulation, 222–223
methods for, 208–224
simulation vs. real system, 223–224
solidification problem, 244
steady lumped systems, 208–215

Numerical solutions, 348
Nusselt number, 130, 132, 139, 271, 274, 390, 434

O

Objective function, 1, 13, 341–342, 380, 403
characteristics, 341–342
combining with constraints, 423
for CVD system, 432
deriving independent variables from, in geometric 

programming, 440
differentiating from each independent variable, 450
energy consumption, 353
in heating systems, 411–412
in hill-climbing techniques, 405
intake and discharge separation, 293
minimizing with steepest ascent/descent methods, 

419, 421–422
monotonic variations in, 395, 395
multimodal, 406
with multiple independent variables, 445–446
in optical fiber drawing application, 431

optimizing, 13
penalty function method, 424
in single-variable problems, 406
for solar energy collection system, 392–393
solidification time as, 483
in two-component system, 425–426
unimodal distributions, 406
variation showing local and global optima, 

406–407, 407
Object-oriented programming, 478–479
Off-design conditions, 62–63
Off-design simulation, 62–63
One-dimensional conduction model, in ingot casting, 482
One-dimensional problems

heat rejection to body of water, 267
hot water storage systems, 245–246
ingot casting system, 244
for solidification, 244

Open-ended problems, 2–3, 4
OpenFoam, 166
Open yard storage vessels, 279
Operating conditions, 11, 32, 41

continuous changes in, 390
electronic equipment cooling, 260
vs. hardware, 345–346
in heat transfer system design, 272
as inputs for variable designs, 243, 244
prototype development, 15
sensitivity of manufacturing processes to, 254
testing prototype over range of, 14–15
in thermal systems, 346
uncertainties in, 294

Operating cost, 356, 432, 441, 443
Opportunity, for engineering design, 7–8
Optical fiber drawing, 21, 57, 58

optimization of, 431
search methods for, 431
variation of production rate per unit cost, 362

Optical sensors, 69
Optimal design, 13, 65–67

design process, 65–67
heat exchanger example, 66–67
practical aspects in, 360–368

Optimization, 1, 7, 12, 13, 32, 65, 67, 339–368; see also 
Problem formulation for optimization

choice of variables for, 361–362
constraints, 342–345; see also Constrained 

optimization
defined, 339
in design, 339–341
equality constraints vs. independent variables for, 387
following domain of acceptable designs, 235
formulating problems for, 480
mathematical formulation, 346–347
methods, 347–353

artificial neural networks (ANN), 351
calculus methods, 348, 348
dynamic programming, 350, 350, 439, 463–465
fuzzy logic, 351
genetic algorithms (GA), 351
geometric programming, see Geometric 

programming
linear programming, see Linear programming
monotonicity analysis, 351, 465
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response surface methodology (RSM), 
351–353, 352

search methods, 348–349, 349
shape optimization, 465

multi-objective, 364–367, 366
objective function, 341–342, 364
operating conditions vs. hardware, 345–346
sensitivity analysis, 362–364
thermal systems, 67, 353–360, 496–497
trade-off curve in, 364, 365
unconstrained, see Unconstrained optimization

Optimum design, in acceptable designs, 340
Oral presentations, communicating design through, 71
Ordinary differential equations, 167, 179–183

boundary-value problems, 184–188
finite difference method for, 519–520
initial-value problems, 179–184
second-order, 519–520
software, 516
stone motion example, 182–184

Outlet temperature, in heat transfer, 270, 272
Ovens, 269; see also Forced-air oven

P

Packaging facility acquisition example, 320–321
Parallel computing, in knowledge-based systems, 478
Parallel machines, 77
Pareto front, 366, 434
Pareto set, 366, 434
Partial derivatives, 383, 396, 421
Partial differential equations (PDE), 18, 119, 121, 169, 

236, 405–406
for distributed models, 114
finite-difference method, 189–191
finite-element method, 191–192
Gauss-Seidel method for, 522–524
in numerical models, 101
SOR method for, 524–525
temperature distribution, 194, 195

Partial pivoting, 169
Particle swarm optimization (PSO), 351
Patents and copyrights, 71–74, 73
Payback period, 330
Payback time, 329
PDEs; see Partial differential equations (PDEs)
Peclet number, 115, 118, 131, 132, 135
Penalty function method, 405, 424, 435

cost as objective function example, 425–426
for multivariable constrained optimization, 423–426

Penalty parameters, 423, 424
Percentage working area (PWA), 352, 353
Periodic processes

modeling of, 106–107
periodic temperature variation, 106

Phoenics, 195
Physical behavior of system, 125–126
Physical insight, 98
Physical models, 101, 128–133, 139

dimensional analysis, 129–133
dynamic similarity in, 139
geometric similarity in, 138
kinematic similarity in, 138–139
mass transfer similarity in, 140

modeling and similitude in, 138
overall view of, 140–141
scale-up and, 129
thermal similarity in, 139–140

Physical system
characteristics of, 495
conceptual design, 56–57

Piping systems, acceptable design of, 280
Pivot element, 169
Pivot row, 169
Plastic cord coiling

acceptable design example, 254–258
narrow temperature ranges for, 258

Pollution control, cost considerations, 303
Polymers, 83, 286
Polynomials, 440

in objective function, 445, 453
representing constraints as sum of, 439
software, 505–506, 516

Power output/cost ratio, 362
Power plant

heat rejection to body of water in flow system, 293
initial design example, 241, 241–243
in single-variable problems, 406

Power systems
nuclear, 22, 23, 43
solar, 22, 23

Prandtl number, 132, 390, 434
Predictive model, 97
Predictor-corrector methods, 180, 182
Present worth (PW), 309–310

analysis, 327–328
of a series of amounts, 314–315

Pressure difference vs. flow rate, 213
Pressure drops, in piping systems, 280
Pressure head

in electronic equipment cooling, 432
in fluid flow systems, 276

Pressure losses, 280
Probabilistic models, 103; see also Model/modeling
Probability distribution curve, 10–11, 10
Problem formulation

design, 37–45
additional considerations, 43–44
constraints or limitations, 42–43
design variables, 40–41
given quantities, 39–40
hardware, 41
for heat transfer equipment, 271–272
operating conditions, 41
requirements and specifications, 37–39

optimization, 339–368; see also Optimization
aspects in optimal design, 360–368
basic concepts, 341–347
calculus methods, 348
change of concept or model, 367–368
choice of variables for optimization, 361–362
constraints, 342–345
dependence on objective function, trade-offs, 364
dynamic programming, 350, 350
geometric programming, 350
linear programming, 349
mathematical formulation, 346–347
multi-objective optimization, 364–367, 366



588 Index

objective function, 341–342
operating conditions vs. hardware, 345–346
optimization methods, 347–353
overview, 339–341
part of overall design strategy, 367
search methods, 348–349
second law of thermodynamics, 360
sensitivity analysis, 362–364
thermal systems optimization, 353–360

Procedural environment, 478
Process, defined, 17
Process interface for analog/digital conversion, 68
Process programming, 68
Product development, 7
Production, 13–16
Production rate, 432, 432
Professional ethics, 490–493

confidentiality and, 492
data reporting and, 492
public obligations and, 492

Profit
in linear programming problem with slack 

variables, 458
software procedures for maximizing, 462

Programming, 349–350
languages in knowledge-based systems, 477, 478

Programming tableau, 459, 461
PROLOG, 477

in ingot casting example, 481
Propeller fans, 277
PROSPECTOR, 472
PSO; see Particle swarm optimization (PSO)
Public obligations and professional ethics, 492
Pumps, 284

characteristics, 277, 277
costs, 349
reciprocating, rotary, centrifugal, 276
size of, 349
types, 277

Purchasing power of money, 304
PVC cord coiling, 254–258
PW; see Present worth (PW)
PWA; see Percentage working area (PWA)
PYTHON, 477, 478

Q

Quality, 431
balancing with cost, 303

Quantitative design process, 235
Quasi-steady modeling, 106

R

Radial pumps, 277
Radial temperature uniformity, in batch annealing 

system design, 289
Radiation emissivities, material properties, 556–557
Radiative transport

electronic equipment cooling, 259
in environmental systems design, 265

Rankine cycle, 50
Rate of return, 330–332
Rate tables, 559–565

4% compound interest rate, 559–561
10% compound interest rate, 562–563
16% compound interest rate, 563–565

RBDO; see Reliability-based design optimization (RBDO)
Real estate taxes, 324
Reality-based design, 490
Reasoning, in expert systems, 472
Reciprocating compressors, 278
Reciprocating pumps, 276, 277
Recovery rates, 327
Recrystallization temperature, 38
Recurring expenses, 314
Redesign

iterative, 249–253
system, 251–253

Reducing the number of design variables, 50
Reduction ratios, 413, 413–414, 414

as function of number of trial runs, 414
as measure of search method efficiency, 413–414
for single-variable problems, 412

Refrigeration systems, 27–28, 38–39, 239–241, 240
Regression, 146
Regula falsi method, 174
Regulations, 285, 286

as source of design information, 493
Rejection; see Heat rejection
Reliability-based design optimization (RBDO), 

294–295, 490
Replacement of the ambient temperature, 106
Research and development, 12–13
Response surface methodology (RSM), 351–353, 352
Response surfaces, 78
Response time, 45

fast for material, slow for operating conditions, 104
large to infinite, 105

Return on investment, 329
as measure of success, 9
probability distribution curve for, 10

Reverse Brayton cycle, 237–238
Reynolds number, 115, 118, 130, 132, 135, 139, 271–272, 

274, 280, 390, 433, 434
relationship to heat transfer coefficient, 272

Right wall location, 137
Rotary compressors, 278
Rotary pumps, 276, 277
Round-off errors, in numerical modeling, 166
Rule-based knowledge systems, 478, 479; see 

also Design rules
Rules of thumb, in knowledge-based systems, 474
Runge-Kutta methods, 180, 182, 183, 195, 217, 219, 263, 

487, 536–537
fourth order software, 517–518
in knowledge-based systems, 475

S

Saddle point, 373
Safety, 67–69, 285, 303

constraints based on, 488, 489
in knowledge-based systems, 474
professional ethics related to, 492

Saturated water, material properties, 545
Scale models with geometric similarity, 129
Schmidt number, 132, 140
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Screw extrusion system, 405
Search along constraint method, 405, 435

cost function example, 428–430
for multivariable constrained optimization, 426–428

Search methods, 32, 174, 348–349, 403–438
application to thermal systems, 405–406
comparison of elimination methods, 413–415
considerations, 411
dichotomous search, see Dichotomous search methods
elimination methods, 404–405
Fibonacci search, 410–412
golden section, 412–413
hill-climbing techniques, 405
importance of, 403–404
lattice search, 416, 416–417
multivariable constrained optimization, 423–430
penalty function method, 423–426
search along a constraint, 426–430
for single-variable problems, 406–415
steepest ascent/descent method, 419–420
thermal systems examples, 430–435
types of approaches, 404–405
unconstrained search with multiple variables, 416–422
uniform exhaustive search, 407–409, 408
univariate search, 417–419, 418

Secant method, 176
for root solving, 507–508, 529–530

Second law of thermodynamics, 72, 360
Second-order convergence, 175
Second-order polynomials, 144, 144
Selection vs. design, 5–6, 480
Selective search, 485
Semiconductor materials, 84
Semi-infinite model, of ingot casting solidification, 482, 

482
Sensitivity, 340

analysis, 361–364, 490
coefficients, 383, 452

Sensors, 68, 285
locations of sensors, 70
for providing necessary inputs, 68
use for control and safety, 68, 68–69

Sequential dichotomous search method, 413, 414
for single-variable problems, 410, 411

Sequential information-flow diagrams, 208–209
Sequential simulations, 179
Sequential unconstrained minimization techniques 

(SUMTs), 424
Series compound amount factor, 314
Series future worth factor, 314
Series of payments, 313–321, 314

changes in schedule, 320
changing amount in, 317–318
continuous compounding in a series of amounts, 

316–317
different frequencies, 319
food-processing system example, 316
future worth of uniform series of amounts, 314
packaging facility acquisition example, 320–321
present worth of a series of amounts, 314–315
shift in time, 318

Series present worth factor, 315
Seventh-order polynomial fit, 143
Shape optimization method, 465

Shell-and-tube heat exchangers, 6
Sherwood number, 132, 140
Shift in time, 318
Shooting methods, 184–185, 185
Sigma PROLOG, 477
Silicon wafers heat treatment system, 238, 238
SIMAN, 223
Similarity

dynamic, 139
geometric, 138
kinematic, 138–139
mass transfer, 140

Similitude, in physical models, 138
Simple interest, 304–305
Simpler, 193
Simplex algorithm, 459–462
SIMSCIPT, 223
Simulation, 32, 45, 55–56, 163, 200, 479

classes of, 202
communicating design through, 71
continuous or discrete, 203, 204
correlating inputs and outputs in, 247
design, 59–63

evaluation, 201
optimization by, 201–202

deterministic or stochastic, 204
dynamic or steady state, 202–203
example in, 61–63
flow of information in, 204
of heat transfer equipment, 269–271
importance of, 200–202
modifying existing systems through, 202
numerical, 60–61, 208–224
off-design performance and safety limits, 201
of practical thermal systems, 61
problems, 225–234
purposes of, 200
reasons for, 200
sensitivity, 202
variation with type of system, 236

Simulation runs, minimizing number of, 404
Simultaneous simulations, 179, 207
Single-variable problems, 406–415, 435

comparison of elimination methods for, 413–415
dichotomous search methods for, 409–410
Fibonacci search methods for, 410–412
golden section search method for, 412–413
heating system Fibonacci search example, 411–412
reduction ratios for, 412
sequential dichotomous search method for, 410, 411
unconstrained geometric programming, 441–445
uniform exhaustive search method for, 407–409, 408

Slack variables, 461
vs. active variables, 461
in allocation problem, 459
equating to zero, 460
in linear programming, 458

Slug flow model
in environmental systems design, 267
in heat transfer system design, 269

SMALLTALK, 477
Soaking time, 38
Social issues, constraints based on, 489
Solar energy collection systems
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acceptable design example, 248, 248–249
constrained optimization problem example, 388–389
finding cost minimum for, 392–393
schematic diagram, 248
unconstrained optimization problem example, 386–387

Solar flux, in environmental systems design, 265
Solidification, 483

effect of convective heat transfer coefficient 
on rate of, 246

effect of thermal conductivity of mold on rate of, 246
one-dimensional model for, 244
time, 483
using knowledge-based systems for, 481
variation of rate with mold wall thickness, 245

Solid-liquid interface movement, 483
Solid solder, 46
Spatial dimensions, in mathematical modeling, 107–109
Spawns, of parent designs, 485
Specifications

as source of design information, 493
design, 39

Spectral methods, 193
Spherical storage vessels, 279
Splines approach, 141, 143, 143
Stainless steel mandrel, 254
Stanton number, 434
Stationary point, 379, 384
Steady conduction in solid model, 482
Steady flow conditions, in heat transfer system design, 269
Steady lumped systems, 208

ammonia production system simulation example, 
210–212

Newton-Raphson method, 209–210
successive substitution method, 208–209
volume flow simulation example, 212–215

Steady-state conditions, 18, 105
electronic equipment cooling, 259
for LR configuration, 136
in mathematical modeling, 105

Steady-state model, 103, 236
Steepest ascent/descent search methods, 349, 405, 416, 

432; see also Search methods
fan and duct system problem example, 421–422
two approaches to, 420–421
for unconstrained multivariable problems, 419–422

Stefan–Boltzmann constant, 19, 110
Step size, 420, 430
Stocks, 323
Storage/retrieval of collected information, 487
Straight-line depreciation, 325
Strength characteristics, in material databases, 475
Structural integrity, 285, 286
Subclasses, in knowledge-based systems, 472, 479
Success

chances of, 9–11
feasibility of, 11
measure of, 9

Successive over-relaxation (SOR), 171, 188
for elliptic PDE, 524–525
in knowledge-based systems, 474
for Laplace equation, 531–535

Successive substitution method, 176, 208–209, 213, 214
ammonia production system example, 210–212
for root solving, 508–509

for solving a system of nonlinear algebraic equations, 
512–513, 535–536

for steady lumped systems, 208
Successive under-relaxation (SUR), 171, 176, 179, 209
Sum-of-years digits (SYD), 325, 326
Surface temperature, in environmental systems design, 

265
Surrogate models, 61, 351
Symbolic languages, 472; see also Computer software

in knowledge-based systems, 477
Synthesis, 4–5
System, 16

cost, 356
design, see System design
hardware, 11, 41
for heat rejection from power plant, 25
nonlinear equations, 178–179
numerical models, 195–199
redesign, 251–253
simulation, 200–224; see also Simulation

System design, 12, 39
applications, 253

component design vs. system design, 283–285
electronic equipment cooling, 258–263
in environmental systems, 263–269
fluid flow systems, 275–282
heat transfer equipment, 269–275
manufacturing processes, 253–254
miscellaneous areas, 282–283
uncertainties in, 294

vs. component design, 283–285

T

Tangential vectors, 377, 378
Taxes, 324–326

depreciation, 325–326, 327
inclusion of, 324
income tax, 324
local taxes, 324
real estate, 324

TDMA; see Tridiagonal matrix algorithm (TDMA)
Technical reports, communicating design through, 70
Temperature

annealing, 38
decay, 359
electronic equipment cooling constraints, 259
as independent variable in uniform exhaustive 

search, 408
as objective function in screw extrusion of plastics, 405
ranges in material databases, 475
recrystallization, 38
variation of energy input and heat loss with, 444

Temperature distribution
for copper and aluminum board, 263
electronic equipment cooling, 260
in environmental systems design, 267
for forced convective cooling, 261
in two fluid streams, 62

Temperature variation, 38
for combined convection and constant heat flux 

input, 257
for convective heating, 256
with flow rates, 38
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with heat transfer rates, 38
in heat transfer system design, 269
with temperature levels, 38
in thermoforming application, 254, 256
with time, 38

Testing, 13–16
Theoretical models, 101
Thermal annealing process, 38
Thermal conductivity, 554–555

for copper in forced convective cooling, 261
of mold material on the rate of solidification, 246
of plastic cord in thermoforming application, 258

Thermal diffusivity, 267, 268
Thermal efficiency, 355
Thermal energy, 355
Thermal processes, tree structures for, 473
Thermal properties, in material databases, 475
Thermal sciences, 17
Thermal similarity, in physical models, 139–140
Thermal systems, 16–31

acceptable designs, see Acceptable designs
aerospace systems, 26
air conditioning, see Air conditioning
analysis of, 17–20
application of Lagrange multipliers to, 389–397
application of search methods to, 405–406
for central air conditioning, 44
characteristics of, 16–17
component characteristics, 252, 253
components of, 78
computer-aided design (CAD), 77–78
control scheme, 67
defined, 17
designs, see Designs
dimensions of parts, 252
discrete stages in, 463
electronic equipment cooling systems, 23–24
energy systems, 21–23
environmental and safety systems, 24–26
fluid flow systems, 28–29
geometrical configuration, 252
geometric programming applicability to, 440
heating systems, 27–28
heat transfer equipment, 29–31
heat treatment of silicon wafers, 238
knowledge-based design of, 480–488
limitations of linear programming in, 456
manufacturing and materials processing systems, 

20–21
material properties and characteristics for,  

85–86, 252
modeling of, 59, 97–153
optimization, see Optimization
for quenching, 74
refrigeration systems, 27–28
search method examples, 430–435
transportation, 26–27, 27, 34
types, 20–31, 355–356
typical control arrangement, 68

Thermal transport decoupling for modeling, 197
Thermocouples, 290
Thermodynamic cycles, 50, 56–57, 57, 67, 207, 237, 

237–238
for air-cycle refrigeration systems, 237–238

Brayton cycle, 237, 237
four-stroke Otto cycle, 57
for power generation, 57
power plant design, 241, 241–243
Rankine cycle, 50
vapor compression refrigeration system, 67, 240

Thermodynamic systems, 56, 116–117
Thin films, 352
Third-order polynomial fit, 143, 144
Thomas algorithm, 169, 187
Three-dimensional conduction, 108, 131, 259
Three-dimensional model, of ingot casting, 482
Three-dimensional problems, 267
Thrust, 355
Time dependence

in environmental processes, 265
of manufacturing processes, 254

Torque, 355
Total flow rate, 43, 356

effects of design parameters on, 284
in fluid flow system design, 282, 283

Total income maximization, simplex algorithm 
example, 460–462

Trademarks, 73–74
Trade-offs, 3, 364
Transient problem, in modeling, 107
Transportation cost, optimization of

dynamic programming, 463–465, 464
software procedures for, 462

Transportation systems, 26–27, 40, 355
requirements for, 38
thermal systems for, 27, 34

Tree structures
defined, 472
in knowledge-based systems, 472–473
for storing data

on animals, 472
on electronic equipment cooling, 473

Trial points
in hemstitching method, 426, 429
moving in steepest ascent methods, 420, 421
in search along constraint methods, 426

Trial runs
in dichotomous search method, 409, 410
with golden section search method, 413
reduction ratio as function of number of, 414

Tridiagonal matrix algorithm (TDMA), 169, 186, 
511–512

Truncation errors, 166
Turbulent flow

in environmental processes, 264
in heat transfer system design, 274
and Reynolds number, 280
in thermal systems, 17

Two-dimensional model, of ingot casting, 482
Two-dimensional problems, in environmental systems 

design, 268, 268
Two-variable problems, 416, 425–426

U

Ultrasonic sensors, 69
Uncertainties, 490

acceptable designs, 294–295
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Unconstrained design problems, 403
conversion of constrained to, 386–387

Unconstrained multivariable search methods, 416–422
lattice search, 416, 416–417
steepest ascent/descent method, 419–422
univariate search, 417–419, 418

Unconstrained optimization, 383–384
and converting constrained to unconstrained problems, 

386–387
determining minimum/maximum in, 384–386
with geometric programming, 441
Lagrange multipliers for, 379–380
multivariable problems, 445–448
with single independent variable, 441–445
terms vs. number of variables for, 440
use of gradients, 384

Unconstrained problem, 347, 383–386
Uniform dichotomous search, 409–410, 410
Uniform exhaustive search, for single-variable problems, 

407–409, 408
Uniform flow at inlet, 111
Uniform heat flux, 111
Unimodal objective function distributions, 406, 407
Unique solutions, 496
Unit vectors, 378
Univariate search, 349, 404, 416, 417–419, 418, 431, 

432, 497
Unix, 166, 503
U.S. Department of Labor, 311

V

Validation, 99
numerical simulation, 223–224
strategies employed for, 125–126

Value curves, 365
Valves, 278–279
Vapor absorption, 14
Vapor compression, 13, 14, 207
Vapor cooling systems, 13, 14, 207

Variable(s); see also specific variables
costs, 332
for optimization, choice of, 361–362

Variation
of cost as a discrete function, 349
of energy input and heat loss with temperature, 444
of fractional depreciation, 326
of number of iterations, 171
of power output/cost ratio for power plant, 362
of production rate per unit cost, 362

Vector notation, 376–377
Velocity

heated moving rod, 359
inert gases, 359
variation with time by MATLAB, 183, 184

Volume flow rate, 37
Volume restrictions, 42
Vortex promoter, 433, 433, 434

W

Waste disposal, 43
Water bodies, heat transfer factors, 265

discharge of thermal energy and chemicals into, 264
in heat rejection system, 291
modeling for environmental systems, 266

Water distribution system, acceptable design example, 
281–282

Water thermal energy storage system, 245–246
Weber number, 132
Weighting factors, 405, 450, 452
Weight restrictions, 42
Workable design, 13, 496; see also Acceptable designs
Working models, communicating design through, 71
Worth of money, as function of time, 308–313

example, 311, 312–313
future worth (FW), 310
inflation, 311–312
present worth (PW), 309–310
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