
Building Physics
Applications
in Python

Edouard Walther

First Edition

Spring 2021

Front page background image copyright Séverine Huet ©, front page layout Yannick Schindele ©.

This work is licensed under a Creative Commons “Attribution-
NonCommercial-ShareAlike 3.0 Unported” license.

https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en
https://creativecommons.org/licenses/by-nc-sa/3.0/deed.en

Preface

By Professor Christian Inard
Vice Rector for Research – La Rochelle University

In many sectors, engineers are facing very complex problems. The diffi-
culty of the situations encountered is further complicated by the fact that
unsteady or coupled systems, or both, are to be managed.
For the purpose of sizing but foremost for the unsteady simulation of complex
systems, the use of numerical methods remains essential and efficient.

Obviously, this is the case in the field of building physics. Indeed, the building
associated with its heating and cooling system remains a complex field of study
both by its dimensions and by the physical phenomena encountered. This re-
quires considering, in particular, spatial and temporal scales of very dissimilar
levels.
Furthermore, numerical computing has evolved considerably over the last few
decades to reach remarkable levels of performance. It is thus becoming easier
by the day to solve unsteady problems, whether coupled or not, by using both
powerful numerical methods and a modern programming language.
In the field of building physics, this book deals with basic and applied aspects
of coupled heat and mass transfers and system control in a harmonious and
educational way. Of particular interest are applications such as phase change
materials, HVAC control or indoor air quality.
This volume will therefore be very fruitful for acquiring fundamental notions
as well as applying numerical solutions to complex problems using state-of-the-
art methods in python, a programming tool fully recognized by the scientific
community.
To conclude, the content of the present work is just like the curriculum and the
skills of its author i.e. dealing with education, research and development.

About the author

Edouard Walther has been working as a practitioner in applied research at AREP
since 2015. In this frame, he leads a group in charge of building physics mod-
elling for semi-open spaces, such as train stations.
Graduated engineer from the INSA Strasbourg (2010), he was awarded both the
”Teacher training in higher education” Master degree from ENS Cachan and the
Civil Engineering Teacher training degree (Agrégation) in 2011. He obtained his
PhD. entitled ”Contribution of the Lattice Boltzmann method to the study of the build-
ing envelope” from Paris-Saclay University in 2016.
He teaches on a regular basis at the École Normale Supérieure Paris-Saclay and
INSA Strasbourg. His research activities are focused on indoor thermal com-
fort and air quality in large spaces, air quality in the underground environment,
applied numerical methods and modelling of the urban microclimate.

Ackowledgments

If it were only for its author, this volume would not exist: let us take a few lines to acknowledge each
contribution.

Forewording this book, Professor Christian Inard of La Rochelle University provides his internationally
acknowledged expertise in the field of building physics: may he be warmly thanked for his confidence and
for the credibility he gives to this humble volume.

The original idea and implementation of the interactive Jupyter Notebooks is Mr. Yannick Schindele’s.
I would like to express my gratitude to him not only for his attentive proof reading, crash-testing of the
code and patient explanations about distributed version control, but more particularly for two decades of
lasting friendship: merci infiniment Yannick !

Antoine Hubert and Mateusz Bogdan wore the heavy ”typo-correction” burden and gave their insight
about the scientific contents, providing nifty suggestions to help the understanding.

Michele Peou made priceless corrections of my written English throughout the manuscript: an appre-
ciated and salutary input!

Professor Clément Desodt of Université Paris-Saclay provided a version of the geothermal heat pump
code and is actually at the very origin of this project. Several years ago, upon his recommandation I con-
tacted a well known editor that rejected my draft manuscript, invoking the prospect of possibly low profits.
Lessons learnt, today with Clément’s encouragement this book is freely available and open source!

Séverine Huet made the cover’s background illustration.

Julien Berger from USMB/LASIE shed light on my understanding of coupled heat and mass transfer.

David Néron from LMT-ENSPS made the original LaTeX .cls file.

Jean-Baptiste Bouvenot notified me a tragic mistake in the Dirac function of the PCM section.

I would be ungrateful not to mention the Badische Staatsbrauerei Rothaus was a steady source of inspi-
ration during the long, locked, nights of April and May 2020. Later on, Domaine Pierre Weber took over for
the November and December 2020 writing support, offering a much appreciated shelter in a quiet environ-
ment.

Introduction

Written during the 2020 lock-downs, these pages present an overview of building physics applications in
Python language for students, teachers and engineers.

What this book is about

On one end of the scientific literature, profusion of works about solving partial differential equations exist,
however often with a somewhat unfamiliar mathematical formalism. On the other end, volumes dealing
with building physics may be either technical about HVAC or rather generic about the equations to be
used.

Having struggled quite a bit in the past years with the practical implementation of numerical methods
in this field, it appeared that putting together the recipes used in a modern programming language could
be of interest.

Hence the parti pris in this book is to show the link between the governing equations and how to solve
them, aiming at a practical use (i.e. ”how to make things work”). It can be seen as a toolbox for simulation
engineering, a basis for the illustration of theory or a kick-start for the study of more complex problems.

This manual is composed of three chapters, with gradual increase in difficulty:

• Chapter 1 succinctly explains the fundamentals of the numerical methods used.

• Chapter 2 shows applications of these methods to heat transfer in phase change materials, PID con-
trol, indoor air quality and geothermal heat pumps.

• Chapter 3 deals with coupled problems and minimisation. Applications to polydispersed aerosols in
enclosures, heat and mass transfer in walls and parameter fitting for transient problems are proposed.

What this book is not about

Before starting, let us mention a few important things that we do not pretend to investigate here: numeri-
cal performance or scheme order, thorough and stringent mathematical developments, code and memory
optimisation, or the exact adequacy of the solving procedure to the problem (as far as it does the job!).

What about this book?

For all cases examined in the following chapters, source code or supplementary material such as pollu-
tion/weather data are available. In each section, specific links pointing to the corresponding procedures
are provided. Two types of users may be interested:

• If you want to play with the parameters of the models described, a simple web browser is sufficient,
as interactive plots are at your disposal for many of the examples, thanks to the generous implication
of Mr. Yannick Schindele who proposed and set up the corresponding Jupyter Notebooks.

• If you intend to make your own tests or applications, the code can be downloaded from this reposi-
tory: https://github.com/eddes/buildingphysics.

As a few animations are presented throughout the sections, you may find it enjoyable to read these
pages with a compatible PDF viewer (such as Foxit or Adobe Reader).

https://github.com/eddes/buildingphysics

Table of contents

1 A quick reminder about numerical integration 11
1 Integration over time and space . 11

1.1 Time integration . 11
1.2 Space integration . 12
1.3 Formulation: finite what? . 13

2 Numerical formulation of equations . 14
2.1 Inside homogeneous media . 14
2.2 Two-dimensional formulation . 16
2.3 Boundary conditions and interfaces . 18

3 Overcoming stability issues . 20
3.1 Stability for Euler’s explicit scheme – A cookbook condition 20
3.2 Crank-Nicolson’s scheme . 21

4 A word about computer programming . 25
4.1 Debugging . 25
4.2 Before starting . 25

2 Transient problems 26
1 Phase Change Materials . 26

1.1 Modelling phase change in a wall . 26
1.2 Numerical model . 28
1.3 Application – Comparison of temperature profiles . 29

2 Indoor Air Quality . 32
2.1 Modelling filter clogging . 32
2.2 Numerical model . 33
2.3 Simulation results for a given critical mass . 34
2.4 Cost or air quality? . 35

3 PID Controllers in HVAC . 40
3.1 Mathematical model of a PID controller . 40
3.2 Application - Gravity drainage of a tank . 41
3.3 Application - Three-way-valve controller for space heating 46

4 Geothermal heat pump . 51
4.1 Mathematical model of ground heat pump . 51
4.2 Numerical model in 2D . 56
4.3 Application - Geothermal heat pump . 59

3 Coupled problems & minimisation 63
1 Indoor Air Quality: two-compartments models . 63

1.1 What is an aerosol? . 63
1.2 Physical model . 64
1.3 Numerical implementation for one size-class . 67
1.4 Extension to an n size-class aerosol . 69

2 Heat and mass transfer in walls . 74
2.1 Phenomenon & Governing equations . 74

Building Physics – Applications in Python 6

2.2 Modelling heat & mass transfer through walls . 76
2.3 Observations on the methods . 80

3 Parameter fitting on differential equations . 83
3.1 Minimisation in practice . 83
3.2 Automatic tuning of a PID . 83
3.3 Air Quality in Underground Stations . 88

4 Appendix 93
1 Demonstrations & complements . 93

1.1 Matrix formulation in 2D . 93
1.2 The Kv value . 94
1.3 Demonstration of the relation between Qv, Kv and a 95

2 Code . 96
2.1 Solving (systems of) Equations . 96
2.2 Data resampling . 96
2.3 Data interpolation . 97
2.4 Data fitting . 97
2.5 Pareto front computation . 98

Bibliography 99

7 Building Physics – Applications in Python

Nomenclature

Heat transfer

α thermal diffusivity [m2/s]

∆t time discretisation [s]

∆Tf half fusion temperature interval [°C]

∆x space discretisation [m]

λ material conductivity [W/m/K]

ρ density [kg/m3]

Cp specific heat capacity [J/kg/K]

f liquid fraction in the PCM [-]

Fo Fourier number [-]

F eqo equivalent Fourier number including a convection term [-]

h superficial heat transfer coefficient [W/m2/K]

K conductivity matrix

Rc conduction heat resistance [m2.K/W]

Rs superficial heat resistance [m2.K/W]

T temperature field at time t

T+ temperature field at time t+ ∆t

Tf fusion temperature [°C]

HVAC Control

(mCp)r room indoor thermal mass [J/K]

∆pr pressure drop of the controlled element [Pa]

∆pv valve pressure drop [Pa]

∆TLM mean logarithmic temperature difference [K]

ṁ mass flow rate of water in the heater [kg/s]

a valve authority, ratio of ∆pvalve/∆pcircuit [-]

e error, difference between actual and set value [unit of the measured quantity]

Kp gain [inverse of the unit of the controlled quantity]

Building Physics – Applications in Python 8

Kv flow rate through the valve [m3.s-1.bar-0.5]

Kvs flow rate through the valve for 1 bar ∆p [m3.s-1.bar-0.5]

P heater power [W]

PB proportional band [in the unit of the controlled quantity]

Q outlet flow rate [m3/s]

Qs, Qmax supply and maximum supply flow rate [m3/s]

Tset set heating temperature [°C]

Te, Ta external outdoor and ambiant indoor temperature [°C]

Ti, Td integration and derivation time [s]

Ti, To temperature at the heater inlet and outlet [°C]

US,K heat transfer coefficient of the room envelope and of the heater [W/K]

y control signal sent to the actuator 0 to 1 [-]

Air Quality

α apparent emission term [µg/m3/train2]

β fraction of the enclosure’s volume replaced by outside air owing to piston effect [-]

δ deposition coefficient [s-1]

ρ resuspension coefficient [s-1]

τ air change rate [s-1]

C particle concentration in the air compartment [µg/m3]

Ce outdoor air concentration [µg/m3]

L quantity of particles deposited on surface [µg/m2]

Qv air flowrate [m3/s]

S surface [m2]

Sv, Sh, Sc deposition surfaces over walls, floors and ceilings [m2]

V air volume [m3]

vv, vh, vc particle deposition velocities over walls, floors and ceilings [m/s]

Heat & Mass Transfer

δv vapour diffusivity [m2/s]

ϕ vapour pressure [%]

a, b, c parameters for the equation wv = wv(ϕ)

Cm moisture storage capacity [kgw/kg/Pa]

Cp(w) specific heat capacity depending on water content w [J/kg/K]

Fow Fourier number for vapour transfer [-]

9 Building Physics – Applications in Python

F eqow Equivalent Fourier number for vapour transfer including surface mass transfer [-]

ha, hb surface heat transfer coefficients [W/m2/K]

hv vapour transfer coefficient [s/m]

Lv latent heat of vaporisation [J/kg]

p vapour pressure [Pa]

pa, pb vapour pressures on both sides of the wall [Pa]

ps saturated vapour pressure [Pa]

Ta, Tb temperatures on both sides of the wall [°C]

w mass water content [kgw/kg]

Geothermal heat pump

ṁ refrigerant mass flow rate [kg/s]

ηC efficiency compared to Carnot’s ideal cycle [-]

λ ground conductivity [W/m/K]

ρ ground density [kg/m3]

ρa air density [kg/m3]

ρw water density [kg/m3]

Co Courant number [-]

Cpa air heat capacity [J/kg/K]

Cpw water heat capacity [J/kg/K]

Cp ground heat capacity [J/kg/K]

COPc, COPh coefficient of performance in cooling and heating mode [W]

Pc, Ph cooling and heating power of the heat pump [W]

Pe− electrical power for the heat pump’s compressor [W]

Pl linear power density at the geothermal probe [W/m]

Qv zone air change [m3/s]

Tin, Tout indoor and outdoor temperatures [°C]

Tc, Th evaporator (cold) and condenser (hot) temperatures [°C]

Twh , T
w
c heating departure and return water temperatures [°C]

US, ρaQvCpa enveloppe conduction and air change heat losses coefficient [W/K]

vw underground water velocity [m/s]

Building Physics – Applications in Python 10

Chapter 1

A quick reminder about numerical
integration

In this chapter, we will briefly review the basics of finite volumes, using simple examples. As the topic
has been thoroughly exposed in other, better works such as the famous [22], we will not go too deep into
mathematical details such as proofs and Taylor series. Opening this book, we assume you roughly know
what discretisation may be. Code snippets are positioned along the sections to allow the reader to have a
hands-on approach of the presented numerical method.

Whatever happens, keep in mind that in the end, the trick relies merely in additions and substractions
over little cells!

1 Integration over time and space

Solving partial differential equations in time and space requires integration over those dimensions. In the
following paragraphs, we will briefly describe the fundamentals of such operations.

1.1 Time integration

In many cases, a reasonable approximation of derivatives can be made with a simple slope calculation, also
named Taylor’s series. Consider the formal variation of temperature T over a small time increment dt:

dT

dt
=
T (t+ dt)− T (t)

dt
(1.1)

Let us call T+ the temperature at time t + dt and T at time t, Equation (1.1) writes numerically, with
∆t ∼ dt the approximation of the infinitesimal time increment:

dT

dt
' T+ − T

∆t
(1.2)

Supposing we know the temperature variation f in [K/s] such that:

dT

dt
= f (1.3)

... we can calculate T+ explicitly with the relation below, knowing T :

T+ = T + f∆t (1.4)

T in the previous equation could well be our initial condition such that T (t = 0) = T0. Calculating
T (t = ∆t) is straightforward with Equation (1.4). Using the obtained result, it is possible to determine
T (t = 2∆t) etc. ad libitum. If we carry on this way until the required number of time increments ∆t is
reached, the time integration of the equation is performed, as illustrated on Figure 1.1.

11 Building Physics – Applications in Python

Figure 1.1 • Animation – Integration over time.

1.2 Space integration

Many problems in building physics exhibit a second order derivative in space such as the famous heat
equation (e.g. ”∂

2T
∂x2 ”). For the sake of simplicity we will take a look at the one dimensional case. Imagine

the 1D space is divided in regular small slices of size ∆x, as presented on Figure 1.2.

Ti+1 Ti-1 Ti

∆x

Figure 1.2 • Space discretisation of temperature T in a homogeneous
material with a regular space step ∆x.

A common way to obtain a second order derivative is to derive... twice. Let us first write the derivatives
on the left (superscript ←) and right hand side of point a (superscript →) :

∂T→

∂x
' T (a+ ∆x)− T (a)

∆x
(1.5)

∂T←

∂x
' T (a)− T (a−∆x)

∆x
(1.6)

As mentioned, the second derivative being the derivative of the first derivative* we can calculate ∂2T
∂x2

such that:
*If mathematical derivation causes you allergic outbreaks, try to get over it by repeating this sentence twice in a row.

Building Physics – Applications in Python 12

∂2T

∂x2
=

∂T→

∂x −
∂T←

∂x

∆x
=
T (a+ ∆x) + T (a−∆x)− 2T (a)

∆x2
(1.7)

Note – Equation (1.7) is called a central finite difference, as it takes the values on the left and right of the
point considered.

Let i be the point at which the second order partial derivative is to be evaluated and i − 1, i + 1, its
closest neighbours on the grid. Numerically Equation (1.7) translates to:

∂2T

∂x2
=

Ti+1 + Ti−1 − 2Ti
∆x2

(1.8)

T+ = Ti + ∆t
Ti+1 + Ti−1 − 2Ti

∆x2
(1.9)

Equation (1.7) provides an explicit formulation of second-order derivatives depending on the values of
the function in a close vicinity of the point considered, also named Euler’s scheme.

With this method, starting from known initial conditions at t = 0, the combination of space and time
integration is a simple series of sums, as illustrated on Figure 1.3.

Figure 1.3 • Animation – Integration over space and time with Euler’s ex-
plicit scheme.

1.3 Formulation: finite what?

Finite volumes or finite difference are similar and often mistaken. A simplified definition would be the
following [22]:

• Finite differences are obtained by directly replacing the Taylor series approximate of derivatives in
the differential equation,

• whereas for finite volumes the domain is divided in non-overlapping points such that every node is
surrounded by a so called control volume. The heat balance is written on each node and yields a finite
volume formulation. In other words: the differential equation is integrated.

13 Building Physics – Applications in Python

To summarise, the difference is about where we write the heat balance for each cell. Look at the left
hand side of Figure 1.4, representing the boundary of a model, at the interface between air and solid. In the
upper grid scheme the heat balance is written on the node directly at the interface whereas for the lower
scheme the first solid node is within the material (finite volume). The same principle can be seen on the
right hand side of Figure 1.4 at the interface between two materials: for finite volumes the nodes are on
each side of the interface.

Finite difference

Finite volume

Figure 1.4 • Finite volume and finite difference at the air boundary (left) and
at the interface between two materials(right).

As we will see in section 2.3, finite volumes offer a convenient method for the modelling of multilayer
materials, as they allow not to significantly rewrite the equations at their interface.

However, if we stick to the previous illustration, there is no direct access to the temperature at the
interface between air and solid. The latter can be computed by calculating the flux between two cells and
isolating the interface temperature. Interestingly, the choice of finite difference or finite volume does not
affect the accuracy of the method [22].

2 Numerical formulation of equations

In the previous sections we have introduced the numerical integration of partial differential equations and
introduced the term explicit: let us examine how this translates on the well known transient heat equation
in one dimension, governing heat transfer in a solid medium:

∂T

∂t
= α

∂2T

∂x2
(1.10)

2.1 Inside homogeneous media

In the vicinity of point i we can write the explicit formulation using the derivatives introduced above, and
obtain the numerical expression of the heat equation, where the subscript i relates to the point position in
the discrete space and the superscript ”+” relates to the value of the field at the next time step:

T+
i − Ti

∆t
= α

Ti+1 + Ti−1 − 2Ti
∆x2

(1.11)

Introducing Fourier’s non-dimensional number Fo = α∆t
∆x2 , the ratio of conduction heat transfer to ther-

mal storage in the material slice, we can develop the previous expression such that:

T+
i = Ti(1− 2Fo) + Fo(Ti+1 + Ti−1) (1.12)

Suppose we set T(x=0) = 0 [°C] and T(x=L) = 10 [°C], with infinite convective coefficients at each
extremity of a bar of size L, respectively at i = 0 and i = n− 1 at the other end*. Putting Equation (1.12) in
a time loop for integration with an ”array” implementation is as simple as the code lines below:

*For the sake of coherence with the python notation, the last index is chosen as n-1 instead of n.

Building Physics – Applications in Python 14

boundary conditions
T[0]=0
T[n-1]=10
time loop
while t < sim_time:

inside the physical domain (i.e. not the first and last nodes)
for i in range(1,n-1):

T_plus[i]=T[i]*(1-2*Fo)+Fo*(T[i+1]+T[i-1])
replace and increment time
T=T_plus
t+=dt

Have a try: Euler explicit (vector version)

Some of us may be more familiar with equations written as matrices. The temperatures at both extrem-
ities i = 0 and i = n are Ti, Te and the heat resistances Rc, Rs defined in Equations (1.22) are equal for
the sake of simplicity. Each point of the internal domain, that is 0 < i < n, depends on its two nearest
neighbours, hence the shape of the matrix is tridiagonal, as follows:

Fo[K][T] = Fo ×

0 0 0 (...)
1 −2 1 0 (...)
0 1 −2 1 0 (...)

(...)
(...) 0 1 −2 1 0

(...) 0 1 −2 1
(...) 0 0 0

×

Ti
T1

...

Tn−1

Te

(1.13)

Note – One can see that the first and last lines of [K] are empty: They allow us to have free hands with
boundary conditions Te, Ti.

The calculation of vector [T+] is straightforward: performing the matrix operations in Equation (1.14)
allow to calculate explicitly one time step (in the previous equation, known terms are in green):

[T+] = [T] + Fo[K][T] (1.14)

We first need to build this tridiagonal matrix by assembling three diagonal matrices together*:

import numpy as np
size of the square matrix
n_solid=8 # solid nodes
n=n_solid+2 # ... plus boundary conditions
row below diag diag itself row above diag
K = np.eye(n,n,k=-1)*1 + np.eye(n,n)*-2 + np.eye(n,n,k=1)*1
put zeros in the first and last line of the tridiag. matrix
(will be used for boundary conditions > we have n-2=8 solid nodes)
K[0,0],K[0,1]=0,0
K[-1,-1],K[-1,-2]=0,0

Technically, the implementation of a time and space integration is pretty simple, described in the fol-
lowing code lines (note that for this time we are keeping Fo out of matrix K as we will make it vary in
another section):

*Please note that the resulting matrix is really sparse, roughly in the ratio of ∼ 3/n! Empty matrix multiplication is costly: you
may use adapted libraries for computations with sparse matrix (for example scipy’s sparse lib).

15 Building Physics – Applications in Python

https://github.com/eddes/buildingphysics/blob/master/chapter_1/1_explicit_euler_vector.py
https://docs.scipy.org/doc/scipy/reference/sparse.html

explicit time loop
while t < sim_time:

matrix multiplication K*T
T_plus=Fo*np.dot(K,T) +T # Fourier kept as factor of [K]x[T]
T=T_plus # replace
t+=dt

Have a try: Euler explicit (matrix version)

2.2 Two-dimensional formulation

In two dimensions, the heat equation writes:

ρCp
dT

dt
= λ

(∂2T

∂x2
+
∂2T

∂y2

)
(1.15)

The discretisation of the solid domain along the horizontal and vertical axis is illustrated on Figure 1.5,
using respectively the subscripts i, j to localise the cells.

Ti+1,j Ti-1,j

Ti,j

∆x

Ti,j+1

Ti,j-1

∆y=∆x

Figure 1.5 • Spatial discretisation scheme in two dimensions.

For the sake of simplicity, the space discretisation is chosen such that ∆y = ∆x. A handy means of
obtaining the discretised version of equation (1.15) is to establish the heat balance at node i, consisting here
in four conduction fluxes:

∆V ρCp
T+
i,j − Ti,j

∆t
=
λ∆S

∆x
(Ti+1,j − Ti,j)

+
λ∆S

∆x
(Ti−1,j − Ti,j)

+
λ∆S

∆x
(Ti,j+1 − Ti,j)

+
λ∆S

∆x
(Ti,j−1 − Ti,j)

(1.16)

In Equation (1.16), the left hand side corresponds to heat accumulation in the cell, whereas the right
hand side represents the conduction heat flux from the neighbouring cells. The elementary cell volume
writes ∆V = ∆x2L [m3], the thickness of the discretised solid being L = 1 [m]. The elementary heat flux
exchange surface across cells ∆S is such that ∆S = ∆xL [m2].

Simplifying (1.16) and introducing the Fourier number where possible in Equation (1.16), one obtains:

T+
i,j − Ti,j = λ∆t

ρCp∆x2

(
(Ti+1,j + Ti−1,j − 2Ti,j) + (Ti,j+1 + Ti,j−1 − 2Ti,j)

)
(1.17)

T+
i,j − Ti,j = Fo

(
Ti+1,j + Ti−1,j − 2Ti,j + Ti,j+1 + Ti,j−1 − 2Ti,j

)
(1.18)

T+
i,j = (1− 4Fo)Ti,j + Fo(Ti+1,j + Ti−1,j + Ti,j+1 + Ti,j−1) (1.19)

Building Physics – Applications in Python 16

https://github.com/eddes/buildingphysics/blob/master/chapter_1/2_explicit_euler_matrix.py

Let us imagine a rectangular domain of size n×m where the temperature is imposed on the upper and
lower borders, whereas adiabatic boundary conditions are set on the left and right borders, as per Figure
1.6.

Ti,1

Ti,0

Ti+1,0

Ti-1,0 Imposed temperature

Imposed temperature
Adiabatic

wall
Adiabatic

wall

0
 ≤

 i
 <

 n

0 ≤ j < m

Figure 1.6 • Boundary conditions of the domain.

Determining the imposed temperature boundary condition is straightforward. Let us establish the heat
balance equation for j = 0 in order to derive the adiabatic boundary condition, illustrated on Figure 1.6:

∆V ρCp
T+
i,0 − Ti,0

∆t
=
λ∆S

∆x
(Ti+1,0 − Ti,0) +

λ∆S

∆x
(Ti−1,0 − Ti,0) +

λ∆S

∆x
(Ti,1 − Ti,0) (1.20)

As expected, one observes the heat flux on the left hand-side vanishes in equation (1.20). The left
boundary condition hence writes:

T+
i,0 = (1− 3Fo)Ti,0 + Fo(Ti+1,0 + Ti−1,0 + Ti,1) (1.21)

A similar expression is found when writing the heat balance for j = m − 1. The simplest implementation
of the algorithm is to use an array formulation as proposed below.

time loop
while t < sim_time:

upper/lower boundary conditions
for j in range(0,m):

inlet
T[0,j]=T_up
T_temp[0,j]=T[0,j]
outlet
T[n-1,j]=T_low
T_temp[n-1,j]=T[n-1,j]

adiabatic boundary conditions on sides
for i in range(1,n-1):

j=0
T[i,0]= T[i,0]*(1-3*Fo)\

+ Fo * (T[i+1,0] + T[i-1,0] + T[i,1])
T_temp[i,0]=T[i,0]
j=m-1
T[i,m-1] = T[i,m-1]*(1-3*Fo) + Fo*(T[i-1,m-1] + T[i+1,m-1] +T[i,m-2])
T_temp[i,m-1]=T[i,m-1]

inside the domain
for i in range(1,n-1):

17 Building Physics – Applications in Python

for j in range(1,m-1):
T_temp[i,j] = T[i,j]*(1-4*Fo) + Fo*(T[i+1,j] + T[i-1,j]) \

+ Fo*(T[i,j+1] + T[i,j-1])
T=T_temp
T_plus=T_temp
t+=dt

The matrix formulation in 2D is less intuitive, as the numbering used to access every element of the
matrix must be converted from the 2D array indices to a 1D array. It is exposed in the Appendix 1.1.

2.3 Boundary conditions and interfaces

In this section, the formulations of equations at the interfaces between material for the superficial heat
exchange are derived.

Superficial heat exchange

At the air interface, depicted on Figure 1.7 (left), the symbols for electrical equivalent resistance stand for
the conduction heat transfer resistance over half a cell Rc and superficial global heat transfer resistance Rs
combining convection and linearised radiation:

Rc =
∆x

2λ
(1.22)

Rs =
1

h
(1.23)

where h is the superficial heat transfer coefficient combining convection and radiation [W/m2/K].
Using the heat balance method, the temperature evolution over a time increment ∆t in the first solid

node Ti (here i = 1) writes as the sum of the conductive flux to the inside of the material and the flux
towards the ambiance at temperature Te:

ρCp∆x
T+
i − Ti

∆t
=

λ

∆x
(Ti+1 − Ti) +

Te − Ti
Rc +Rs

(1.24)

If we develop Equation (1.24) and introduce an equivalent Fourier number F eqo = ∆t
ρCp∆x(Rc + Rs)

−1,
the heat balance reduces to:

T+
i = Ti(1− Fo − F eqo) + FoTi+1 + F eqo Te (1.25)

Ti+1 Te Ti

Rs Rc

Ti+1 Ti-1 Ti

∆x

Ra Rb

Figure 1.7 • Position of the nodes at the air boundary (left) and
at the interface between two materials a and b (right).

Building Physics – Applications in Python 18

The values of matrix’ [K] coefficients are to be written as follows, keeping the first line nil in order to
impose the boundary condition:

[K][T] =

0 0 0 (...)
F eqo 1− Fo − F eqo Fo 0 (...)
0 Fo −2Fo Fo 0 (...)

(...) (...) (...) (...)

Te
Ti
Ti+1

(...)

 (1.26)

Note – The superficial heat transfer h, often combines convection and linearised radiation in building
physics: assuming hr ' 4σεT 3

m which is pretty accurate below 100 [°C]. It is then possible to write the
flux at the interface as a linear relation ϕ = (hc + hr)(Te − Ti).

Interface between materials

At the interface of materials a and b with conductivities λa, λb and local conduction resistances Ra and Rb
shown on Figure 1.7 (right), let us introduce a local mean Fourier number Fmo . The latter appears between
nodes i− 1 and i, the interface being halfway at ∆x/2:

Fmo =
∆t

ρCp∆x2

1
1
λa

+ 1
λb

=
∆t

ρCp∆x2

2(λa + λb)

λaλb
(1.27)

The local Fourier number of material b is :

F bo =
2∆t

ρCp∆x2

1
1
λb

+ 1
λb

=
αb∆t

∆x2
(1.28)

The balance equation writes as:

T+
i = Ti(1− F bo − Fmo) + F boTi+1 + Fmo Ti−1 (1.29)

Under another shape, the matrix [K] for two materials delimited around the position of Tm can be
written as follows, imposing Ta, Te at the external boundaries:

[K][T] =

0 0 0 (...)
F ao −2F ao F ao 0 (...)
0 F ao −2F ao F ao 0 (...)

F ao −(F ao + Fmo) Fmo
(...) 0 Fmo −(Fmo + F bo) F bo 0

(...) 0 F bo −2F bo F bo
(...) 0 0 0

Ta
T1

Tm
Tm+1

Te

(1.30)

The advantage of finite volumes in such cases is that a generic formulation can be used. Indeed, with
an interface located right in the middle of two cells, there is no need for rewriting the equations at each
interface between materials, which is particularly interesting for multi-layered materials.

Taking again matrix [K], we can now modify it as follows in order to represent a two-layers material:

let's build the conductivity matrix
K=np.eye(n,n,k=-1)*1 + np.eye(n,n)*-2+ np.eye(n,n,k=1)*1
K[0,0],K[0,1],K[-1,-1],K[-1,-2]=0,0,0,0 # ghost lines for boundary conditions
coeffs_Fo=np.ones(len(T)) # an array to affect the upper/lower half of matrix K
coeffs_Fo[0:i_interface+1]=Fo1 # prepare the upper part of the matrix
coeffs_Fo[i_interface+1:]=Fo2 # ... the lower part of the matrix
K=coeffs_Fo*K
diagonal terms around interface

19 Building Physics – Applications in Python

K[i_interface,i_interface]=-(Fo1+Fo_eq)
K[i_interface+1,i_interface+1]=-(Fo2+Fo_eq)
sub and supra diag terms around interface
K[i_interface,i_interface+1]=Fo_eq
K[i_interface+1,i_interface]=Fo_eq

Note – Unfortunately, in real life, the interface seldom falls right in the middle between two nodes. The
following formulation, derived from the steady state conduction heat balance, is to be preferred in this
case [22]:

Fmo =
∆t

ρCp∆x2

1
∆xa
λb

+ ∆xb
λb

(1.31)

where ∆xa and ∆xb are respectively the distance of the interface with the first node in material a and b
such that ∆xa + ∆xb = ∆x.

In this case the local Fourier number needs to be adapted within the matrix as well, as the volume
of the two cells around the interface is no more equal.

The code below provides a simple technique to find the nodes between which the interface of two
materials is positioned and compute the equivalent Fourier number.

we know the abscissa of the interface L_layer
find the node left of the interface
i_interface=int(L_layer/dx) # lowest integer ='floor' rounding
find the distance dx1 between the node and the interface
dx1=x_interface%dx # the leftover of the division
compute dx2, distance between interface and node i+1
dx2=dx-dx1
compute lambda_eq at the interface
k_eq=1/(dx1/lambda1+dx2/lambda2)
equivalent Fourier number Fo_eq
Fo_eq=dt*k_eq/(rho1*Cp1*dx**2)
...
plot it, it may help!
plt.arrow(L_layer,0,0,10)

3 Overcoming stability issues

Although the explicit scheme is very intuitive and relatively easy to implement, it has the drawback of
conditional stability. As detailed stability analyses of the numerical schemes can be found in an abundant
literature, we will focus here on a practical way of getting your model to work, either respecting the explicit
stability condition, or changing the numerical scheme for a more stable one (in our case with a higher order
as well).

3.1 Stability for Euler’s explicit scheme – A cookbook condition

Stability is obviously conditioned by:

• the physical problem,

• the material properties,

Building Physics – Applications in Python 20

• the integration scheme used,

• the discretisation,

• the dimension in space.

A simple and efficient memento is ”the term factoring T has to remain positive”. It is actually a condition
for the matrix to staying diagonally dominant and hence inversible*. Taking Equation (1.12) as an example
translates to the most famous stability condition in numerical methods. In the solid domain the term
factoring T is the following:

(1− 2Fo) ≥ 0 (1.32)

Isolating Fourier’s number yields:

Fo ≤
1

2
(1.33)

α∆t

∆x2
≤ 1

2
(1.34)

∆t ≤ ∆x2

2α
(1.35)

In other terms, going back to the definition of Fourier’s number, the condition Fo ≤ 0.5 for pure 1D
conduction means the quantity of heat transferred through the control volume cannot excess half its ther-
mal storage capacity.

Note – The stability condition for the 2D scheme presented in Section 2.2 writes similarly as in one
dimension:

1− 4Fo ≥ 0 (1.36)

∆t ≤ ∆x2

4α
(1.37)

The explicit scheme in 2D is hence twice more restrictive than the 1D for mere conduction (noticeably,
for the 3D scheme the maximum ∆t is to be three times smaller than the 1D limit).

For the model including superficial heat transfer between air and solid, a second equation arises. A
more restrictive stability condition appears, as F eqo is strictly positive:

(1− Fo − F eqo) ≥ 0 (1.38)

1− ∆t

∆x2

(
α+

∆x

ρCp
(Rc +Rs)

−1
)
≥ 0 (1.39)

In the application of the method, we will calculate the stability condition of Euler’s scheme with another
physical example.

For Euler’s scheme, increasing ∆x may be an option to respect condition (1.39), potentially at the cost
of precision. The alternative would be to reduce ∆t, at the expense of computational time. Next section
exposes another integration to overcome the stability issue.

3.2 Crank-Nicolson’s scheme

Euler’s explicit scheme has the advantage of simplicity and straightforward implementation, however its
stability conditions are often detrimental to execution time. A means of increasing stability is to change the
explicit numerical scheme for an implicit scheme.

*May Mr. A. Triboix be thanked here for this efficient mnemonic.

21 Building Physics – Applications in Python

The principle of implicit numerical schemes is to use a linear combination between the value of the sim-
ulated field at the current time step (for instance T) and the field at the next time step (T+): the formulation
is said to be implicit because an equation must be solved at each time step, whereas for the explicit scheme
it is obtained by mere addition.

Let us have a closer look at Crank-Nicolson’s scheme. The central finite difference in space and time
with a time step ∆t/2 applied to Equation (1.10) yields following result, the notation T+1/2 being the value
of field T at time t+ ∆t/2:

T+
i − Ti

2∆t
2

= α
T

+1/2
i+1 + T

+1/2
i−1 − 2T

+1/2
i

∆x
(1.40)

Proceeding with half time steps is not especially convenient. Let the value of field T+1/2 be approxi-
mated as the average between the field value at the current time step T and the one at the next time step
T+:

T+
i − Ti

∆t
' α

(T+
i+1 + T+

i−1 − 2T+
i) + (Ti+1 + Ti−1 − 2Ti)

2∆x
=
α

2

T+
i+1 + T+

i−1 − 2T+
i

∆x
+
α

2

Ti+1 + Ti−1 − 2Ti
∆x

(1.41)
A visual interpretation of the differences between the explicit and implicit schemes is provided on

Figure 1.8. One can observe the values in time and space involved in the computation of the field for each
method.

Explicit Implicit

Space Space

T
im

e

i-1 i i+1
i-1 i i+1

t

t+∆t

Figure 1.8 • Explicit versus implicit, a graphical comparison of the time and
space steps involved.

Equation (1.41) means that T+ is a combination of the known, explicit field T and the unkown, implicit
field T+,. As the contributions of both terms are weighted by 1/2, it makes for its name semi-implicit. Put
under matrix form, following equation is Crank-Nicolson’s scheme with the known field in green and the
unknown in orange:

[T+] = [T] +
1

2
[K][T] +

1

2
[K][T+] (1.42)

Note – This method is of order 2 in time and space, stable irrespectively of ∆t (this does not mean that
the results are accurate with a large time step however), which is an interesting feature for transient
problems where the error adds up at every time step. Its formulation imposes to solve for [T+] at each
time increment.

Crank-Nicolson’s scheme is actually a particular form of implicit schemes (1.43). The latter are integra-
tion schemes that combine a given fraction of fields T and T+ depending on the so-called relaxation factor

Building Physics – Applications in Python 22

β. Mathematically, they write:

[T+] = [T] + (1− β)[K][T] + β[K][T+] (1.43)

Where [K] is the matrix defined in the previous section, containing the Fourier numbers and heat trans-
fer coefficients. The relaxation factor β defines the amount of each field in the solution. The value β = 1 is a
fully implicit scheme, whereas β = 0 is fully explicit. Tuning β may be a means of enabling or accelerating
convergence for some problems. Figure 1.9 proposes a visual interpretation of implicit integration schemes.

Figure 1.9 • Animation – Integration over space and time with
Crank-Nicholson’s semi-implicit scheme.

Let us have a look at how this translates in terms of code, using scipy.optimize.fsolve, a very
practical function to solve equations and systems of equations.

First of all, we need to define a function returning ”zero”, as fsolve looks for zeros, which we achieve
by putting the right hand side of equation (1.42) to the left hand side:

function for Crank-Nicolson's scheme
(where Tp is the unknown Tˆ+)
def fc_CN(Tp,T,K,beta,Fo):

return Tp -T - beta*Fo*np.dot(K,T) - beta*Fo*np.dot(K,Tp)

We will then use a similar loop as for explicit integration, with a call to fsolve at each time step:

time loop
while t < sim_time:

#call to fsolve with T_CN as initial guess
T_plus_CN = fsolve(fc_CN, T_CN, args=(T_CN,K,beta,Fo))
T_CN = T_plus_CN # replace
t+=dt

23 Building Physics – Applications in Python

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fsolve.html

A qualitative comparison of both explicit and semi-implicit integration methods is given for pure con-
duction in Figure 1.10, showing the temperature profile in a one-dimensional bar. The Fourier number is
chosen intentionally above the stability limit of Euler’s scheme (numerically Fo = 0.54 > 0.5). One can
observe that the explicit scheme oscillates, whereas the semi-implicit one is stable.

0.00 0.02 0.04 0.06 0.08 0.10
x position [m]

2

0

2

4

6

8

10

Te
m

pe
ra

tu
re

 [°
C]

Fo = 0.54

explicit
crank-nicolson

Figure 1.10 • Euler explicit versus Crank-Nicolson semi-implicit
for conduction (Fo > 0.5 and t = 600 [s]).

Have a try for yourself with a web browser: Crank-Nicolson with two layers and superficial heat transfer
(notebook).

Copy/paste the code to your favorite development environment: Crank-Nicolson with two layers and
superficial heat transfer (matrix version).

Note – Regarding the unconditional stability of Crank-Nicolson’s scheme, an important additional
information must be exposed, however it is often missing in lecture notes about numerical methods.
Let us cite [12], themselves quoting Patankar [22], hence the word for word reproduction:

An inexperienced user often interprets this [the unconditionally stable property] to imply that a physically
realistic solution will result no matter how large is the time step, and such user is, therefore surprised to
encounter oscillatory solutions. The ’stability’ in a mathematical sense simply ensures that these oscillations will
eventually die out, but it does not guarantee physically plausible solutions.

In other words, Crank-Nicolson’s scheme does not guarantee the obtention of physical, non-
oscillatory solutions: Take note!

Building Physics – Applications in Python 24

https://colab.research.google.com/github/eddes/buildingphysics/blob/feature%2Fpipenv_and_notebooks/notebooks/chapter_1/Euler_and_CN_schemes.ipynb
https://colab.research.google.com/github/eddes/buildingphysics/blob/feature%2Fpipenv_and_notebooks/notebooks/chapter_1/Euler_and_CN_schemes.ipynb
https://github.com/eddes/buildingphysics/blob/master/chapter_1/3_crank_nicolson_layer_air_interface.py
https://github.com/eddes/buildingphysics/blob/master/chapter_1/3_crank_nicolson_layer_air_interface.py

4 A word about computer programming

4.1 Debugging

Part of the fun is to run through errors. The following simple principles below may help debugging your
programs. In case of divergent results:

• Reduce the time step and while the computation runs, verify if you respect the analytical stability
condition.

• Computing the evolution over a small number of time steps and looking at where in the domain the
values start diverging might help finding the culprit*.

• Change the numerical scheme for an unconditionally stable one.

If the results are in the correct order of magnitude but do not match the expected values or profiles:

• Put the same boundary conditions on each side of the domain and see if the behaviour is symmetrical.

• Reduce the number of phenomena: e.g. if the model has sources, turn them off and see if it solves the
problem.

• Reduce complexity: if you have several layers, try with one only, etc.

A stepwise increase in the complexity of the model is recommended.

4.2 Before starting

The model runs without errors, excellent! Now what about doing a few elementary checks before going
further? Following points may be a decent check-list to start with:

• Is there an analytical solution that could help verify* the code?

• Do I get physical results? That is: if I increase the conductivity or heat transfer coefficient, does it
match with what would happen in real life?

• Change the time step ∆t: are the results somewhat similar?

• Same question with the space discretisation ∆x.

• If the model is transient, can I reach a steady state?

• Optionally: use the time package to monitor the execution time.

If you intend to make a prediction, it is a healthy habit to run several combinations of possibly high and
possibly low values of the model parameters in order to establish the lower/upper bounds of the results.

Last but not least, remember what you are playing with [7]:

”Essentially all models are wrong, but some are useful.”

*The latter often sits between the chair and the keyboard.
*We distinguish here verification – are the equations properly solved? – and validation, for instance against experimental data –

are the proper equations used to model the phenomenon?

25 Building Physics – Applications in Python

https://stackoverflow.com/questions/7370801/measure-time-elapsed-in-python#7370824

Chapter 2

Transient problems

Many a problem in building physics exhibits a time dependency. In this chapter, a few of them are exam-
ined: an application about phase change materials is first detailed, after what time-dependent phenomena
in HVAC control are shown. The third section addresses air quality and filtration using an experimental
data set.

1 Phase Change Materials

Increasing thermal mass in buildings is a tangible means of reducing cooling or heating loads. The sensible
heat storage capacity of generic construction materials is limited, usually around ∼ 103 [J/kg/K], as is the
reasonable thickness of walls. A sound idea is to take advantage of the latent heat released by materials
that change phase at ambient temperatures, e.g. mixtures of paraffine, releasing ∼ 105 [J/kg] at about 27
[°C].

Over the past decades, numerous applications of phase change materials have been developed for ther-
mal storage in buildings and thermal systems. In this section, we will expose a numerical implementation
for conduction in materials including phase change material (PCM), using the apparent thermal capacity
method, introducing a slight increment in complexity compared to the examples of Chapter 1.

1.1 Modelling phase change in a wall

Compared to sheer conduction, the specificity of phase change is the following: the latent heat of fusion
must be taken into account as it ranges roughly between 20 ≤ Lf ≤ 200 [kJ/kg] depending on the materials
commonly used in construction.

Phase change occurs at a given temperature Tf and absorbs the latent heat of fusion Lf or releases
heat during solidification. For pure matter, phase change occurs at a constant temperature, whereas for
mixtures this phenomenon happens over a few Kelvins (see for example the experimental curve in [18]).

A simple and efficient way for the implementation of PCM in conduction heat transfer problems is the
variable Cp method, which we will explain here. The idea is to find a mathematical artefact enabling the
repartition of the latent heat Lf on a small temperature interval ∆Tf , over which the material gradually
turns liquid. The procedure is as follows:

• Find a function whose integral is equal to unity over a given, small temperature range and multiply
it by the latent heat.

• Determine a function driving the liquid fraction within the material depending on temperature.

• Compute the apparent specific heat capacity Cp, a weighted average of the sensible and latent heat
of the material Lf .

The specific heat capacity varies depending on temperature and incorporates the solid heat capacity,
the liquid heat capacity and the latent heat gained or lost in the process: let us have a look at the numerical

Building Physics – Applications in Python 26

means of putting this together.

Gaussian distributions have interesting properties regarding integration. The following Gaussian dis-
tribution d(T) centred in Tf has an integral equal to unity: it is a numerical equivalent of a Dirac.

d(T) =
e
−

(T−Tf)2

∆Tf2√
π∆T 2

f

(2.1)

where Tf is the fusion temperature and ∆Tf the half fusion temperature range [6], meaning the mate-
rial melts over 2∆Tf . It can be chosen arbitrarily small around 0.5 ∼ 1 [K], as the range does not influence
significantly the results. What is more, commercial PCM are generally mixtures, for which melting occurs
over a range of temperature, unlike pure matter. Figure 2.1 shows an example of a distribution d(T) (the
red solid line).

Let us define the liquid fraction f as a piecewise function, also illustrated on Figure 2.1 (green line):

Below fusion T < Tf −∆Tf → f = 0 (2.2)
Above fusion T > Tf + ∆Tf → f = 1 (2.3)

During phase change Tf −∆Tf ≤ T ≤ Tf + ∆Tf → f =
T − Tf + 2∆Tf

4∆Tf
(2.4)

18.0 18.5 19.0 19.5 20.0 20.5 21.0 21.5 22.0
Temperature [°C]

0.0

0.2

0.4

0.6

0.8

1.0

Liq
ui

d
fra

ct
io

n
or

 d
ist

rib
ut

io
n

va
lu

e
[-]

distribution
liquid fraction

Figure 2.1 • Liquid fraction and distribution function for
the apparent capacity method using Tf = 20 [°C] and ∆Tf = 0.5 [K].

Eventually, the apparent heat capacity writes as the sum of the latent heat Lf by the distribution over
2∆Tf , the sensible heat of the solid fraction Csp and the sensible heat of the liquid fraction C lp:

Cp(T) = d(T)Lf + Csp(1− f) + C lpf (2.5)

An arbitrary example of application of Equations (1.1), (2.2) and (2.5) is plotted on Figure 2.2 for a fusion
temperature of 20 [°C] and a melting range ∆Tf = 0.5 [K]. Note the drastic increase in apparent thermal
capacity around Tf ±∆Tf , from ∼ 1 [kJ/kg/K] to 120 [kJ/kg/K].

27 Building Physics – Applications in Python

19.00 19.25 19.50 19.75 20.00 20.25 20.50 20.75 21.00
Temperature [°C]

0

20

40

60

80

100

120

140

Ap
pa

re
nt

 C
p [

kJ
/k

g/
K]

Figure 2.2 • Apparent Cp in the vicinity of the fusion temperature (Tf = 20
[°C], ∆Tf = 0.5 [K] and Lf = 120 [kJ/kg]).

1.2 Numerical model

What about the stability of the explicit scheme with a variable Cp? The present case is similar to the
conduction case shown in Equation (1.34), where the stability depends on the Fourier number:

Fo ≤
1

2
⇔ λ∆

ρCp(T)∆x2
≤ 1

2
(2.6)

Given the expression of Fo with Cp at the denominator in the previous equation, when Cp increases, Fo
decreases: for the scheme to stay stable, we must verify that it satisfies the criterion for the lowest value
of Cp, that is Cp = min(C lp, C

s
p) (the apparent Cp including the latent heat contribution is not mentioned,

being obviously much higher).
Technically, we will create a local Fourier number Fo[i], which will be updated at each time step. For

the sake of readability, we present below the ”vector” formulation rather than the matrix form:

for i in range(1,n-1):
T_plus[i]=T[i]*(1-2*Fo[i])+Fo[i]*(T[i+1]+T[i-1])
update the local Fourier numbers
for i in range(1,n-1):

first local apparent Cp (with a function for readability)
Cp_t[i] = fc_Cp_apparent(T_plus[i],dTf,Tf,Lf,Cp_s,Cp_l)
then update Fourier
Fo[i]=k*dt/(rho*Cp_t[i]*dx**2)

The code for Euler’s explicit method exposed in Section 2 is directly reusable by adding a local Fourier
number: let us make a test with a 10 [cm] broad sample of material containing PCM inclusions such that
its apparent properties are as follows:

• liquid heat capacity C lp = 2400 [J/kg/K]

• solid heat capacity Csp = 1800 [J/kg/K]

• latent heat of fusion Lf = 180 [kJ/kg]

• fusion temperature Tf = 27 [°C] and imposed temperatures of 20 and 30 [°C] as boundary conditions

We neglect the variation of conductivity between the solid and liquid state (λl = λs.)

Building Physics – Applications in Python 28

The result of the simulation is given below on Figure 2.3, where the temperature profile after 6 minutes
is presented. Note the typical line break in the vicinity of x ∼ 7 [cm], corresponding to the phase change
temperature of Tf ' 27 [°C] (represented with a solid line on the graph).

Figure 2.3 • Temperature profile in the board after 6 min.

A web browser-based application can be found here: 10 cm PCM board with Tf = 27°C (notebook)

The code provided with following link should allow you to dabble with phase change simulation: 10 cm
PCM board with Tf = 27°C

Note – Using the code ”as is” is the equivalent of imposing the temperature of the solid nodes at the
extremities of the model.

1.3 Application – Comparison of temperature profiles

Imagine a laboratory test to compare the previous material with and without PCM inclusions. Two plates
are maintained at a constant temperature on each side of the sample. The thermophysical properties of the
material without PCM are supposed to be the ones of the solid state (that is Csp = 1800 [J/kg/K]).

We would like to simulate the temperature evolution with an imposed temperature gradient that is,
with 20 [°C] and 30 [°C] respectively on each side. The initial condition is of 20 [°C] and the fusion temper-
ature is Tf = 27 [°C].

The result of the simulated temperature evolution after 3 hours is plotted on Figure 2.4, where one can
observe an inflection around the fusion temperature for the material with PCM inclusions. The temperature
profile without PCM is slightly ”ahead”, as its thermal mass is lower.

29 Building Physics – Applications in Python

https://colab.research.google.com/github/eddes/buildingphysics/blob/feature%2Fpipenv_and_notebooks/notebooks/chapter_2/PCM.ipynb
https://github.com/eddes/buildingphysics/blob/master/chapter_2/1_PCM/code_PCM.py
https://github.com/eddes/buildingphysics/blob/master/chapter_2/1_PCM/code_PCM.py

Figure 2.4 • Temperature with and without PCM after 6 hours.

Building Physics – Applications in Python 30

Continue exploring...

Question 1 So far we have neglected the variation of conductivity (supposing λl ∼ λs): change the
model so that λl 6= λs and λ = fλl + (1− f)λs.

Question 2 Build a fusion front tracking routine and plot the evolution of the fusion interface over
time. You may want to compare the results with Stefan’s analytical formula – explained for
instance in this paper .

Question 3 Change the matrix for a sparse formulation (use scipy.sparse). What is the speedup?

31 Building Physics – Applications in Python

https://cds.comsol.com/paper/download/62472/groulx_paper.pdf?__gda__=1584025114_f9661b2fe06cf9103bb710c94b009977&fileExt=.pdf

2 Indoor Air Quality

In HVAC, maintenance may be overlooked, leading to a significant impact on air systems. In this section,
we propose to investigate air filter clogging, estimating its effect on filtration efficiency, fan power con-
sumption and air quality, with measured outdoor air concentrations for PM2.5.

The studied problem is a room with filtered air supply, represented on Figure 2.5. We assume the room
volume to be V = 2000 m3. Outside air is supplied at flow rate Qv = 2000 [m3/h] at the outdoor concen-
tration Ce, while Cs is the concentration of the filtered supply air. The filter characteristics depending on
clogging (pressure drop ∆p and efficiency η) are taken from the manufacturer’s technical sheet, and plotted
below on Figure 2.6.

Ce Cs

C

C

Room volume V

Supply/Exhaust Qv

Efficiency η

Figure 2.5 • Scheme of the enclosure with air filtration.

The questions we will address in the next pages are the following:

• What is the energy cost of the clogging-related pressure drop increase?

• How does clogging affect air quality?

• What is the best maintenance frequency for this system’s filter?

In order to determine an appropriate answer, the construction of a model for the problem is presented
in the following section.

2.1 Modelling filter clogging

We will use a so-called ”nodal” model, meaning we suppose that the air within the room is fully mixed,
with an homogeneous concentration C. Let us write the mass balance of the pollutant concentration in the
room, with Cs the supply air concentration*:

V × dC

dt
= CsQv − CQv (2.7)

If we introduce the air change rate τ = Qv/V [s-1] in Equation (2.7), we obtain:

dC

dt
= τ(Cs − C) (2.8)

*Yes, V × C the room volume multiplied by its concentration is homogeneous to a mass m3 × µg/m3 = µg

Building Physics – Applications in Python 32

Given the filter efficiency η = Ce−Cs
Ce

, the concentration of the supply air is simply:

Cs = (1− η)Ce (2.9)

Calculating the mass accumulated in the filter at each time step is straightforward with :

m = Qv∆t(Ce − Cs) [µg] (2.10)

When the particle mass accumulated in the filter increases, the pressure drop in the clogging porous
medium rises, as represented on Figure 2.6 (left – polynomial curve fit from the manufacturer, provided in
the code repository). The filtration efficiency is also affected and decreases with the accumulation of mass
in the filter, as plotted on Figure 2.6 (right). The pressure drop and efficiency will be updated depending
on the mass accumulated in the filter.

0 5 10 15 20 25 30
Mass in filter [g]

60

80

100

120

140

Fi
lte

r p
re

ss
ur

e
dr

op
 [P

a]

0 5 10 15 20 25 30
Mass in filter [g]

0.50

0.55

0.60

0.65

0.70

0.75

0.80

0.85

Fi
lte

r e
ffi

cie
nc

y
[-]

Figure 2.6 • Pressure drop (left) and filtration efficiency (right) depending on
the accumulated mass in the filter.

Note – About the effect of pressure drop on ventilation: physically speaking, the fan pressure and
system pressure drop adjust to reach the operating point. In the present application, we will suppose
that the fan curve is very ”steep” and that the flowrate is not impacted by the increase in pressure drop
(hence Qv remains constant throughout the simulation).

2.2 Numerical model

The discretised Equation (2.8) writes numerically when isolating C+:

C+ = C + τ∆t(Cs − C) (2.11)

Respecting the ”cookbook” stability condition presented in Chapter 1 Section 3.1 implies:

(1− τ∆t) > 0 (2.12)

∆t <
1

τ
(2.13)

At each time step, we will compute the indoor air concentration in PM2.5 using a varying outdoor air
concentration and updating the filter efficiency η. The mass in the filter is also updated, as well as the
increase in pressure drop compared to a clean filter. A proposal of implementation is shown below.

Cext=np.loadtxt("PM25.txt") # load data
nb=len(Cext) # how many data points

33 Building Physics – Applications in Python

https://github.com/eddes/buildingphysics/blob/master/chapter_2/2_IAQ_filtration/code_IAQ_filtration.py
https://github.com/eddes/buildingphysics/blob/master/chapter_2/2_IAQ_filtration/code_IAQ_filtration.py

prepare a few vectors for the computation
Csupply=np.zeros(nb) # supply concentration
C=np.zeros(nb) # room concentration
m_filter=np.zeros(nb) # initially nothing in the filter
eta_filter=np.ones(nb)*eta # eta_filter[0] actually (updated in time loop)
pdc_filter=np.zeros(nb) # filter pressure drop

Csupply[0]=Cext[0] # aesthetical fill (for plotting)
m_filter[0]=1e-4 # against div by 0
pdc_ref=fc_pressure_drop(0) #pressure drop of clean filter

explicit euler: loop over time
for i in range(1,nb):

compute efficiency
eta_filter[i]=fc_eta(m_filter[i-1])
compute the additionnal pressure drop compared to clean filter
pdc_filter[i]=fc_pressure_drop(m_filter[i-1])-pdc_ref
supply PM2.5 concentration
Csupply[i]=(1-eta_filter[i])*Cext[i]
mass in the filter, converted to grams as C is in micrograms
m_filter[i]=(Cext[i]-Csupply[i])*qv/1e6 + m_filter[i-1]
check if we change the filter (criterion on m_limit, limit mass in the filter)
if m_filter[i]>m_limit:

m_filter[i]=0 # reset the mass
nb_filt+=1 # count one more filter

#explicit euler scheme for C
C[i]=C[i-1] + dt*tau*(Csupply[i]-C[i-1])

The results obtained with this model are presented in the following section.

2.3 Simulation results for a given critical mass

The freely available hourly PM2.5 measured concentration in Paris from Airparif’s website, is the outdoor
air concentration data retained. The hourly values over the year are plotted on Figure 2.7:

Jan
2018

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2019

0

5

10

15

20

25

PM
2.

5[
µg

/m
3]

Figure 2.7 • Yearly outdoor PM2.5 concentration (Airparif 2018).

The computations presented in the previous section were performed using this PM2.5 dataset. We de-
fined a critical mass of pollutant in the filter of mc = 30 [g]: when reached, the filter is changed in the model
and the accumulated mass reset to zero.

Building Physics – Applications in Python 34

https://www.airparif.asso.fr/telechargement/telechargement-station

In the sequel, for the sake of readability of the data sets, the average hourly concentration over the week
is computed from the yearly results and serves as a means of analysis or comparison for air quality. Indeed,
observing the concentration differences on Figures such as 2.7 is difficult.

Figure 2.8 (left) shows the weekly concentration profile outdoors and within the room for mc = 30 [g].
The rise in pressure drop is presented on Figure 2.8 (right). One can notice that the increase reaches 100
[Pa], which is more than half the average pressure drop of the filter (see Figure 2.6).

0 25 50 75 100 125 150 175
Average week [h]]

12

14

16

18

20

22

PM
2.

5[
µg

/m
3]

outdoor
indoor

Jan
2018

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2019

0

20

40

60

80

100

Ad
di

tio
na

l p
re

ss
ur

e
dr

op
 o

f f
ilt

er
 [

 P
a]

Figure 2.8 • Average weekly concentration, outdoor versus indoor concen-
tration (left) and increase of pressure drop related to clogging compared to a

clean filter (right).

On Figure 2.9 (left) the filtration efficiency is plotted over the year. The regular increases correspond
to the moment when the filter is replaced. On the right plot, the mass accumulated in the filter is shown,
limited here to mc = 30 [g].

Jan
2018

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2019

0.600

0.625

0.650

0.675

0.700

0.725

0.750

0.775

0.800

Ef
fic

ie
nc

y
[-]

Jan
2018

Feb Mar Apr May Jun Jul Aug Sep Oct Nov Dec Jan
2019

0

5

10

15

20

25

30

M
as

s i
n

fil
te

r [
g]

Figure 2.9 • Filtration efficiency (left) and accumulated mass in the filter over
time (right).

2.4 Cost or air quality?

In this section, we will investigate the impact of the ”moment” at which the filter is changed, represented
as a particle mass threshold, both on cost and air quality.

From the model, it is possible to compute an estimate of the operation and maintenance costs c by
multiplying the hourly power consumption by the energy cost cenergy and adding a unitary service cost

35 Building Physics – Applications in Python

cfilter each time the filter is replaced (nfilter):

c = cenergyΣP (t)∆t+ cfilternfilter (2.14)

where cenergy = 15 [€ct/kWh] and cfilter = 30 [€/filter]. The unitary cost of the filter is low, however we
suppose other filters would be changed at the same time.

As the relation between mass increase and pressure drop is not linear, unlike the maintenance cost, the
result is given for a wide range of accumulated mass in the filter on Figure (2.10). The analysis of the values
obtained can be summarised with the following observations:

• Although the energy cost is pretty low, the increase in pressure drop can still be an argument to
change filters if the unitary servicing costs are around 30€/intervention (play around with the code to
make your own mind about it: you may find interesting to observe the non-linearity of the problem).
In this case, a trade-off in terms of costs would probably be to select a value around mc ∼ 30 [g], the
lower being the better in order to preserve air quality.

• Noticeably after mc ∼ 50 [g], owing to the increased pressure drop ∆p, continuing using the filter
without replacement costs more than replacing it (see the corresponding arrow on Figure 2.10).

• After ∼ 70 [g], the curve is flat: the filter is not replaced and as the filtration efficiency drops signifi-
cantly with mass intake, the mass increases very slowly and so does the pressure drop.

10 20 30 40 50 60 70 80
Maximum mass in filter before maintenance [g]

200

300

400

500

600

Co
st

 e
st

im
at

e
[

/y
ea

r] service dominates cost

p dominates cost

 drops

Figure 2.10 • Maintenance and operation costs estimate depending on the
accumulated mass in filter before maintenance.

Not only the cost but also the air quality is affected by the filter maintenance frequency. On Figure 2.11
one can observe the average indoor air quality for mc = 20 [g] and mc = 70 [g]: the indoor air quality is
affected by a low servicing rate (twice a year versus a dozen times) and exhibits concentrations that are
about threefold higher than for mc = 20 [g].

Building Physics – Applications in Python 36

0 25 50 75 100 125 150 175
Average week [h]]

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5
PM

2.
5[

µg
/m

3]

outdoor
indoor mc = 20 g

0 25 50 75 100 125 150 175
Average week [h]]

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0

22.5

PM
2.

5[
µg

/m
3]

outdoor
indoor mc = 70 g

Figure 2.11 • Comparison of the PM2.5 weekly average concentration for two
critical masses in the filter mc = 20 [g] (left) and mc = 70 [g] (right).

The objectives we are trying to reach are actually contradictory: the better the air quality, the higher
the costs. Let us introduce the notion of Pareto front: when comparing solutions having two contradictory
objectives, the Pareto front is the ensemble of solutions for which it is not possible to improve one objective
without decreasing the performance of the other (see Figure 2.12, left).

Objective 2

Objective 1

suboptimal
solutions

Pareto front c) Trade-off:
closest to the origin

Objective 2

b) Best for
objective 2

a) Best for
objective 1

Figure 2.12 • Illustration of the Pareto front for the comparison of solutions
with contradictory objective functions (left) and possible choices amongst the

Pareto optima (right).

In short: the Pareto front is the ensemble of optimal solutions with regard to both objectives and all
other solutions can be discarded. Now, how can we pick one out of this short list? Three rational options
are possible*, also illustrated on Figure 2.12 (right) above:

a) Choose the best solution for objective 1.

b) Choose the best solution for objective 2.

c) Choose the ”average” solution, defined as the closest to the origin.

*Often the most affordable solution, or the one that technically exists is chosen, regardless of all these computational efforts...
Bother!

37 Building Physics – Applications in Python

Let us determine the Pareto front for critical masses ranging between 10 ≤ mc ≤ 80 [g], opposing
cost and mean yearly air quality: Figure 2.13 shows the results obtained. One can observe a satisfactory
minimum cost of ∼ 150 [€/year] yielding 6 [µg/m3] average concentration in PM2.5. Note that the ”flat”
part of the curve of Figure 2.10 is present under the form of superimposed points at the higher end of the
abscissa.

4 6 8 10 12 14
Yearly average of concentration [µg/m3]

200

300

400

500

600
Co

st
 e

st
im

at
e

[
/y

ea
r]

mc = 42 [g]

superposition of the last points

Pareto front

Figure 2.13 • Cost estimate versus average indoor air quality: example of
Pareto front.

Two additional results put to light by the Pareto front are that the cost cannot decrease below ∼ 150
[€/year] for mc = 42 [g] and that the air quality ranges between 4 ∼ 6 [µg/m3]. As the mean air quality
does not significantly vary and is way below the yearly recommended average of 25 [µg/m3], the choice
of solution in the present application could be driven by the cost objective.

A web-based application with sliders for the parameters of the problem can be found there:
Filter clogging over time (notebook).

The python code and PM2.5 data for this application are provided on Github, feel free to make your own
tests: Filter clogging over time.

Building Physics – Applications in Python 38

https://colab.research.google.com/github/eddes/buildingphysics/blob/feature%2Fpipenv_and_notebooks/notebooks/chapter_2/code_IAQ_filtration.ipynb
https://github.com/eddes/buildingphysics/blob/master/chapter_2/2_IAQ_filtration/

Continue exploring...

Question 4 In real life, the maintenance signals of filters usually rely on pressure drop sensors. Change
the algorithm in order to replace mc by a critical pressure drop ∆pc and plot the equivalent
of Figure 2.10. As the shape of the slopes of accumulated mass and pressure drop are
different, the results may differ.

Question 5 Vary the unitary cost for filter servicing and observe the outcome on the results presented
Figure 2.10.

Question 6 Process the PM2.5 data set to increase/decrease the pollution level (or alternately use the
data of your local air pollution monitoring agency): are the optimal results the same as in
the present study?

Question 7 Add a fan curve to ameliorate the model and take into account the impact of pressure drop
increase on power consumption and flowrate. What is the difference with the previous
model? You may want to add an indoor pollution source term to Equation (2.7) in order to
observe the reduction of air supply on the indoor air quality.

39 Building Physics – Applications in Python

3 PID Controllers in HVAC

Numerous applications in HVAC make use of controllers in order to maintain quantities at a set value
(temperature, concentration, flow rate amongst others). Proportional-Integral-Derivative controllers (”PID”)
are widespread in the built environment but may have also become the acronym of a nightmare for many
students. We propose here to take a closer look at control theory in two steps: first understanding the PID
operation with a simple physical problem (water draining from a tank), second a more complex example,
namely controlling a room temperature with a three-way-valve.

3.1 Mathematical model of a PID controller

Control in general is based on maintaining a chosen set value (e.g. a temperature, a flowrate, a water level)
with the help of an actuator (a motor, pump or valve).

Let us define the error e(t) between the measured output and its set value, for example considering the
temperature T and its set value T0:

e(t) = T (t)− T0 (2.15)

Three different actions may be used in order to reach the desired value of the measured quantity, gen-
erally combined:

→ Proportional action: it represents the present value of the error and the correction action is propor-
tional to the difference between actual and set values. Noticeably, if the error is nil, the correction
will be zero as well, meaning the set value is never reached. Mathematically, it is proportional to
coefficient Kp:

proportional correction ∼ Kp × e(t) (2.16)

→ Integral action: it represents the past values of the error and is practically the algebraic sum of the
past errors. It allows for the exact correction of the error and is tuned by the integration time Ti:

integral correction ∼ 1

Ti

∫ t

0
e(t)dt (2.17)

→ Derivative action: it is the future value of the error. The correction action represents a prediction of
the value of error at the next time step using the error slope de/dt and the derivation time Td:

derivative correction ∼ Td ×
de(t)

dt
(2.18)

e(t)
+

y(t)
+

+

1

𝑇𝑖
∫ 𝑒 𝑡 𝑑𝑡

𝑇𝑑
𝑑𝑒(𝑡)

𝑑𝑡

𝐾𝑝

Figure 2.14 • Example of architecture of a PID controller.

Building Physics – Applications in Python 40

These actions are often combined as ”PI” or ”PID”, though more exotic versions may exist in the com-
binations or the form used. A common way of symbolising such PID controllers is depicted on Figure 2.14,
which translates into the equation below:

y(t) = Kp ×
(
e(t) +

1

Ti

∫ t

0
e(t)dt+ Td ×

de

dt

)
(2.19)

The following sections will provide a deeper understanding of PID controls through two physical prob-
lems.

3.2 Application - Gravity drainage of a tank

In order to reduce the overall complexity of the problem, let us start with a self draining tank, as presented
on Figure 2.15, emptying through an open outlet at the bottom with the flow rate Q. The aim is to maintain
the set level Hset by controlling the percentage of opening of a throttling valve*. The error is defined as
e(t) = Hset − h(t). Note that the outlet flow rate Q depends on the water height h.

Hset

h(t)

e(t)

M

Qs

Q

y(t)

PID

Figure 2.15 • Illustration of the tank with gravity drainage.

Let us establish the mathematical model of the problem, Qs and Q being respectively the supply and
outlet water flow. The variation of volume dV over a small time increment dt is:

dV = (Qs −Q)dt (2.20)

Bernoulli’s theorem provides us the outlet flow rate Q at height h = 0 depending on the water height h
and the outlet section s:

Q = s
√

2gh (2.21)

As dV = Sdh, S being the water surface in the tank, we can rewrite Equation (2.20) using (2.21):

Sdh = (Qs − s
√

2gh)dt (2.22)

The differential equation to be solved is then the water height h such that:

*Throttling is pure energy loss: it would be more common nowadays to use speed variation, however this example allows us
to introduce the characteristic curves of valves.

41 Building Physics – Applications in Python

dh

dt
=

1

S
(Qs − s

√
2gh) (2.23)

Equation (2.23) has an analytical solution involving Lambert’s W function*, however we will solve it
numerically. Following expression is the translation of Equation (2.23) into an Euler explicit scheme:

h+ = h+
∆t

S
(Qs − s

√
2gh) (2.24)

We will now introduce another element: the valve’s characteristic curve. It represents the flow rate going
through the valve depending on the control signal y(t) and adds non-linearity to the problem. Three types
of characteristic equations are provided below:

Qs = Qmax × y for linear valves (2.25)
Qs = Qmax × y2 for quadratic valves (2.26)

Qs = Qmax × e3.5×(y−1) for equal percentage valves (2.27)

The corresponding flow curves are plotted on Figure 2.16. Note the non-negligible leakage flow rate
for the equal percentage type (labelled equal pct) when the valve is closed (valve position=0):

0.0 0.2 0.4 0.6 0.8 1.0
Valve position [-]

0.0

0.2

0.4

0.6

0.8

1.0

Q
/Q

m
ax

 [-
]

linear
equal_pct
quadratic

Figure 2.16 • Characteristic flow curves for three types of valves.

Having defined all the constitutive elements of the problem, a slightly simplified numerical implemen-
tation, is as follows:

Ss/Sr = ratio of tank/outlet surfaces
B = Ss / Sr * np.sqrt(2 * 9.81)
sum_error=0 # initialise integral term
while t <= sim_time:

define A for readability
A = Qsupply / Sr
Euler explicit for h
h = dt * (A - B * np.sqrt(h)) + h
integral action
sum_error = dt / Tn * (H_set - h) + sum_error

*Have you ever heard about this function before? Me neither.

Building Physics – Applications in Python 42

derivative action using current and previous error
d_error_dt = ((H_set - h) - delta_previous)/dt
computation of the valve position with PID
valve_position = Kp * ((H_set - h) + sum_error + Td * d_error_dt)
compute the flow rate depending on the valve_position
Qsupply=fc_valve_curve(valve_type, valve_position,Qmax)
update the error for the next "D" action calculation
delta_previous = H_set - h

The code above may produce negative values of the valve position. In order to avoid inconsistent be-
haviour or negative flow rates, a condition is added in the actual code (see the online version).
A simple PI control using following parameters was set up:

• the maximum supply flow rate is 10 [L/s],

• the initial water height is h = Hset = 1 [m],

• the valve used is linear and initially closed (y = 0),

• the proportional band is PB = 0.5 [m], i.e. Kp = 1/0.5 = 2 [m−1],

• the integration constant is set to Ti = 30 [s],

• the derivative action is set to zero with Td = 0 [s].

Figure 2.17 shows the results obtained. On the left, the water height in the tank is plotted: after an
overshoot in the vicinity of ∼ 150 [s] followed by a few oscillations, it stabilises at the set value of 1 [m].
On the right, the contribution of the ”P” and ”I” actions are shown, as well as the valve position. In the
present case study, the ”P” action is the major contributor to control during the first 100 [s], after what the
”I” action takes over and stabilises the valve’s position, from ∼ 300 [s].

Figure 2.17 • Animation – Water height over time for the tank draining
exercise with a PI controller (left) and contribution of each action over time

(right).

As you are about to try the model, two common sense observations about the PID parameter values
may be of some interest:

• The proportional band is the quantity required for the controller to react with 100% of its capacity: in
the case of the tank, if the proportional band is 0.5 [m], the valve will be fully open only if the error

43 Building Physics – Applications in Python

reaches 0.5 [m], which may be a bit too much. On the other hand, if we set it to 0.01 [m], the controller
will for sure overreact and exhibit an On-Off behaviour.

• The integral action allows to reach exactly the set point. However, the ”inertia” of the integral time Ti
may lead to large instabilities and overshoot, that add up to other actions (”P” or ”D”). Take it easy
with low values of Ti.

Note – A particular care must be given to the choice of the time step: indeed, such models add up
numerical stability and choice of the sampling rate, that is, at what time interval we are going to check
what the difference is with the set value. Large time steps may lead to increased (numerical or ”phys-
ical”) instabilities: for instance, letting the tank drain for a long period of time (i.e. ∆t is important)
before letting the system react may provoke important ”P”, ”I” and ”D” actions, followed by over-
shoot and/or oscillations.

Moreover, you will not be able to perform a stringent ”∆t test” proposed in the check-list to verify
your model (see Chapter 1 – Section 4.2): the controller actions modify the behaviour of the system
depending on the measured error, and the latter varies with different time steps.

You now know how the model works. Before moving on to the next application that combines more phys-
ical phenomena leading to non-linear interactions, you may want to play with the tank model in order to
get a grasp of the influence of each of the PID parameters applied to a rather linear system: PID model of
the tank drain.

You can also access directly the corresponding Jupyter Notebook with a web browser: PID model of the
tank drain (notebook).

Building Physics – Applications in Python 44

https://github.com/eddes/buildingphysics/blob/master/chapter_2/3_HVAC_control/PID_tank.py
https://github.com/eddes/buildingphysics/blob/master/chapter_2/3_HVAC_control/PID_tank.py
https://colab.research.google.com/github/eddes/buildingphysics/blob/feature%2Fpipenv_and_notebooks/notebooks/chapter_2/PID_controller.ipynb
https://colab.research.google.com/github/eddes/buildingphysics/blob/feature%2Fpipenv_and_notebooks/notebooks/chapter_2/PID_controller.ipynb

Continue exploring...

Question 8 Use Ziegler and Nichols’ empirical method to tune the PID for the drainage tank:
https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method
Spoiler: the principle of this method is to set the ”I” and ”D” actions to zero and, starting
from a broad proportional band, diminish its value until you find value of Ko

p provoking
self-oscillations with a period To. The values of Ti, Td are then calculated from To and Kp is
a multiple of Ko

p .

Question 9 Change the valve’s characteristic curve or the maximum flow rate: do you observe the
same behaviour?

Question 10 Build your own Crank-Nicolson’s formulation of the model to leverage the stability be-
haviour of this scheme.

45 Building Physics – Applications in Python

https://en.wikipedia.org/wiki/Ziegler%E2%80%93Nichols_method

3.3 Application - Three-way-valve controller for space heating

A first idea to control the power P delivered in a room would be to use the flow rate, as the heat delivery
equation writes P = ṁCp∆T . Actuating on the flow in this case actually leads the valve to undergo
frequent oscillations as the power dependence to flow rate is asymptotic. Although it would be convenient,
thermal power emission does not respond to linear command laws.

Using an appropriate combination of radiator heat transfer coefficient, valve characteristic curve and
valve pressure drop, it is possible to create a linear relation between valve position and emitted power.
In this section, we will introduce the non-linearity in the physical phenomenon described above, going
succinctly through:

• Basic heat exchanger theory to qualify the heat transfer from the radiator to the ambiance.

• Valve curves, this time considering the Kv value, a proxy for hydraulic conductance at a given flow
rate.

• Valve pressure drop compared to the system pressure drop, also called authority a.

An illustration of the problem considered is given on Figure 2.18, where a room with envelope losses
US (the product of wall conductance U and surface S in [W/K]) contains a heater delivering the power P .
The flow rate ṁ in the heater is constant but its inlet temperature is controlled with a motorised three-way
valve, whose control signal depends on a PID controller, measuring the difference between the set value
Tset and actual value Ta.

For the sake of the example, a constant temperature at the inlet of the three-way valve is assumed (in
real life it would vary with the outdoor temperature and the room’s heater would be equipped with a
thermostatic head).

M
Tmax = cst Ti

To

way A

way B

Heater
power

P
Ta

PID Tset
y(t)

Losses

U [W/m2/K]

Room inertia

(mCp)r [J/K]

Boiler

Outdoor
temperature

Te

Figure 2.18 • Schematic of the heating control problem.

The following hypotheses are made in order to reduce the complexity of the problem:

• The room has a bulk inertia (mCp)r [J/k].

• The heater has a negligible thermal mass.

• The walls of the envelope have a negligible thermal mass (it could be a lightweight construction).

• Infiltrations, air change heat losses and thermal bridges are neglected.

Building Physics – Applications in Python 46

The hypotheses about thermal mass may seem significant but actually they just delay the temperature
rise and enables us to reduce the number of equations. Noticeably, the step response of a 2nd order system,
alike the room with wall and heater thermal capacities, is very similar to the one of a 1st order one with
delay.

Mathematical modelling

A simple way to control temperature in HVAC is to use mixing valves. In this section, we will start with
the theory in order to be able to calculate the mixing temperature.

Let us first calculate the flow rate going through the valve depending on the valve position. A com-
monly used quantity is Kv: it is usually defined as the flow rate going through a valve for 1 [bar] pressure
difference across inlet and outlet such that Qv = Kv

√
∆p. It is homogeneous however to [m3.s-1.bar-0.5], a

proxy of hydraulic conductance (see section 1.2 of the Appendix for more details about the Kv).
The evolution of Kv in the valve is defined as a function of y, the percentage of valve opening and Kvs,

its value when the valve is fully open:
Kv

Kvs
= f(y) (2.28)

where the function f is one of the equations given above, i.e. quadratic, linear, or equal percentage.
A valve’s authority is defined as the ratio of the valve pressure drop and the total pressure drop of the

circuit it is controlling, such that:
a = ∆pv/(∆pv + ∆pr) (2.29)

where ∆pv and ∆pr are respectively the valve pressure drop and the controlled element’s pressure drop
(the heater in our case).

It is possible to demonstrate that the flow rate depends on the valve’s authority a and the characteristic
curve of the valve Kv (see Section 1.3 in the Appendix). We express it below as the ratio between the
maximum flow rate Qvs and the actual flow rate Qv:

Qv
Qvs

=
1√

a(KvsKv

)2
+ 1− a

(2.30)

The temperature at the outlet of the valve is then a simple weighted average of the boiler outlet tem-
perature and heater return temperature, neglecting the temperature-dependent variations of density for
water:

Ti = QvTmax + (1−Qv)To (2.31)

The temperature drop in a heat exchanger is generally not linear but follows an exponential trend. The
mean logarithmic temperature difference at the surface of the radiator is defined by:

∆TLM =
∆TA −∆TB

ln ∆TA
∆TB

(2.32)

where ∆TA and ∆TB are respectively the temperature differences between the inlet of the heater Ti and the
ambient air Ta, and the outlet of the heater To and the ambient air.

∆TA = Ti − Ta (2.33)
∆TB = To − Ta (2.34)

For domestic heaters, the power released by a heater is defined by an empirical law, derived from the
heat exchanger theory:

P = K
(
∆TLM

)n (2.35)

with n ∼ 1.3 for radiators and n ∼ 1 for heated floors and K the heat transfer coefficient in [W/K].

47 Building Physics – Applications in Python

In order to obtain the fluid temperature To at the outlet of the heater we need to solve for the following
equation stemming from (2.35):

P = ṁCp(Ti − To) = K
(Ti − To

ln
(
Ti−Ta
To−Ta

))n (2.36)

a reminder of the temperature notations can be found on Figure 2.18.
Let us suppose that the air in the room is fully mixed. With the assumptions made above, the variation

of the room temperature is then a function of the power P delivered by the heater and the losses of the
room envelope:

(mCp)r
dT

dt
= P − US(Ta − Te) (2.37)

Discretising Equation (2.37) provides the temperature in the room T+
a at the following time step:

T+
a = Ta +

∆t

(mCp)r

(
K(∆TLM)n − US(Ta − Te)

)
(2.38)

Note – In the present example, the determination of the ”cookbook” stability condition from Equation
(2.38) is difficult, as Ta cannot be factored out of the ∆TLM :

0 ≤ Ta − Ta
US∆t

(mCp)r
− K∆t

(mCp)r

(Ti − To
ln
(
Ti−Ta
To−Ta

))n (2.39)

In this case, it is preferable to either use a Crank-Nicolson scheme or carry on with Euler’s one, at
the cost of a conservative –i.e. small– ∆t.

Case study

The case parameters used in the sequel are the following:

• The room losses are US = 50 [W/K], for instance 50 m2 surface and 1 [W/m2/K] conductance.

• The thermal mass is taken as (mCp)r ∼ 63 [kJ/K], which is the equivalent of about 62 [m3] of air. This
value is low but allows us to observe the evolution on a rather short simulated period.

• The nominal power of the radiator is Pmax = 3000 [W].

• The water flow rate is computed from the power with 20 [K] temperature drop in the radiator:
ṁ = Pmax/(4182× 20) ∼ 129 [kg/h].

• The K coefficient is computed from the nominal power with a reference ∆TLM of 50 [K]:
K = Pmax/∆T

1.3
LM = 3000/501.3 ∼ 19 [W/K].

• The proportional band is set to 5 [K].

• The integration time is set to 3000 [s].

• The derivation time is set to 5 [s].

The results are given on Figure 2.19. On the left, the temperatures are plotted: heater inlet and outlet,
set value and room actual temperature over time. The set value is reached after ∼ 3000 [s] and the heater
inlet and outlet temperature stabilise.

On the right, the share of the ”P”, ”I” and ”D” control actions is shown. One can observe that the ”P”
action is first at work, progressively replaced by the ”I” action. The ”D” share accounts for a significant
fraction of the total in the first 500 [s], after what the variation of the error is low and it has a negligible
influence.

Figure 2.20 shows the evolution of the power delivered by the heater and the room losses during the
first 2600 [s]. One can observe that the power delivered by the heater almost equates the room’s losses after
this time span.

Building Physics – Applications in Python 48

Figure 2.19 • Animation – Temperature within the room with a PI controller
(left) and contribution of each action over time (right).

0 500 1000 1500 2000 2500
Time [s]

600

800

1000

1200

1400

1600

1800

2000

Po
we

r [
W

]

room losses
heater

Figure 2.20 • Heat delivered by the heater versus losses.

The code for this application is available, implemented with a Crank-Nicolson scheme. Give it a try:
PID model of the heated room.

Note – Doing tests on the code you may experience "math error" if you play a bit too hard with
derivation times and/or small proportional band values as oscillations may try to feed the logarithm
function with negative values.

49 Building Physics – Applications in Python

https://github.com/eddes/buildingphysics/blob/master/chapter_2/3_HVAC_control/PID_heater.py

Continue exploring...

Question 11 Tune the controller after Ziegler and Nichols method (cf. supra for the instructions).

Question 12 Change the valve’s authority, the characteristic curve or the maximum heating power:
what happens?

Question 13 Make a simulation over a longer period including a time-dependent outdoor temperature
(use for instance a sin function or actual meteorological data).

Building Physics – Applications in Python 50

4 Geothermal heat pump

The code of this section owes much to Pr. Desodt of ENS Paris-Saclay, may he be thanked here for his benevolence.

Heat pumps are used for room heating and/or cooling using vapour compression cycles. Such systems
are similar to domestic refrigerators, extracting heat at one end of the cycle and releasing it to the ambiance
at the other end. The reverse principle is used in the case of domestic heating: energy is transferred to the
heating system, whereas the cooling effect has to be evacuated somewhere. It is released to the atmosphere
when the evaporator is an air unit, or to the ground for geothermal heat pumps.

Geothermal heat pumps may be constructed in different ways, using open or closed-loop systems and
vertically or horizontally distributed probes. We will consider here that heat is exchanged in a closed loop
water circuit running from the evaporator to vertical probes in the soil, where ground water is supposed
to flow. A schematic example is drawn on Figure 2.21, with a unique vertical probe for the sake of clarity.
On this Figure, the room heat demand, heat taken from the ground and ground water velocity are also
represented.

Departure Th
w

Ground water level

Ground water
velocity vw

Th Tc

Return Tc
w

Heat
demand

Ground
heat Pl

Depth
d

Figure 2.21 • Operating diagram of a domestic geothermal heat pump with
one underground pipe.

The aim in this section is to evaluate the performance of such a heat pump. As the efficiency of such
systems depends on the temperatures of the thermodynamic cycle, it implies simulating both the heating
demand and the ground temperature, id est the hot and cold sources.

4.1 Mathematical model of ground heat pump

In this section, we present the simple model retained for the heat pump system and the determination of
temperatures in the cycle.

51 Building Physics – Applications in Python

Coefficient of performance of a heat pump

The first principle of thermodynamics, also called conservation principle indicates that the energy is con-
served in the cycle (suppose we neglect losses). We obtain the following relationship between the energy
Qh on the hot side at the condenser, Qc on the cold side at the evaporator and the electrical energy used for
compression Qe− :

Qh = Qc +Qe− [J/kg] (2.40)

Noticeably, this relationship can also be observed graphically on Figure 2.22 representing Mollier’s
chart (see the equation below the x-axis).

Temperatures (°C)

Enthalpy
[kJ/kg]

Tw
h

Tw
c

Th

Tc

4~5 [K]

4~5 [K]

Heating departure

Geothermal pipe water

Condensation temperature

Evaporation temperature

Qe-Qc

Qh = Qc + Qe-

Expansion
valve Compressor

Figure 2.22 • Illustration of temperatures and heat exchange around
the thermodynamic cycle.

Multiplying Equation (2.40) by the mass flow rate of refrigerant ṁ [kg/s] in the heat pump, one obtains:

ṁQh = ṁQc + ṁQe− (2.41)
Ph = Pc + Pe− (2.42)

The coefficient of performance (COP) is the ratio of the thermal power Ph used for heating to the elec-
trical power put in the compressor Pe− (respectively the enthalpies Qh, Q−e in [J/kg]). It writes as follows
in heating mode:

COPh =
Ph
Pe−

=
Qh
Qe−

(2.43)

Note – Dividing Equation (2.41) by the compressor electrical power P−e yields:

COPh = COPc + 1 (2.44)

COPc being the COP in cooling mode, also called Energy Efficiency Ratio (EER). The latter is thus sys-
tematically smaller by one unit than the heating mode COPc.

Building Physics – Applications in Python 52

Above the freezing temperature at the evaporator*, an approximative performance of vapour compres-
sion cycles may be expressed as a percentage of Carnot’s cycle theoretical efficiency:

COPh ∼ ηC
Th

Th − Tc
(2.45)

where Tc, Th are respectively the cold and hot temperature of the thermodynamic cycle and ηC is the effi-
ciency of the cycle compared to Carnot’s theoretical efficiency, usually around ηC ∼ 35% for commercial
applications. The challenge in the current section is to calculate Tc and Th in order to obtain an estimate of
the COP.

As defined in Equation (2.45), the higher the temperature difference between the hot and cold side, the
lower the coefficient of performance, and vice versa. Interestingly, heat pumps exhibit the best performance
when the temperature difference is low, that is when only a little heating or cooling is required.

In order to determine the cycle temperatures Tc, Th, we need to consider heat exchange at the condenser
and evaporator. Practically, the heat exchanger pinching may reasonably be assumed as 3 ∼ 5 [K]. With this
assumption the actual cycle temperatures are respectively higher and lower than the usage temperature:

Th = Twh + 5 (2.46)
Tc = Twc − 5 (2.47)

A graphical illustration of the position of temperatures Th, Tc in the thermodynamic cycle and of Equations
(2.46) and (2.46) is proposed on Figure 2.22, superimposed on Mollier’s chart.

As seen in Section 3, water-based heating systems are driven by temperature levels. The heat release
depends on the logarithmic mean temperature difference between the radiator surface and the ambient air
(as a reminder, take a look at Equation (2.35)). Provided with Equation (2.45) that heat pumps are efficient
with low temperature differences, the heating departure temperature is to be the lowest as possible: heat
pumps are particularly adapted to floor heating or radiators with large surfaces, enabling the use of low
water temperatures.

For the simplicity of the model, suppose that the heating power demand only depends on the outdoor
temperature. The chosen water logic is classical: when the outdoor temperature is the lowest, the departure
temperature is at its maximum (see Figure 2.23) and when the outdoor temperature rises, the departure
temperature goes down.

The departure temperature of the heating system Twh is a function of the outdoor temperature, as pre-
sented on Figure 2.23. The outdoor dry bulb temperature can then be used as a proxy for the return
temperature, such that:

Twh = aTout + b (2.48)

where a = −1.05 [-] and b = 33.7 [°C] for the case study.

The heating power demand is supposed to be proportional to the difference between indoor and out-
door air temperatures, taking into account conduction losses US and air change ρaQvCpa, providing the
bulk equation:

Ph = (US + ρaQvCpa)(Tin − Tout) (2.49)

The maximal power Pmax of the heat pump is defined as the heat demand at the outdoor sizing temper-
ature, e.g. Tout = −6 [°C]. Depending on the outdoor air temperature, the fraction of the maximum heating
power can be determined by:

Ph
Pmax

=
Tin − Tout

∆Tmax
(2.50)

where Tin = 19 [°C] is the constant indoor temperature and ∆Tmax is the difference of temperatures used
for the heating system sizing, i.e. 19 − (−6) = 25 [K], where −6 [°C] is the minimum temperature of the
chosen location.

*Evaporator defrosting (electrically or by cycle inversion) requires more complex models than the simple one described here.

53 Building Physics – Applications in Python

Heating water
temperatures (°C)

Outdoor
dry bulb (°C)

-6°C
Sizing

temperature

~14°C
Neutral

temperature
(no heating)

~20°C

30°C

40°C

Figure 2.23 •Water temperatures of the heating system depending on the
outdoor temperature.

The heating power required is a fraction of Pmax and varies linearly as per:

Ph = Pmax
Tin − Tout

∆Tmax
[W] (2.51)

Using Equations (2.43) and (2.44), the heat flux Pc to be taken from the ground at the evaporator is
derived from the following three successive equations:

COPc = COPh − 1 (2.52)

Pe− =
Ph

COPh
(2.53)

Pc = COPcPe− (2.54)

The power extracted per unit length of pipe in the ground is then obtained by allocating Pc in each of
the underground pipes, such that:

Pl =
Pc

d× npipes
[W/m] (2.55)

where d is the immersed depth of the pipes and npipes the number of pipes.

Using the value of Pl obtained in a 2D model of the ground, the temperature on the cold side Twc can
be determined as the average return temperature of the geothermal pipes. The calculation is detailed in
Section 4.2 of this chapter.

In real life, the geothermal probe looks much alike the drawing presented on Figure 2.24 where the
probe containing two U-shaped pipes is filled with bentonite* (a type of clay enhancing conduction heat
transfer). However, as it would be convenient for our model to remain two-dimensional, we want to avoid
a detailed modeling of:

*at least in the French context, in order to comply with DTU 65.16

Building Physics – Applications in Python 54

• the temperature evolution of the heat carrier in each pipe with depth,

• the water-to-wall convective resistance of the liquid in the U-pipes,

• what happens in the cross-section of bentonite with four different heat sources,

• the probe wall resistance.

Using Pl as a simple source term on the central point of the cell containing the pipe hence appears
as a very practical alternative (what is more, we do not exactly know what are the real thermophysical
properties of ground around the probes, hence we may probably afford an extra approximation).

Bentonite filling

U-shaped
pipesProbe wall

Figure 2.24 • Scheme of an actual pipe within the 2D mesh.

Summary of the modelling assumptions

For the sake of simplicity, the following assumptions are made on the geothermal side:

• The ground water flow is parallel to the vertical axis of the grid.

• Heat transfer is bi-dimensional: vertical heat transfer is neglected, which allows for a two-dimensional
simulation*.

• Heat is transferred through the geothermal pipes using a heat flux term Pl [W/m].

Regarding the building heating system, the assumptions are listed below:

• Thermal mass of the building is neglected.

• The transients of the heat pump are not considered.

• Heating demand only depends on the outdoor temperature (no solar or internal gains) and no heating
schedule is considered.

• The departure temperature is reached instantly.

• The heat exchanger pinching is constant at 5 [K] and imposes the cycle temperatures to the heat
pump.

• The efficiency ηC compared to Carnot’s cycle is constant.

In the next section, the governing equations and their numerical implementations are presented.
*This very handy assumption is of course wrong.

55 Building Physics – Applications in Python

4.2 Numerical model in 2D

The equation of heat transfer in the ground resembles much mere conduction, as presented in Section
2.2. In addition to conduction, the advection term vwρwCpw

∂T
∂x and the heat source/sink Pl appear in the

balance:

ρCp
dT

dt
= vwρwCpw

∂T

∂x
+ λ

∂2T

∂x2
+ λ

∂2T

∂y2
+ Pl (2.56)

where Pl [W/m] is the heat transferred from ground water to the pipe and vw [m/s] is the underground
water velocity, usually in the order of magnitude of ∼ 1 [m/day].

Numerical formulation

Let us suppose that the ground water flows along the ~y axis at velocity vw. The thickness of the discretised
layer is L = 1 [m]. Using a centered discretisation scheme, the advection term in Equation (2.56) writes
numerically as:

ρwQwCpw (Ti+1,j + Ti−1,j − 2Ti,j) (2.57)
ρwvw∆xLCpw (Ti+1,j + Ti−1,j − 2Ti,j) [W] (2.58)

Establishing the heat balance at the probe node, Equation (2.56) hence translates to:

ρCp∆x
2L
T+
i,j − Ti,j

∆t
=vwρwCpw∆xL

Ti,j−1 + Ti,j+1 − 2Ti,j
∆x

+ λ∆xL
Ti+1,j + Ti−1,j − 2Ti,j

∆x

+ λ∆xL
Ti,j+1 + Ti,j−1 − 2Ti,j

∆x
+ PlL

(2.59)

Simplifying the equation (2.59) yields:

T+
i,j − Ti,j =

vw∆t

∆x
(Ti,j−1 − Ti,j+1 − 2Ti,j)

+
λ∆t

ρCp∆x2

(
(Ti+1,j + Ti−1,j − 2Ti,j) + (Ti,j+1 + Ti,j−1 − 2Ti,j)

)
+

Pl∆t

ρCp∆x2

(2.60)

Let us introduce Courant’s adimensional number Co = vw
∆x/∆t , id est the ratio of the fluid velocity to the

velocity ∆x/∆t of a particle that would pass from a cell to the adjacent one, distant of ∆x, during time ∆t.
Practically, this is the maximum velocity that can be ”captured” by the time and space discretisation used,
otherwise fluid particles travel more than a cell at each time step and cause numerical diffusion.

For clarity, let also r =
ρwCpw
ρCp

be the water to ground ratio of heat storage per Kelvin. Using the non-
dimensional numbers and factorising the temperatures, we can now rewrite Equation (2.60) as:

T+
i,j = Ti,j(1− 2rCo − 4Fo)→ balance at the node

+(Ti−1,j + Ti+1,j)(rCo + Fo)→ advection+conduction along ~y

+(Ti,j+1 + Ti,j−1)Fo → conduction along ~y

+
Pl∆t

ρCp∆x2
→ source term

(2.61)

Building Physics – Applications in Python 56

Note – The stability condition for an explicit scheme in this case is 1 − 2rCo − 4Fo > 0. Compared to
mere conduction, the presence of underground water flow hence lowers the stability limit for a given
space discretisation. This translates to a time step ∆t smaller than:

∆t ≤ 1
2rvw
∆x2 + 4α

∆x2

(2.62)

Additionally, the centered differenciation advection-diffusion scheme is stable for Fo >
C2
o

2 [10], which
translates to a relationship between time step, diffusivity and ground water velocity:

2α∆t

∆x2
≥ v2

w∆t2

∆x2
(2.63)

∆t ≤ 2α

v2
w

(2.64)

The boundary conditions used for the simulation are presented on Figure 2.25: the inlet temperature
is imposed whereas the outlet is a ”zero-gradient” condition. The sides of the domain are considered as
adiabatic (do not mind the low number of cells).

Adiabatic
wall

Adiabatic
wall

Imposed
temperature

Zero gradient
Tn-1=Tn-2

Figure 2.25 • Boundary conditions of the 2D simulation.

Similarly to the applications seen before, the numerical implementation of the 2D Euler scheme is de-
tailed in the code excerpt that follows:

beginning of the time loop
while t < sim_time:

compute the heating departure temperature as per the water logic
T_hot=-1.05*Tout[ii]+33.7
heating power required
P_h = (19-Tout[ii])/dTmax*Pmax
compute the heating mode COP
COP_h = eta_carnot*(T_hot+273.15+5)/(T_hot+5-T_avg-5)
compute the cooling mode COP

57 Building Physics – Applications in Python

COP_c = COP_h - 1
compute the electrical power
Pcomp = P_h/COP_h
compute the cooling power in the ground
P_c = Pcomp*COP_c
update the heat pump power (in W/m)
P_l=-P_c/n_pipes/depth
get the numerical source term
source_HP=P_l*dt/(rho*Cp*dx**2)

apply the in/out boundary conditions
for j in range(0,m):

inlet upper boundary
T[0,j]=T_inlet
T_temp[0,j]=T[0,j]

outlet lower boundary
T[n-1,j]=T[n-2,j]
T_temp[n-1,j]=T[n-1,j]

apply the adiabatic boundary conditions
for i in range(1,n-1):

j=0 left boundary
T[i,0]= T[i,0]*(1-r*Co-3*Fo)\

+ Fo * (T[i+1,0] + T[i-1,0]) \
+ Fo * (T[i,1])\
+ r*Co*(T[i-1,0])

T_temp[i,0]=T[i,0]

j=m-1 right boundary
T[i,m-1]= T[i,m-1]*(1-r*Co-3*Fo)\

+ Fo * (T[i-1,m-1] + T[i+1,m-1]) \
+ Fo * (T[i,m-2]) \
+ r*Co*(T[i-1,m-2])

T_temp[i,m-1]=T[i,m-1]

compute the inside of the domain
for i in range(1,n-1):

for j in range(1,m-1):

if the cell contains a pipe, add the source term
if [i,j] in ij_pipes:

source=source_HP
else:

source=0
generic node temperature equation
T_temp[i,j]=T[i,j]*(1-r*Co-4*Fo)\

+ Fo * (T[i+1,j]+T[i-1,j]) \
+ Fo * (T[i,j+1]+T[i,j-1]) \
+ r*Co*(T[i-1,j]) \
+ source

Building Physics – Applications in Python 58

4.3 Application - Geothermal heat pump

Using the methodology detailed in the previous sections, the calculation of the pipe temperatures and the
seasonal COP are presented in the next paragraphs.

The simulation set up is the following:

• The maximum heating power is Pmax = 10 [kW] for -6 [°C] outdoor temperature.

• Paris’ outdoor air temperature from a meteorological file serves as input.

• The temperatures and COP are calculated after the model presented in Section 4.1 of this chapter.

• The saturated ground thermophysical properties are ρ = 2150 [kg/m3] and Cp = 2000 [J/kg/K].

• The geothermal probes reach the depth d = 20 [m].

• The domain is 40× 40 [m2] wide, with 100 nodes in each direction.

• The stable time step being rather high, a maximum of ∆t = 3600 [s] is set in order to reduce the
numerical integration error.

The temporal evolution of the average pipe temperature and the power taken from the ground are
plotted on Figure 2.26 and follow the same trend. The power extracted from the ground remains is in the
vicinity of ∼ 50 [W/m], which is a common order of magnitude for vertical geothermal probes (∼ 20 to
50 [W/m] is the acceptable range for Pl in the French building construction code, depending on ground
conductivity and heat pump service time over the year).

0 20 40 60 80 100
Time [days]

3

4

5

6

7

8

9

10

Pi
pe

 re
tu

rn
 te

m
pe

ra
tu

re
 [°

C]

70

60

50

40

30

20

10

P l
 g

ro
un

d
[W

/m
]

pipe temperature
power Pl

Figure 2.26 • Example of evolution of average pipe temperature and linear
power Pl taken from the ground.

59 Building Physics – Applications in Python

The ground temperature field can be observed on Figure 2.27 with a staggered configuration of ground
pipes, from day 50 to day 75 of the simulation (or simply day 75 if your PDF reader does not support
animations). The last row of pipes is in the ”plume” of the upstream ones and hence cooler* than the other
ground pipes.

Figure 2.27 • Temperature field in the ground for staggered probes.

Regular configurations of pipes may also be used, as presented on Figure 2.28, also showing days
50 to 75. One can observe qualitatively that the reached temperature is lower, as downstream pipes are
immersed in the water cooled by upstream pipes.

Figure 2.28 • Temperature field in the ground for aligned probes.

*Please note that the colour scale is reversed: although it is counter-intuitive, it looks much nicer.

Building Physics – Applications in Python 60

0 25 50 75 100
Time [days]

3

4

5

6

7

8

9

10

Av
er

ag
e

pi
pe

 te
m

pe
ra

tu
re

 [°
C]

staggered
regular

0 20 40 60 80
Time [days]

3

4

5

6

7

8

9

10

Co
ef

fic
ie

nt
 o

f p
er

fo
rm

an
ce

 C
OP

 [-
]

staggered
regular

Figure 2.29 • Comparison of the staggered and aligned probes.

A comparison of staggered and regular configuration in terms of temperatures (left) and COP (right) is
provided on Figure 2.29. Although the profiles exhibit the same trends, one can observe that the average
pipe temperature of the staggered set up is slightly higher, as well as the COP. Indeed, the average coeffi-
cients of performance differ by a few percent over the year: the regular set up of pipes yields an average
COPre = 4.9, whereas the staggered configuration performs better with COPst = 5.2.

The temperature of the different pipes in the ground is also different depending on the configuration:
Figure 2.30 shows the staggered configuration (right) versus the regular one (left), the latter being more
heterogeneous and with temperatures colder by a few degrees.

0 25 50 75 100
Time [days]

2

3

4

5

6

7

8

9

Te
m

pe
ra

tu
re

 --
 R

eg
ul

ar
 c

on
fig

ur
at

io
n

[°
C]

0 25 50 75 100
Time [days]

2

3

4

5

6

7

8

9

Te
m

pe
ra

tu
re

 --
 S

ta
gg

er
d

co
nf

ig
ur

at
io

n
[°

C]

Figure 2.30 • Comparison of the probes temperatures for staggered and
aligned pipes.

The code for this application can be downloaded from: 2D water heat pump model.

61 Building Physics – Applications in Python

https://github.com/eddes/buildingphysics/blob/master/chapter_2/4_geothermal_heat_pump/geothermal_HP.py

Continue exploring...

Question 14 Set the water velocity vw to zero and change the soil properties to unsatured ρ andCp. How
does the coefficient of performance behave?

Question 15 Perform a parametric study of the influence of water velocity vw on the COP.

Question 16 Change the formulation so that the velocity may be unaligned with the grid axis, i. e.
~v = ~vx + ~vy. Numerically, it consists in splitting the underground velocity into terms
vx∆t
∆x (Ti+1,j + Ti−1,j − 2Ti,j) +

vy∆t
∆x (Ti,j+1 + Ti,j−1 − 2Ti,j).

Question 17 Imagine the radiators are sized for a 70-50 [°C] departure/return system. Change the slope
of the heating system as per Figure 2.18. What is the difference of COP compared to the
floor heating temperature levels?

Question 18 Change the maximum heating power Pmax [W] and evaluate the water temperature dif-
ference. Observe the duration of the soil temperature perturbation over a longer period of
time.

Question 19 Following a similar methodology with the outdoor temperature, add a cooling function for
summer and observe the results over a complete year with/without summer cooling.

Question 20 Add a cylindrical heat resistance for the initially neglected probe wall, as sketched in Figure
2.24, and evaluate the influence of the hypothesis.

Building Physics – Applications in Python 62

Chapter 3

Coupled problems & minimisation

The field of building physics proposes a number of coupled phenomena. In this chapter, we will exam-
ine the numerical methods that can be applied to solve systems of coupled partial differential equations
with problems of gradually increasing complexity. Assumptions are made in order to slightly simplify the
problem: the point here is not to discuss whether the governing equations are well chosen to represent the
underlying physics, but to broach their solving.

1 Indoor Air Quality: two-compartments models

We have seen in Section 2 an example of air concentration modelling with a single-compartment approach,
that is, considering only the air compartment: deposition onto surfaces and resuspension from them were
both neglected. These two phenomena are coupled and form an interesting case study for this chapter.
Much could be said about aerosols. Since this book aims at staying concise, we will only go through some
of the details in the sections below. References will be provided for more precisions.

1.1 What is an aerosol?

Aerosols are clouds of particles in suspension in the air. Those particles have different sizes and shapes,
without distinction of species. Particles may be formed of solid matter, gas or liquid droplets. The following
paragraphs briefly introduce the quantities generally used when considering aerosols.

Size

Different mechanisms drive particles into the air such as erosion or combustion, leading to discrepancies in
particle sizes. Imagine a herd with animals as big as whales, elephants, rabbits and ants: this is, proportions
kept, particles of the orders of magnitude between ∼ 10 [µm] and ∼ 0.001 [µm], illustrated on Figure 3.1.

Particle
number

Particle size
[µm] 10 1 0,1 0,01 0,001

Figure 3.1 • Illustration of aerosol particles with animal size analogy (the size
of animal drawings is not proportional).

63 Building Physics – Applications in Python

As one can imagine, the underlying physics of deposition or resuspension for particles of the various
size classes are governed by different mechanisms. Extending the analogy: elephants are less affected by
wind velocity than ants*.

Shape / Diameter

As the shape of particles is most of the time unknown, an equivalent diameter is used for comparison:
Stokes’ diameter is the diameter of a particle having the same particle density and the same measured
deposition velocity. A few other equivalences exist, such as the aerodynamic diameter using the same
principle for a density of 1 [g/cm3], or the electrical mobility diameter – the report of the Swedish Trans-
ports Agency is very clear about those definitions, see [26].

Density

The density ρ of particles depends on their nature and varies with the context of generation of aerosols
(erosion, combustion, industry, brake wear...). For the indoor and outdoor environments, the particle den-
sity is around 1 [g/cm3], whereas for specific environments it may be higher, such as in the underground
where, owing to a higher iron content in the aerosols, the bulk density can reach up to 4 ∼ 5 [g/cm3] [24].

Quantification

Two quantities are commonly used as a means of comparison for aerosols:

• The particle mass of the aerosol for a given range of diameters, e.g. the PM2.5 or PM10, respectively the
aerosols of particles until 2.5 [µm] and 10 [µm]. Noticeably, the mass is generally calculated using the
assumption of spherical particles and is proportional to the power of three of the particles’ diameter
(mp ∼ ρp × d3).

• The number of particles per size-class.

Mass and number concentration can be used either for the whole aerosol or for each of the size classes,
meaning respectively a one bulk value for all the size classes considered, one or per size class. The tox-
icological debate is still open depending on the correlated influence of size and species of particles, for
instance in the underground context [13]. All in all, a simple rule applies: the less particles, the better, be it
in mass or numbers.

1.2 Physical model

In most applications the bulk approach is used, considering the aerosol in its ensemble without distinction
for each individual particle density or size. The simulated aerosol is supposed to be an equivalent of the
real one, choosing adequate properties.

Let us consider a homogeneous aerosol and add two phenomena to the previous mass balance model
for air quality exposed in Section 2:

→ Deposition δ [s-1] a constant depending on the particle size, deposition velocity and geometrical
features of the enclosure, namely the ratio of wall, ceiling and floor (for an excellent description of
the complex underlying physics, see [19]). In regular enclosures, δ is actually a weighted average
of the deposition velocities upon vertical surfaces, horizontal surfaces and ceilings (respectively the
subscripts v, h, c in following equation):

δ =
vvSv + vhSh + vcSc

V
(3.1)

*... Assuming they are exposed to the same wind velocity, which is unlikely to happen given the existence of a boundary layer
near the ground, correct.

Building Physics – Applications in Python 64

→ Resuspension ρ [s-1] a term for the quantity of particles deposited on the surfaces of the enclosure (or
surface compartement) that can be sent back to the air compartment. This phenomenon is less known
and up to now no unified modelling approach has been proposed. However, one can note that the
resuspension flux in [kg/m2/s] is roughly proportional to the local air velocity vα [16, 21, 25].

It is to be noted that other physical interactions do occur in aerosols, such as coagulation, that appears
to be important for higher numbers of particles. We consider here they are negligible and do not integrate
them in the model.

For a monodispersed aerosol, that is with one size class, writing down the ”closure” equation of the
particle concentration model with L [µg/m2] the quantity of particles deposited on surfaces, we obtain
following system of partial differential equations, also explained in [23]:

V × ∂C
∂t = Qv(Ce − C)− δV C + ρSL [µg/s]

S × dL
dt = δV C − ρSL [µg/s]

 (3.2)

where S is the surface available for deposition and resuspension, the same for both phenomena in the
present case.

The governing phenomena of deposition and resuspension in an enclosure described by the set of Equa-
tions (3.2) are represented on Figure 3.2.

qv
Enclosure (V,S)

Deposition
δVC

Air compartment
concentration

C [µg/m3]

qv

Resuspension
ρSL

Surface compartment
concentration L [µg/m2]

Figure 3.2 • Schematic of the deposition and resuspension phenomena in an
enclosure of volume V and total surface S.

We can identify the mass of particles going from the air to the surface δV C and the mass of particles
resuspended from the surfaces ρSL, forming a coupled system: C depends on L and vice versa.

Dividing the equations in (3.2) respectively by the air volume V and the total deposition surface S, one
obtains:

∂C
∂t = τ(Ce − C)− δC + ρSL

V [µg/m3/s]

dL
dt = δV C

S − ρSL
S [µg/m2/s]

 (3.3)

65 Building Physics – Applications in Python

The distribution of aerosols is often partially known, however the deposition rate of particles varies by
several orders of magnitude depending on their size [19], as shown on Figure 3.3. In simple terms, large
particles tend to ”fall” as gravity is the governing phenomenon (above 1 [µm]), whereas small particles
(below 0.01 µm) diffuse towards surfaces by Brownian diffusion. In between, particles having a diameter
in the vicinity of ∼ 0.1 [µm] are too large to diffuse but too small to ”fall”: they are maintained in the air
by the slightest movements of natural convection.

Figure 3.3 • Deposition rate δ as a function of particle size,
shape of the enclosure and friction velocity (from [30]).

The ”bulk” approach presented in the system of equations (3.2) however does not impede the separa-
tion of particles, grouping them into size classes, for a better evaluation of the behaviour of the aerosol (an
example will be shown in the coming pages of Section 1.4). Considering there is no interaction between the
size classes, e. g. neglecting coagulation that would transfer mass between size classes, the system can be
solved independently from each particle class. A qualitative illustration of the effects of coagulation and
deposition on a polydisperse aerosol is proposed on Figure 3.4.

d [µm]

coagulation deposition

t + ∆t
t

dC/d(log(d))

Figure 3.4 • Qualitative representation of the coagulation
and deposition effects on a polydispersed aerosol.

In the two following sections, we will examine how to put this together numerically, first with a
monodispersed aerosol and then with a polydisperse one.

Building Physics – Applications in Python 66

1.3 Numerical implementation for one size-class

Similarly as introduced in Section 3.2 of Chapter 1, let us define a function to solve for with the very
handy fsolve method. Interestingly, the latter can process either scalars (size one arrays), or arrays. The
construction of the numerical equivalent to system (3.2) is described in the snippet below. For readability
purposes, we split and reconstruct the vector [C,L] as follows:

def fc_IAQ_coupled(vec_CLp, vec_CL, tau,delta,dt,rho,S,V,Ce):
#let us split the input array in two
C,L = vec_CL[0],vec_CL[1] # C [microg/m3], L [microg/m2]
Cp,Lp = vec_CLp[0],vec_CLp[1]
crank-nicolson system of equations for coupled IAQ
C_term = -Cp + C + 0.5*dt*(tau*(Ce-C) -delta*C+ rho*S*L/V)

+ 0.5*dt*(tau*(Ce-Cp) -delta*Cp+ rho*S*Lp/V)
L_term = -Lp + L + 0.5*dt*(delta*V*C/S - rho*S*L/S)

+ 0.5*dt*(delta*V*Cp/S - rho*S*Lp/S)
return [C_term,L_term] # return as an array for fsolve not to crash

The setup of the case study and the model hypotheses are listed below:

• The enclosure dimensions are 5× 5× 3 [m3].

• Ce varies with time around 20 [µg/m3] such thatCe+5×cos(2πt/24), as a simplistic mimic of outdoor
air quality variations.

• The air change rate in the enclosure τ = 0.1 [h-1] is constant.

• The deposition rate δ = 0.15 [h-1] is constant.

• The resuspension rate ρ arbitrarily varies between 0 and 0.5 [h-1] such that ρ + | sin(2πt/24)|, so that
we may observe something else than pure asymptotic behaviour.

• We consider the aerosol is represented by one equivalent particle size. Looking at the deposition rate
curve in Figure 3.3, with the chosen value of δ it could be d ∼ 4 [µm].

Computing the time evolution of the aerosol is then simply made with a loop as follows, solving for
C+ and L+ with Crank-Nicolson’s semi-implicit scheme defined in the previous code excerpt:

while t < sim_time:
add a time varying outdoor concentration
Ce=Ce_base + 5*abs(np.cos(t*2*np.pi/period))
resuspension rate depends on time
rho=rho_base*abs(np.sin(t*2*np.pi/period))
compute C+,L+ with Crank-Nicolson
C_plus,L_plus=fsolve(fc_IAQ_coupled,[C,L],

args=([C,L],tau,delta,dt,rho,S,V,Ce))
C,L=C_plus,L_plus
t+=dt

The results obtained with this model are presented on Figure 3.5. As one can see, the initial mass
deposited on surfaces L0 is ∼ 10 times superior to the steady state (right). Indeed, the initial conditions for
C and L have an impact on each other*. Looking for initial conditions promptly leading to steady state may
well take a few trials and errors. The air and surfaces behaviour in Figure 3.5 can be explained looking at
Equations (3.2): owing to the high quantity of deposited matter, the transferred to air (L to C) is important

*This is the essence of coupled problems.

67 Building Physics – Applications in Python

and the peak of ρLS/V in the first hours causes the increase in C, simultaneously with the drop of L.
Noticeably, obtaining a correct idea of the quantity of particles deposited on surfaces is also complex in
practice.

0 20 40
Time [h]

20

30

40

50

60

70

80

90
Co

nc
en

tra
tio

n
[µ

g/
m

3]
C

0 20 40
Time [h]

20

40

60

80

100

M
as

s o
n

su
rfa

ce
s [

µg
/m

2]

L

Figure 3.5 • Concentration evolution in the air compartment (left) and on the
surfaces compartment (right) after 48 hours.

Figure 3.6 (left) is a plot of the value of the resuspension coefficient ρ over time, following a periodical
sine function. The right-hand side of Figure 3.6 shows the mass transfer from surface to air and vice versa.
The initial peak of matte transferred from surfaces to the air is related to the available quantity of deposited
particles and proportional to ∼ ρLS/V .

0 20 40
Time [h]

0.0

0.1

0.2

0.3

0.4

0.5

Re
su

sp
en

sio
n

ra
te

 [µ
g/

m
3]

0 20 40
Time [h]

0

5

10

15

20

25

30

35

Tr
an

sf
er

 to
 a

ir
[µ

g/
m

3]
 a

nd
 su

rfa
ce

s [
µg

/m
2] LS

V

C

Figure 3.6 • Arbitrary periodic resuspension rate ρ (left) and mass transfer
to/from the surface compartment (right).

Building Physics – Applications in Python 68

The code using a Crank-Nicolson scheme is provided on Github: Single-class air quality model.

1.4 Extension to an n size-class aerosol

As interactions between size classes are not taken into account, we may spare the writing of a matrix
formulation of the problem and be content with arrays. Indeed, extending the method to n classes of
particles is relatively easy once the implementation with one class is done: declaring two vectors [C], [L]
each having the size of the number of size-classes is basically sufficient.

There might certainly be a more elegant or efficient way of realising the coupling*. However, following
”array splitting” technique happens to be straightforward: the vector containing C and L is cut in two
halves, which allows the conservation of most of the one-size-class formulation. With this technique, the air
and surfaces concentrations for the size class i are called with the same index, C[i],L[i] as the positions
in the split array remains the same. The python function for solving writes as:

def fc_IAQ_coupled_classes(vec_CLp,vec_CL,tau,delta,dt,rho,S,V,Ce):
number of size classes
n=int(len(vec_CL)/2)
C,L = vec_CL[0:n], vec_CL[n:] # split into C and L
Cp,Lp = vec_CLp[0:n], vec_CLp[n:] # split into Cplus and Lplus
solve with delta being a vector this time
C_term = -Cp + C + 0.5*dt*(tau*(Ce-C) -delta*C+ rho*S*L/V)

+ 0.5*dt*(tau*(Ce-Cp) -delta*Cp+ rho*S*Lp/V)
L_term = -Lp + L + 0.5*dt*(delta*V*C/S - rho*S*L/S)

+ 0.5*dt*(delta*V*Cp/S - rho*S*Lp/S)
sending back as an array so that fsolve works
(the use of np.hstack 'flattens' in one single array)
return np.hstack([C_term,L_term])

Application to mere deposition

In order to get a grasp of the effects of pure deposition on a polydisperse aerosol following case study is
proposed: the enclosure is identical as in the previous paragraph, however with τ = 0 and ρ = 0.

For this example, let us take a virtual, 6-classes, polydisperse aerosol with mass the distribution* shown
on Figure 3.7 (left), each of the size-classes being centred around d = [0.001, 0.01, 0.1, 1, 10] [µm], and use
a deposition per size class close to the values described in [19], plotted on Figure 3.7 (right): interestingly
they exhibit two orders of magnitude difference.

The evolution of the aerosol over one hour is simulated. One can observe on Figure 3.8 the concentra-
tion in the air (left) and deposited on surfaces (right). Without surprise, pure deposition leads to a decrease
of concentration in the air compartment, mass being transferred to the surface compartment.

*Computational expense is not a challenge in this case.
*Note that mass being proportional to the cube of diameter m ∼ d3, this means the numbers of particles in the smaller size

classes are very high.

69 Building Physics – Applications in Python

https://github.com/eddes/buildingphysics/blob/master/chapter_3/1_single_class_coupled_IAQ.py

0.001 0.01 0.1 1 10
Particle size class [µm]

0.0

0.1

0.2

0.3

0.4

0.5

0.6

M
as

s f
ra

ct
io

n
re

pa
rti

tio
n

[-]

10 3 10 2 10 1 100 101

Particle size class [µm]

10 2

10 1

100

De
po

sit
io

n
co

ef
fic

ie
nt

 [h

1]
Figure 3.7 • Chosen mass repartition in the current example (left) and chosen

deposition coefficients (read from Figure 3.3).

0.00 0.25 0.50 0.75 1.00
Time [h]

6

8

10

12

14

Co
nc

en
tra

tio
n

[µ
g/

m
3]

C

0.00 0.25 0.50 0.75 1.00
Time [h]

60

62

64

66

68

70

72

74

76

M
as

s o
n

su
rfa

ce
s [

µg
/m

2]

L

Figure 3.8 • Particle concentration in the air (left) and on surfaces (right) for
the chosen polydisperse aerosol in the case of pure deposition.

Let us now examine the evolution of mass distribution presented on Figure 3.9 as fractions of the total
mass: we can observe that particles in the size classes at both extremities of the diameter range (0.001 and
10 [µm]) tend to vanish over time. The 10 [µm] particle size-class is particularly affected in this example
case. Interestingly, at the beginning of the simulation, the 10 [µm] size-class contains 60% of mass, whereas
after an hour the 0.01 [µm] and 0.1 [µm] contain ∼ 50% of the aerosol’s mass, leading to a clear shift of
mass distributions over time (see Figure 3.4 as a reminder of the qualitative effect of deposition).

Building Physics – Applications in Python 70

Time (1h)0.0

0.2

0.4

0.6

0.8

1.0

Re
pa

rti
tio

n
of

 p
ar

tic
le

 m
as

s [
-]

Concentration repartition over time per size class

0.001 µm 0.01 µm 0.1 µm 1 µm 10 µm

Figure 3.9 • Evolution of the fraction of each particle size class over time.

Application to an enclosure

Taking again the case study exposed in 1.3 and using the mass distribution chosen in the previous exam-
ple with pure deposition, we calculate the evolution of the quantity of particles on surfaces and in the air.
Figure 3.10 shows the results obtained, alike those obtained with one size-class: on the left the air concen-
tration is plotted and on the right the surface compartment concentration is shown. Similarly, a marked
increase of air concentration C is coupled to a decrease of L and the steady state is not reached after 48
hours.

0 20 40
Time [h]

10

20

30

40

50

Co
nc

en
tra

tio
n

[µ
g/

m
3]

C

0 20 40
Time [h]

70

75

80

85

90

95

100

105

M
as

s o
n

su
rfa

ce
s [

µg
/m

2]

L

Figure 3.10 • Polydisperse aerosol: Concentration evolution in the air (left)
and surfaces (right) compartments after 48 hours.

The evolution of the fractions of mass distribution is presented on Figure 3.11: the periodic increase of
the fraction of particles of the 10 [µm] size class are related to the resuspension spectrum being homoge-

71 Building Physics – Applications in Python

neous (ρ is the same for every size-class). On this Figure too we can observe that the steady state is not
reached after 48 hours.

Time (48h)0.0

0.2

0.4

0.6

0.8

1.0

Re
pa

rti
tio

n
of

 p
ar

tic
le

 m
as

s [
-]

Concentration repartition over time per size class

0.001 µm 0.01 µm 0.1 µm 1 µm 10 µm

Figure 3.11 • Evolution of the fraction of each particle size class over time.

Note – The simplified resuspension rate ρ used for the example assumes there is a sufficient quantity of
particles of every size class deposited on surfaces and available for resuspension, which may well be
wrong. It is also noteworthy that obtaining a representative value of ρ depending on the size classes
remains a challenge in practical applications.

The code for n size classes using a Crank-Nicolson scheme is provided on Github: n size-classes air quality
model.

Building Physics – Applications in Python 72

https://github.com/eddes/buildingphysics/blob/master/chapter_3/2_n_size_classes_model.py
https://github.com/eddes/buildingphysics/blob/master/chapter_3/2_n_size_classes_model.py

Continue exploring...

Question 21 Use a log-normal distribution for a proper n-size class distribution. How does the distri-
bution evolve over time?
Details about the properties of log-normal functions can be found in [15].

Question 22 Using a filter efficiency per size-class as per the simple and useful definition in [17], per-
form the filter clogging computation done in Section 2 for a polydisperse aerosol (you will
have to choose a MERV filter class).
What do you observe as far as the indoor distribution is concerned?

73 Building Physics – Applications in Python

2 Heat and mass transfer in walls

The evolution of temperature and moisture content in building walls is a coupled heat and mass transfer
problem. Its interesting feature lies in the times scales of both phenomena that may vary by one to two
orders of magnitude. The non-linearity arising from the dependance of transfer coefficients to moisture
makes it even more challenging. In the following section, a numerical means of solving such problems is
proposed.

2.1 Phenomenon & Governing equations

Most of the materials used in construction are permeable to air and water vapour through their porous mi-
crostructure. Within the pore network, complex heat transfer occur as radiation adds up to convection and
conduction. The phenomena at the pore scale however are not contradictory with the measured equivalent
properties of materials made on macroscopic samples.

The common macroscopic assumption is that walls are constituted of media with open pores where
water vapour may circulate and is likely to be adsorbed at the solid surface of pores. Humidity is hence
adsorbed on the surface of pores as superimposed layers of H2O molecules. When the water obstructs the
pore, capillary condensation occurs and liquid water appears. However, up to ∼ 90 [%] relative humid-
ity, water transport is essentially driven by vapour transfer and this range is called the hygroscopic region.
Above this threshold, liquid water fills most of the pores volume, starting with the smallest ones.

A fundamental relationship in coupled heat and mass transfer modeling is the water sorption isotherm,
illustrated on Figure 3.12. It provides a link between the mass water content w [kgw/kg] and the relative
humidity ϕ, for example using a mathematical equation:

w =
a

(1−
ln(p

ps
)

b)
1
c

(3.4)

where p and ps are the vapour pressure and saturated vapour pressure and a, b, c are coefficients fitted
on experimental data.

0 20 40 60 80 100
Relative humidity [%]

0

25

50

75

100

125

150

175

200

M
oi

st
ur

e
co

nt
en

t w
 [g

/k
g]

Figure 3.12 • Sorption curve for brick
(a = 1000, b = 146× 10−6, c = 1.59 in Equation (3.4)).

Note – The macroscopic behaviour of the material, for instance its water content depending on relative
humidity, is mainly affected by the size distribution of its pores, that is: its microstructure.

Building Physics – Applications in Python 74

Conversely, the desorption process, when the material releases vapour, follows a similar trend as pre-
sented on Figure 3.12, excepted for a hysteresis which we will neglect here. Capillary pressure owing to the
presence of water in pores is also supposed to be negligible within the moisture content range considered.
In the sequel, we will assume the driving potential of moisture transfer is the vapour pressure gradient and
the material remains within the hygroscopic region. Sound idea: Indeed, vapour pressure is continuous
even at the interfaces between materials, unlike water content!

In porous media, the coupled system between temperature T and water vapour pressure p writes as
[4]:

ρCp
∂T

∂t
=

∂

∂x

(
λ
∂T

∂x

)
+ Lv

∂

∂x

(
δv
∂p

∂x

)
(3.5)

Cm
∂p

∂t
=

∂

∂x

(
δv
∂p

∂x

)
(3.6)

The coupling term appears as Lv ∂
∂x

(
δv

∂p
∂x

)
. It is the product of the latent heat of water and the change

in water content driven by pressure gradient.
Interestingly, the water content w appears in the moisture storage capacity Cm of Equation (3.6):

Cm =
∣∣∣∂w
∂ϕ

∣∣∣ 1

ps(T)
(3.7)

Note – The moisture storage capacity Cm in [kgw/kg/Pa] is defined as the slope of the sorption curve
and acts similarly as a variable heat capacity Cp [J/kg/K] would for heat transfer (replacing p by T
and δv by λ in Equation (3.6) makes it look even more familiar). At each time step of the simulation,
the slope of Equation (3.4) will hence be evaluated with respect to the actual relative humidity ϕ in the
material’s elementary volume.

In this coupled problem, the heat diffusion and mass diffusion processes exhibit different time
scales. Indeed, the characteristic time for heat transfer t∗h = L2/α and the one for mass transfer
t∗m = L2/δv may differ by one or two orders of magnitude, owing to their respective heat and mass
diffusivities.

The coefficients of system (3.5), (3.6) depend on the water content w, as already explicited for Cm. The
other water content dependencies are listed below:

• The specific heat capacity depends on the water content Cp(w) = Cp + w
ρCpw, although the water

contribution may seem low compared to the dry value*.

• The conductivity depends on the water content such that λ = λ0 + kw. For brick, the coefficients are
equal to λ0 = 0.996 [W/m/K] and k = 0.006 [W.m3/m/K/kgw].

• The vapour permeability δv [m2/s] varies for instance as δv(w) = δ0 + kw. Values for spruce can be
δ0 = 1.1× 10−7 and k = −1.57× 10−10.

Other mathematical formulations fitting different behaviours of materials may be found in literature.
For instance references [5, 14] provide a few typical values for the water and temperature-dependent ther-
mophysical properties of materials. Figure 3.13 illustrates the evolution of the vapour diffusion coefficient
and of conductivity with water content.

*The order of magnitude of the water content w ∼ 10−3[kgw/kg] yields w×Cpw ∼ 101 [J/kg/K], which is small versus the dry
material heat capacity Cp ∼ 103 [J/kg/K]. Hence the variation can arguably be neglected, but we are trying to make it non-linear,
don’t we?

75 Building Physics – Applications in Python

50 100 150 200
Moisture content [g/kg]

0.80

0.85

0.90

0.95

1.00

1.05

Va
po

ur
 d

iff
us

io
n

co
ef

fic
ie

nt

v [
m

2 /s
]

1e 7

50 100 150 200
Moisture content [g/kg]

0.4

0.6

0.8

1.0

1.2

1.4

Co
nd

uc
tiv

ity

 [W
/m

/K
]

Figure 3.13 • Examples of evolution of the diffusion coefficient δv (left) and
the conductivity λ (right) in function of water content.

2.2 Modelling heat & mass transfer through walls

Having broached the fundamentals of heat and mass transfer within construction materials, we will now
move on to the numerical modelling. Figure 3.14 presents the notations of material properties and bound-
ary conditions around a wall.

pa

pb
Ta

Tb

λ,ρ,Cp

δv, Cm

Inside Outside Wall

ha hb

hv hv

Figure 3.14 • Schematic of the case study: wall with temperature and
pressure boundary conditions.

Typical values for the superficial heat transfer coefficients are ha = 8 [W/m²/K] and hb = 25 [W/m²/K]
on the indoor and outdoor sides. The surface mass transfer coefficient on both sides can be supposed to be
equal as in [5] hv = 3× 10−8 [m/s].

Building Physics – Applications in Python 76

Numerical implementation

In the solid nodes, the system of Equation 3.5 writes numerically as follows, with all transfer coefficients
depending on water content:

∆xρCp
T+
i − Ti

∆t
= λ

Ti+1 + Ti−1 − 2Ti
∆x

+ Lvδv
pi+1 + pi−1 − 2pi

∆x
(3.8)

∆xCm
p+
i − pi
∆t

= δv
pi+1 + pi−1 − 2pi

∆x
(3.9)

Rearranging the previous equations, using Fourier’s number and introducing Fow = δv∆t
∆x2 as an equiv-

alent of the Fourier number for mass transfer, we obtain:

T+
i = Ti(1− 2Fo) + Fo(Ti+1 + Ti−1) + Fow

Lv
ρCp

(pi+1 + pi−1 − 2pi) (3.10)

p+
i = pi(1− 2

Fow

Cm
) +

Fow

Cm
(pi+1 + pi−1) (3.11)

At the air interface, the superficial vapour transfer coefficient and the vapour diffusion within the
porous media occur. Figure 3.15 shows the configuration with hv [m/s] the vapour transfer coefficient
and δv [m2/s] the vapour diffusion coefficient.

pa

pi+1 pi

1/hv
∆x/(2δv)

Figure 3.15 • Finite volume method for vapour transfer at the air interface.

Similarly to Section 2.3 of Chapter 1, for the first solid node i.e. at the interface between air and solid
matter, the system writes:

ρCp∆x
T+
i − Ti

∆t
=

λ

∆x
(Ti+1 − Ti) +

Ta − Ti
1
ha

+ ∆x
2λ

+ Lv

(
δv
pi+1 − pi

∆x
+

pa − pi
1
hv

+ ∆x
2δv

)
(3.12)

∆xCm
p+
i − pi
∆t

=
δv
∆x

(pi+1 − pi) +
pa − pi
1
hv

+ ∆x
2δv

(3.13)

Much alike the example of heat transfer at the air interface for mere conduction presented in Chapter
1, Section 2.3, we will use an ”equivalent” Fourier number that includes convection. Rearranging and
simplifying, we obtain:

T+
i = Ti(1− Fo − F eqo) + FoTi+1 + F eqo Ta +

Lv
ρCp

(
− pi(Fow + F eqow) + Fowpi+1 + F eqowpa

)
(3.14)

p+
i = pi(1−

Fow

Cm
− F eqow

Cm
) +

Fow

Cm
pi+1 +

F eqow

Cm
pa (3.15)

where F eqow = ∆t
∆x(1

hv
+ ∆x

2δv
)

is the equivalent Fourier number for mass transfer including the convective

term (its heat transfer equivalent F eqo has been defined previously in Section 2.3).

77 Building Physics – Applications in Python

Solving this system of equations is accomplished with the array-splitting technique introduced in Sec-
tion 1.4 of Chapter 3. In the present case, one array containing the temperature and vapour pressure is
concatenated in a single row [T, pv]. With the array split in two halves, the nodes Ti and pi correspond to
the same position in space and hence the access by index is straightforward. The implementation for the
function to be solved is proposed below:

def fc_coupled_HAM(vec_Tpvp,vec_Tpv,K,Fo,Fow,dt,rho,Cp,Cpm,Lv):
split the array
n=int(len(vec_Tpv)/2) # n is the index of a half array
T,pv = vec_Tpv[0:n] ,vec_Tpv[n:]
Tp,pvp = vec_Tpvp[0:n],vec_Tpvp[n:]
we need phi in order to actualise w
phi=pv/fc_pvsat(T)*100
now compute w from the sorption curve
w=fc_w_phi(phi)
update the properties in the media
Cpm,dw,dphi=update_Cpm(w,phi,T)
Fo=update_Fo(w,k,rho,Cp,dt,dx)
Fow=update_Fow(w,dt,dx)
Crank-Nicolson explicit and implicit parts for T
exp_T=0.5 * (Fo * np.dot(K,T) + Lv * Fow/(rho * Cp) * np.dot(K,pv))
imp_T=0.5 * (Fo * np.dot(K,Tp) + Lv * Fow/(rho * Cp) * np.dot(K,pvp))
T_term = -Tp + T + exp_T + imp_T
Crank-Nicolson explicit and implicit parts for pv
exp_pv=0.5 * (Fow/Cpm * np.dot(K,pv))
imp_pv=0.5 * (Fow/Cpm * np.dot(K,pvp))
pv_term = -pvp + pv + exp_pv + imp_pv
send back to 'fsolve' as one array
return np.hstack([T_term,pv_term])

The definition of initial conditions, of the transfer matrix and the time loop setup are very similar to
the previous applications for heat transfer. Take a look a the details in the comments of the code available
online and its comments.

Application: Imposed pressure and temperature boundary conditions

Before moving on to convective boundary conditions, we may want to get familiar with a stripped down
version of the problem: Our case study is a brick wall sample with imposed temperature and pressure on
both sides. The boundary conditions Ta, Tb, pa, pb remaing constant during the simulation.

The presence of variable coefficients in the equations implies to use a relatively small time step when
solving, irrespectively of the unconditional stability of the Crank-Nicolson scheme. In the sequel, the
pressure, temperature, relative humidity and water content are hence plotted at larger time intervals in
order to clarify the presentation of results.

Figure 3.16 presents the evolution of relative humidity and water content in the wall every 6 minutes
over ∼144 [min]. The simulation is characterised by boundary conditions (Ta, Tb) and initial conditions
(Tinit, pinit) such that:

Ta = Tb = 20 [°C] (3.16)
pa = pb = 1200 [Pa] (3.17)

Tinit = 20 [°C] (3.18)
pinit = 1000 [Pa] (3.19)

One observes that the relative humidity increases over this period from ∼ 42 to ∼ 52 [%] in the central

Building Physics – Applications in Python 78

https://github.com/eddes/buildingphysics/blob/master/chapter_3/2b_HAM_imposed_pT.py
https://github.com/eddes/buildingphysics/blob/master/chapter_3/2b_HAM_imposed_pT.py

part of the sample. Reflecting the shape of the sorption curve, the water content is higher where relative
humidity is high.

0.00 0.05 0.10
x position [m]

44

46

48

50
 [%

]

0.00 0.05 0.10
x position [m]

42.5

43.0

43.5

44.0

44.5

45.0

45.5

46.0

wa
te

r c
on

te
nt

 [g
/m

3]

Figure 3.16 • Relative humidity and water content profiles
within the sample (dashed lines representing initial conditions).

The temperature and vapour pressure profiles for the same period are plotted on Figure 3.17: the tem-
perature drop in the center of the sample owes to the sorption process.

0.00 0.05 0.10
x position [m]

19.975

19.980

19.985

19.990

19.995

20.000

Te
m

pe
ra

tu
re

 [°
C]

0.00 0.05 0.10
x position [m]

1000

1050

1100

1150

1200

Va
po

ur
 p

re
ss

ur
e

p v
 [P

a]

Figure 3.17 • Vapour pressure and temperature profiles
within the sample (dashed lines representing initial conditions).

79 Building Physics – Applications in Python

Another simulation is performed with following boundary conditions:

Ta = 20 [°C] (3.20)
Tb = 40 [°C] (3.21)
pa = 1200 [Pa] (3.22)
pb = 1500 [Pa] (3.23)

Tinit = 15 [°C] (3.24)
pinit = 1300 [Pa] (3.25)

The results obtained are presented on Figure 3.18, where the evolution of relative humidity, water
content, temperature and vapour pressure is plotted over a ∼ 144 [min] period. The evolution of vapour
pressure is especially affected by the change in Cm depending on the material’s humidity and exhibits an
S-shape.

0.00 0.05 0.10
20

40

60

 [%
]

0.00 0.05 0.10

40

50

60

wa
te

r c
on

te
nt

 [g
/m

3]

0.00 0.05 0.10
x position [m]

20

30

Te
m

pe
ra

tu
re

 [°
C]

0.00 0.05 0.10
x position [m]

1300

1320

1340

1360

Va
po

ur
 p

re
ss

ur
e

p v
 [P

a]

Figure 3.18 • Relative humidity and water content profiles
within the sample (dashed lines representing initial conditions).

The 1D heat and mass transfer code for this setup can be downloaded here: Heat & mass transfer in
1D with imposed pressure and temperature.

2.3 Observations on the methods

A strong non-linearity originating from the water content dependency to relative humidity makes this
problem quite particular.

Initial conditions

The work by [5] underlines that the choice of initial condition is not straightforward. Quoting previous
work by [20], an accepted initial humidity level would be to start with 40 % relative water content for
existing structures.

Building Physics – Applications in Python 80

https://github.com/eddes/buildingphysics/blob/master/chapter_3/2b_HAM_imposed_pT.py
https://github.com/eddes/buildingphysics/blob/master/chapter_3/2b_HAM_imposed_pT.py

At early time steps, the values obtained may exhibit an oscillatory behaviour (remember Chapter 1,
Section 3.2: unconditionnally stable only means the oscillations eventually vanish). The release of latent
heat, especially when the chosen initial conditions cause large moisture gradients, may provoke oscillations
and/or non-physical results.

Integration scheme

Given the non-linearity of transfer coefficients, the implicit method presented above has the drawback of
requiring small time steps plus sub-iterations to ensure a proper solving of equations. In recent years, the
explicit Du Fort-Frankel scheme [9], became increasingly popular in our field of interest [3, 4, 12] and is
recognised as a state-of-the-art method to solve heat and mass transfer problems.

Briefly, the numerical scheme writes as follows for mere conduction:

T+
i =

1− Fo
1 + Fo

T−i +
Fo

1 + Fo
(Ti+1 + Ti−1) (3.26)

where, similarly as T+ is the value of the temperature field at time t + ∆t, T− is the temperature field
at t−∆t and T remains the value of the current time step.

Figure 3.19, provides a graphical interpretation of the Du Fort-Frankel scheme, compared to the explicit
and implicit ones (we reproduce here the scheme presented in Chapter 1 in order to facilitate the graphical
understanding of differences).

Explicit Implicit

Space Space

T
im

e

i-1 i i+1 i-1 i i+1

t

t+∆t

Du Fort-Frankel

Space

i-1 i i+1

t

t+∆t

t-∆t

Figure 3.19 • Time and space steps involved in the explicit, implicit and
Du Fort-Frankel schemes.

The initial conditions Ti(t = 0) are known. However, Ti(t = ∆t) has to be determined with another
scheme or to be duplicated from the initial conditions. A specific treatment also applies to boundary con-
ditions, as they have to be defined ”twice”.

Another mathematical approach called ”super time-stepping” was recently applied to building simu-
lation and allows for an efficient computation of heat and mass transfer over longer periods. An example
of application and a description of the method can be found in [1, 2].

81 Building Physics – Applications in Python

Continue exploring...

Question 23 Does the specific heat capacity has to be amended with water content? Perform the simu-
lation with/without and conclude.

Question 24 Modify the implicit scheme for treatment of non-linearity, using the cross-Crank-Nicolson
scheme ”cCN”, presented in the remarkably clear reference [11].

Question 25 Evaluate the impact of variable transfer coefficients: perform two simulations with and
without variable properties. Check the values obtained and the simulation time.
Hint: The easiest implementation is to change the functions for the properties calculation
so they return constant values.

Question 26 Adapt the model in order to include convective boundary conditions as per the sketch on
Figure 3.14.

Building Physics – Applications in Python 82

3 Parameter fitting on differential equations

This section provides an insight at problems that combine minimisation with the topics exposed in the
previous chapters: temporal evolution, implicit integration schemes and partial differential equations. Its
purpose is to provide a kick-start for other applications through two examples.

3.1 Minimisation in practice

Most of us have already used the ”add trendline” function in a famous spreadsheet commercial software.
It is a useful means of putting a mathematical relationship (e.g. a polynom) passing near data points (e.g.
measurements), enabling the use of a continuous function between known points. Such procedures were
used for the particle size dependency of filter efficiency in [17] or to fit the pressure drop and efficiency
functions used in Section 2.1 of Chapter 2.

Apart from abstract polynomial functions, identifying the parameters of an equation may also be of
practical interest. A common application in buildings is the gas tracer method: monitoring the concen-
tration decay allows for an a posteriori determination of the air change rate [8], minimising the distance
between model and measurements. For simple problems, manual or spreadsheet determination may be
sufficient, however in the case of more complex cases a minimisation procedure can prove to be useful.

Three items are required for proper minimisation:

• A ”complex” problem: it is always a sound alternative to use a nifty workaround rather than a con-
jugate gradient algorithm.

• An objective function: this is the function to be minimised e.g. the error between the simulated and
measured quantity. The objective function is the compass of any algorithm used and determines the
results obtained.

• An appropriate minimisation procedure: for linear problems, gradient-based methods are in gen-
eral well adapted (an introduction can be found on wikipedia). In the case of non-linear or non-
differentiable problems, genetic algorithms are often useful (if need be, take a look at the outstanding
deap library).

The following points may be regarded as good practice:

• Give your parameters physical bounds. Unlike their users, minimisation procedures do not mind the
likeliness of the results obtained (e.g. negative pressure drop coefficients, temperatures below 0 [K],
etc.).

• As you may discover reading the documentation, it is embarrassingly simple to try different minimi-
sation procedures with python. Depending on the studied problem you may experience generous
speed-ups when changing the solving procedure.

• Give a try to various initial guesses: depending on the starting point of the algorithm local minima
may be found and influence the displayed results or the execution velocity.

Tried all of the above and it still does not fit? If you are fitting measured data, maybe the equations
used are not representative of the phenomenon measured: reconsider the physical model. If you are trying
to optimise a system, re-examining the objective function might be a good start.

Let us now have a look at examples of minimisation in practice, depicted in the two next sections.

3.2 Automatic tuning of a PID

Using the tank drainage problem presented in Chapter 2 Section 3.2, the automatic tuning of a PID con-
troller will be exposed hereinafter.

83 Building Physics – Applications in Python

https://en.wikipedia.org/wiki/Gradient_method
https://pypi.python.org/pypi/deap
https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.minimize.html#scipy.optimize.minimize

Presentation of the problem

Consider the gravity draining tank problem presented in the previous chapter. From a given initial filling
level, we now aim at reaching the set value as fast as possible. As PID controllers are prone to oscillations
and overshoot, a stable combination of the PB, Tu, Td parameters must be found. We perform an a posteriori
optimisation in the sense that combinations of parameters are evaluated on the total simulation time.

As a summary, the requirements are the following:

• Find the combination of proportional band, integration time and derviation time allowing to swiftly
reach the set value.

• Avoid overshoot in order to prevent water overflow.

• Avoid oscillations to preserve the valves from wearing.

The primary goal of the controller being rapidity, the objective function can be defined as the average
of the absolute differences between the actual water height and the set water height, taking into account
both the water height increase and the potential overshoot:

f =
∆t

tmax

tmax∑
t=0

|h(t)−Hset| (3.27)

Numerically, adding the objective function at the end of the computation of the water height over time
consists in writing the following simple lines:

[... perform the water height evolution with a given PID set of values]
create a vector of set values
height_set= H_set*np.ones(len(height))
difference between actual and set values
diff=np.asarray(height)-height_set
average of the absolute difference
diff=abs(diff)
we want to return a scalar
objective=np.mean(diff)
return objective

In order to avoid oscillating systems, a (very) rudimentary penalisation method can be implemented:
for instance check if the valve closes during simulation. The proposal below accounts for the number of
times when the valve position is equal to zero during the simulation, and provides a penalisation after the
time evolution has been computed:

[...] PID calculations etc.
#compute the objective function
objective=np.sum(abs(height)- H_set))
penalise the result if
penalty=0
let us find out if the valve is closed (position=0)
np.where gives the indexes of the vector
v_pos where its values are nil:
idx=np.where(v_pos==0)

if more than 3 times..
if len(idx[0])>3:

penalty=1000 # ... sanction
return objective+penalty

Building Physics – Applications in Python 84

Minimisation setup

The values used for the studied case are summarized below:

• The initial water height is h(t=0) = 0 [m], for 1 [m] set water height in the tank.

• The maximum supply flow rate is Qmax = 50 [L/s].

• The proportional band PB, the integration time Ti and the derivation time Td are bound as follows:

0.1 ≤ PB ≤ 1 [m] (3.28)
5 ≤ Ti ≤ 200 [s] (3.29)

0.5 ≤ Td ≤ 100 [s] (3.30)

• The algorithms supporting bounds in scipy.optimize.minimize are ”TNC”, ”L-BFGS-B” and
”SLSQP”, detailed in the documentation. In the studied case, all three provide the same optimal
solution and exhibit a similar behaviour in terms of computational time.

Note – Equation (3.30) provides a relatively limited interval for the variation of Td. As the derivation
time in combination with low values of integration time tends to provoke oscillation, the aim here is to
limit such behaviour.

The resulting evolution of water height over time obtained using the simulation set up described is
given on Figure 3.20. It corresponds to the optimal PID parameters such that:

• The proportional band is PB = 0.97 [m]

• The integration time is Ti = 143 [s]

• The derivation time is Td = 0.5 [s]

25 50 75 100 125 150 175 200
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

W
at

er
 h

ei
gh

t [
m

]

water height
valve position
set water height

Figure 3.20 • Evolution of the water height and valve position over time for
the set of parameters obtained (PB = 0.97 [m], Ti = 143 [s], Td = 0.5 [s]).

Noticeably, the optimum value for Td is the lower bound, which could mean that a better set of solutions
may exist for a lower value of this parameter: this result is surprising, as the derivative action is supposed
to make controllers act faster. In such cases, you may want to reconsider the bounds: i.e. extending them
and observe the resulting behaviour (e.g. forcing a smaller proportional band, for a faster 0 − 100% valve
opening coupled with a larger integration time Ti).

85 Building Physics – Applications in Python

Comparison with Ziegler & Nichols’ method

A comparative of the results obtained by the optimisation procedure and Ziegler and Nichols’ method is
proposed on Figure 3.21. The control is faster and the water height does not overreach the set value in the
case of optimisation whereas it does for Ziegler-Nichols’ method.

0 20 40 60 80 100 120 140
Time [s]

0.0

0.2

0.4

0.6

0.8

1.0

1.2
W

at
er

 h
ei

gh
t [

m
]

optimisation
Ziegler-Nichols
set water height

Figure 3.21 • Comparison of the results obtained with Ziegler & Nichols
method versus the optimisation.

Note – Using this tuning method yields an optimum set up for this particular combination of initial
conditions and flow rate: the set of parameters obtained may well be unstable under other operating
conditions.

The code used to obtain these results is provided at following address: Automatic PID tuning.

Alternately, get access with your preferred web browser: Automatic PID tuning (notebook).

Building Physics – Applications in Python 86

https://github.com/eddes/buildingphysics/blob/master/chapter_3/3_auto_tuning_PID.py
https://github.com/eddes/buildingphysics/blob/master/notebooks/chapter_3/auto_tuning_PID.ipynb

Continue exploring...

Question 27 Get rid off the penalisation function and see what happens.

Question 28 Despite the penalisation function used, you may have noticed that some sets of parameters
provoking oscillations of the valve may be considered as fitting to the optimality criterion:
indeed, if the valve does not close completely, no penalisation applies!
Build your own function for the detection of oscillations and implement a more generic
penalisation in order to improve your objective function.
Hint: computing the average absolute gradient between two consecutive time steps may
be a good option. A proposal can be found below:

let's consider only the 2nd half of the valve positions
(a steep gradient when filling the tank is expected,
however it is not desirable at the end of the simulation,
when the set value is reached)
i=int(len(v_pos)/2) #
valve position at t
v=v_pos[i:-2]
valve position at t+1
vp=v_pos[i+1:-1]
proxy for the mean gradient
md=np.mean(abs(vp-v))
if the gradient is too steep: penalisation
if md>0.02:

penalty+=100

Question 29 Build an objective function that allows for the determination of a stable and fast system
a) when Qmax is low and h(t=0) << Hset
b) when Qmax is important and h(t=0) ∼ Hset.

87 Building Physics – Applications in Python

3.3 Air Quality in Underground Stations

In this section, the air quality model presented in [28] serves as a basis for the case study.

Presentation of the problem

In underground stations, a correlation exists between train circulation and particulate matter pollution, as
can be observed from Figure 3.22 where the average train traffic and the underground PM10 concentration
are plotted. The PM10 data set originates from Paris’ Gare du Nord station [28] normalised data*. For
the sake of the example, the present data set was arbitrarily multiplied by 100 [µg/m3], which will be the
peak concentration value. In the underground stations around the world, the PM10 measured air pollution
ranges from 50 ∼ 1000 [µg/m3]. Make your own opinion and check what were the underground pollution
levels lately in Paris.

0 25 50 75 100 125 150 175
Time [h]

20

40

60

80

100

Un
de

rg
ro

un
d

PM
10

 [µ
g/

m
3]

0

10

20

30

40

50

60

Tr
ai

n
tra

ffi
c

[#
/h

]

scaled concentrations
train traffic

Figure 3.22 • PM10 concentration and average hourly train traffic (the PM10
values are scaled normalised data from [28])

Starting from the observation that train traffic and underground concentration are linked, the physical
model proposed in [28] uses a bulk aerosol approach to simulate PM10. The evolution of concentration
over time is supposed to be driven by three phenomena. An apparent source term is producing PM10
depending on train traffic N , ventilation brings outside air and particles vanish from the air compartment
by deposition onto surfaces:

∂C

∂t
= αN2 + (βN + τ)(Ce − C)− δC (3.31)

• The pollutant sources originate both from brake wear and resuspension of particles from surfaces.
As measuring the share of each term is not straightforward, an apparent emission term is used. The
review of resuspension [21] shows that a resuspension rate varying with the square of velocity is
likely. The apparent emission term hence writes αN2 (this point will be discussed in the following
paragraph).

• The air change rate is supposed to be the result of natural ventilation denoted τ , driven by pressure
and/or temperature differences, and of the piston effect ventilation β × N . The piston effect term
corresponds here to the outdoor air brought into the station by the arrival and departure of trains.
We define β as the fraction of the station’s volume replaced by outside air per train.

*This means that, in the article, the highest concentration has been chosen to divide all others.

Building Physics – Applications in Python 88

https://www.airparif.asso.fr/pollution/air-interieur-gare#direct
https://www.airparif.asso.fr/pollution/air-interieur-gare#direct

• The bulk deposition δC is the one of a monodisperse aerosol, for which the diameter of particles is
not know.

• The surfaces compartment is not considered therefore no coupling equation is written.

In the model, train traffic is assumed to be a proxy for velocity afar from the surfaces where resuspen-
sion may occur. A field measurement campaign in Paris Saint-Michel’s underground station showed that
this hypothesis satisfactorily represents reality: on Figure 3.23, train traffic and measured hourly average of
air velocity on the platform are plotted over time and exhibit correlated patterns. Thus the air velocity can
be considered as proportional to the number of trains. The apparent source term including resuspension is
correlated to train traffic numbers via air velocity.

Figure 3.23 • Measured running average air velocity and train traffic over
time in Saint-Michel’s underground station from [30].

The purpose of minimisation in this case is to find the most appropriate combination of parameters
(α, β, δ, τ) that minimises the distance between the model and the measurements.

Numerical model

Following the method and notations proposed along the previous chapters, Equation (3.31) translates to
the function below, combining the explicit part term C and implicit part term Cp:

Crank-Nicolson scheme for air pollution equation in the underground
def fc_crank_nicolson(Cp,C,dt,alpha,beta,tau,delta,N,Ce):

term_C =dt*(alpha*N**2+(beta*N+tau)*(Ce-C) -delta*C)
term_Cp=dt*(alpha*N**2+(beta*N+tau)*(Ce-Cp)-delta*Cp)
return -Cp + C + 0.5*term_C + 0.5*term_Cp

Note – In the present case, the ”cookbook” stability condition for the explicit scheme would write:

0 ≤ 1−∆t(βN + τ + δ) (3.32)

In the frame of minimisation, the parameters β, δ, τ are varying, hence the time step has to be sub-
sequently adapted. The measured data should be resampled at each evaluation: indeed the difference

89 Building Physics – Applications in Python

between model and measurements must be done at the same moment in time. Instead of implementing
such a (tedious) routine, the Crank-Nicolson formulation is preferred.

The temporal evolution can be concisely written as a while loop:

Ce=15 # constant outdoor concentration
C=PM10[0] # the initial concentration is the 1st measurement
while t < sim_time:

N=traffic[i] # read the train traffic array
solve for C+
Cp=fsolve(fc_crank_nicolson, C, args=(C,dt,alpha,beta,tau,delta,N,Ce))
C=Cp # replace C by C+
t+=dt # increment time
i+=1 # increment traffic index

The model for this evolution depending on the parametersα, β, δ, τ can be found on Github in the min_func
function: Underground IAQ model.

Minimisation setup

The values used for the studied case are summarised below:

• The initial concentration is the measured PM10 concentration at t = 0.

• The time step is set such that ∆t = 1 [h].

• The apparent source term, the piston effect volume, the bulk deposition rate and the base natural
ventilation air change rate are bound as follows:

0.2 ≤ α ≤ 0.5 [µg/m3/train2] (3.33)
0.05 ≤ β ≤ 0.2 [-] (3.34)
0.1 ≤ δ ≤ 10 [h-1] (3.35)
0.1 ≤ τ ≤ 1 [h-1] (3.36)

• The objective function is chosen as the mean distance between the simulated values and the measured
ones, similarly as Equation (3.27):

f =
∆t

tmax

tmax∑
t=0

|Cmodel(t)− Cmeasured(t)| (3.37)

The results obtained with the model are presented on Figure 3.24, yielding a reasonable 4.96 [µg/m3]
average difference between the model and measurements. One can observe the dynamics and amplitude
are coherent. The values of the optimal parameters are:

α = 0.25 [µg/m3/train2] (3.38)
β = 0.19 [-] (3.39)
δ = 0.17 [h-1] (3.40)
τ = 0.48 [h-1] (3.41)

Building Physics – Applications in Python 90

https://github.com/eddes/buildingphysics/blob/master/chapter_3/4_underground_IAQ_min_func.py

0 25 50 75 100 125 150 175
Time [h]

20

40

60

80

100

Un
de

rg
ro

un
d

PM
10

 [µ
g/

m
3]

model
scaled measurements

Figure 3.24 • Model versus scaled measurements

Note – The value of δ obtained is of particular interest: indeed it allows to find the equivalent diameter
that would represent the bulk aerosol, for instance reading Chapter 3, Figure 3.3 ”backwards”, starting
from the value of δ. Provided it is compared to values in the literature, e.g. the diameters found in
[26], the equivalent diameter constitutes additional information about the likeliness of the estimation
of parameter δ.

The code can be found on Github: Minimisation of the underground IAQ model.

You can also access it via a browser-based application: Minimisation of the underground IAQ model (note-
book).

91 Building Physics – Applications in Python

https://github.com/eddes/buildingphysics/blob/master/chapter_3/4_underground_IAQ_min_func.py
https://github.com/eddes/buildingphysics/blob/master/notebooks/chapter_3/underground_IAQ_min_func.ipynb
https://github.com/eddes/buildingphysics/blob/master/notebooks/chapter_3/underground_IAQ_min_func.ipynb

Continue exploring...

Question 30 Change the model of the apparent source term in order to account for direct emission and
resuspension e.g. (αd ×N + αr ×N2).
Hint : the paper by [27] provides an order of magnitude of the contribution of both terms.

Question 31 Add a variable outdoor concentration using the openly, online available data sets of Air-
parif air quality monitoring agency.
Hint: use the functions of Chapter 2, Section 2.1 in order to build the average weekly PM10
concentration.

Question 32 Change the objective function: build your own function focussing on the error during day-
time peak concentration, concentration between the rush hours and night time.

Question 33 Extend the model to two size-classes as in [29].

Building Physics – Applications in Python 92

https://www.airparif.asso.fr/en/telechargement/telechargement-station
https://www.airparif.asso.fr/en/telechargement/telechargement-station

Chapter 4

Appendix

The appendix contain reminders or details about the theory exposed in the book. Useful code snippets are
also to be found here.

1 Demonstrations & complements

1.1 Matrix formulation in 2D

The 2D formulation of the equation (1.15) is proposed here. In order to use the solving procedure, in
the form of [T+] = [T] + [K][T] the matrix of temperatures is to be set to a one-dimensional array. The
numbering used to access every element of the matrix must be converted from the 2D array indices to a 1D
array, which is less intuitive and will be explained now.

Figure 4.1 illustrates a grid of dimensions n = 3 and m = 4. The conversion consists in adding the
length of the columns, i.e. m columns, each time a row is ”complete”, following the relation Ti,j = Ti×m+j .
In order to access the element T1,2, the index is T1,2 = T1×4+2 = T6.

T0 T1 T2 T3

T4 T5 T6 T7

T8 T9 T10 T11

i index

j index

2

1

0

0 1 2 3 m=4

n=3

Figure 4.1 • Illustration of the 2D to 1D array index conversion.

Note – Remember that in python numbering is from 0 to n-1 or m-1, hence the size m of the columns
instead of m-1, the last index.

93 Building Physics – Applications in Python

The 1D array of temperatures in the 2D space is written as follows:
T0,0

...
Ti,j
...

Tn−1,m−1

 =

T0

...
Ti×m+j

...
T(n−1)m+(m−1)

 (4.1)

In order to construct the conductivity matrix, we can observe the adjacent terms in the 1D array notation
are the ”northern” and ”southern” terms, respectively j + 1 and j − 1:

i, j − 1 → im+ j − 1 (4.2)
i, j → im+ j (4.3)

i, j + 1 → im+ j + 1 (4.4)

The ”east” and ”west” terms (i+ 1,j − 1) stand m points away of the index of the central node i, j in the
1D array:

i− 1, j → (i− 1)m+ j (4.5)
i, j → im+ j (4.6)

i+ 1, j → (i+ 1)m+ j (4.7)

Knowing ”where” all the contributors of the heat balance are, a pentadiagonal matrix can be con-
structed. Given the size of it, only the upper part is presented, the lower being symmetrical:

1− 4Fo Fo ...(m)... Fo ...
Fo 1− 4Fo Fo ...(m)... Fo
...
... Fo ...(m)... Fo 1− 4Fo Fo ...(m)... Fo ...
...

 (4.8)

This formulation is less intuitive for the imposition of boundary condition and has a higher memory
consumption than the array method, especially when storing the evolution over time of the studied field.
In the application presented in Chapter 2, Section 4.3, the array version will be used.

1.2 The Kv value

An equivalence for the Kv value is proposed in this section. The relationship between flow rate and pres-
sure drop may seem somewhat obscure:

Qv = Kv

√
∆p (4.9)

Let us start from Bernoulli’s pressure drop equation across a valve, combining linear pressure drop
λL/D and singular loss ξ:

∆p =
ρv2

2
×
(λL
D

+ ξ
)

(4.10)

Isolating v2 and multiplying by the surface S in order to make the flow rate Qv appear, it yields:

Q2
v =

2S2

ρ(λLD + ξ)
∆p (4.11)

We obtain the formulation of Qv:

Qv =

√
2S2

ρ(λLD + ξ)

√
∆p (4.12)

Building Physics – Applications in Python 94

From which is derived the equation containing the hydraulic impedance Z:

∆p = Z ×Q2
v (4.13)

Qv =
1√
Z

√
∆p (4.14)

The initial relation is completed and Kv is the inverse of the square root of a hydraulic impedance:

Kv =
1√
Z

(4.15)

1.3 Demonstration of the relation between Qv, Kv and a

Using the hydraulic impedance method, the total pressure drop in the circuit equals the sum of the valve
pressure drop Zv and the heater pressure drop Zr:

∆p = (Zv + Zr)×Q2
v (4.16)

As Qv = Kv
√

∆p, it is possible to rewrite the previous equation as:

(Qv
Qv100

)2
=
Zr100 + Zv100

Zr + Zv
=

1 + Zr100
Zv100

Zv
Zv100

+ Zr
Zv100

(4.17)

Noticeably the relationship between the fully opened Zv100 and the partially opened Zv can be written
as:

Zv
Zv100

=
(Kv100

Kv

)2
(4.18)

Let us introduce the valve authority a as the ratio of the valve’s pressure drop on the total pressure
drop:

a =
∆pv100

∆pr100 + ∆pv100
=

Zv100

Zr100 + Zv100
(4.19)

Hence Zr100 = Zv100
1−a
a , also written as:

Zr100

Zv100
=

1− a
a

(4.20)

Let us hypothesise that
Zr100

Zv100
∼ Zr
Zv100

(4.21)

This assumption means that the hydraulic impedance of the heater when the valve is fully opened is
similar to the hydraulic impedance when the valve is partially open.

It is then possible to rewrite Equation (4.17) as:(Qv
Qv100

)2
=

1 + 1−a
a

(Kv100
Kv

)2 + 1−a
a

(4.22)

Finally, we obtain a relationship providing the evolution of the flow rate depending on the Kv value
and the authority of the valve:

Qv
Qv100

=
1√

a(Kv100
Kv

)2 + 1− a
(4.23)

The link between the Kv value and the valve position y is provided explicitly by equation Kv
Kv100

= f(y),
representing the valve’s characteristic curve.

95 Building Physics – Applications in Python

2 Code

In case you do not have an access to stackoverflow, you may find it convenient to have these code
snippets at hand.

2.1 Solving (systems of) Equations

A reminder of the syntax for solving a non linear equation.

import numpy as np
from scipy.optimize import fsolve

find x in this non linear
def fc_inverse(x,a,b,n,q):

return x- q/a*np.exp(b*np.power(x,n))

q=4440 # parameter
tau0=65 # initial guess

solve and get the solution!
tau=fsolve(fc_inverse, tau0, args=(a,b,n,q))

It also works with systems of equations, as exposed all along this book:

def fc_CN(Tp,T,K,beta,Fo):
return Tp -T - 0.5*Fo*np.dot(K,T) - 0.5*Fo*np.dot(K,Tp)

T_plus_CN = fsolve(fc_CN, T_CN, args=(T_CN,K,beta,Fo))

2.2 Data resampling

A handy routine to resample data using Fourier’s theory:

import numpy as np
from scipy import signal
load data
pm10=np.loadtxt("PM10.txt")
t=pm10[:,0] # column 0 is the time
PM=pm10[:,1] # column 1 is the data
prepare resampling
total_time=168 # 24 h * 7 days = 168 points
nb_pts=168 # how many points
PM_resample = signal.resample(PM, nb_pts)
tnew = np.arange(0, total_time, total_time/nb_pts)

get rid off potential negative values
idx=np.where(PM_resample<0)[0]
for elt in idx:PM_resample[elt]=0
plot to compare original/resampled
plt.plot(tnew, PM_resample,'--')
plt.plot(t,PM,'r--',alpha=0.65)

Building Physics – Applications in Python 96

2.3 Data interpolation

Quintessential code lines allowing to interpolate between data points (e.g. digitised data) and compute the
values at regular intervals:

import scipy.interpolate
the measured data set
x = t
y = PM
create an interpolation method from the data
y_interp = scipy.interpolate.interp1d(x, y)
define your interpolation interval
dt=0.25
t_resample= np.arange(min(t), max(t), dt)
calculate the interpolated values
PM_resample=y_interp(t_resample)

2.4 Data fitting

Fitting data may be done using your favourite spreadsheet editor, however if you wish to automate the
process or use more complex equations than the usual ”polynomial fit”, the following may prove to be
useful. In the example provided we need a fit of the analytical pressure drop of singularities ∆p = ξ ρv

2

2 ,
such that ∆p = Av +Bv2, where A and B are unknown.

from scipy.optimize import minimize
import numpy as np
import matplotlib.pyplot as plt

analytical formula used as a reference for fitting
xi=25.97
rho=1.2
v=np.arange(0,10,0.5)
dp=xi*rho*v**2/2

plt.xlabel("v (m/s)")
plt.ylabel("pressure drop (Pa)")
plt.plot(v,dp,label=r'analytical $\xi \rho vˆ2/2$')

minimise discrepancy between model and analytical formula:
dp = A*v + B*v**2
def fc_to_minimise(x):

A,B=x[0],x[1]
dp_num=A*v+B*v**2
return np.sum(abs(dp-dp_num))

x0=[0,0] # initial guess
sol = minimize(fc_to_minimise, x0, method='SLSQP', tol=5e-3)
A,B=sol.x[0],sol.x[1]
print("solutions : ",round(A,3), round(B,3))

plot the result
dp_num=A*v+B*v**2

97 Building Physics – Applications in Python

plt.plot(v,dp_num,marker='o',linestyle='',label=r'fit $Av +Bvˆ2$')
plt.legend()

2.5 Pareto front computation

I found this handy routine somewhere on the internet a while ago*. You may have to play with maxY=False
and change it to True to get the proper Pareto front.

def pareto_front(Xs, Ys, maxY=False):
'''Pareto frontier selection process'''
sorted_list=sorted([[Xs[i], Ys[i]] for i in range(len(Xs))],reverse=maxY)
pareto_front=[sorted_list[0]]
for pair in sorted_list[1:]:
if maxY:

if pair[1] >= pareto_front[-1][1]:
pareto_front.append(pair)

else:
if pair[1] <= pareto_front[-1][1]:

pareto_front.append(pair)
pf_X = [pair[0] for pair in pareto_front]
pf_Y = [pair[1] for pair in pareto_front]
return pf_X, pf_Y

*I humbly ask its author to accept my apologies for not mentioning the source, owing to my forgetfulness.

Building Physics – Applications in Python 98

Bibliography

[1] Madina Abdykarim, Julien Berger, Denys Dutykh, and Amen Agbossou. An efficient numerical
method for a long-term simulation of heat and mass transfer: the case of an insulated rammed earth
wall. arXiv preprint arXiv:1909.08416, 2019.

[2] Madina Abdykarim, Julien Berger, Denys Dutykh, Lucile Soudani, and Amen Agbossou. Critical as-
sessment of efficient numerical methods for a long-term simulation of heat and moisture transfer in
porous materials. International journal of thermal sciences, 145:105982, 2019.

[3] Julien Berger, Thomas Busser, Thibaut Colinart, and Denys Dutykh. Critical assessment of a new math-
ematical model for hysteresis effects on heat and mass transfer in porous building material. International
Journal of Thermal Sciences, 151:106275, 2020.

[4] Julien Berger, Thomas Busser, Sohail Reddy, and George S Dulikravich. Evaluation of the reliability of
a heat and mass transfer model in hygroscopic material. International Journal of Heat and Mass Transfer,
142:118258, 2019.

[5] Julien Berger, Sihem Tasca-Guernouti, Monika Woloszyn, and Catherine Buhe. Mould growth damages
due to moisture: comparing 1D and 2D heat and moisture models. In 13th International Conference on
Building Performance Simulation 2013, Chambéry, France, August 25, volume 28, pages 2876–2884, 2013.

[6] Pascal Henry Biwole, Pierre Eclache, and Frédéric Kuznik. Phase-change materials to improve solar
panel’s performance. Energy and Buildings, 62:59–67, 2013.

[7] George E. P. Box, Norman Richard Draper, et al. Empirical model-building and response surfaces, volume
424. Wiley New York, 1987.

[8] Shuqing Cui, Michaël Cohen, Pascal Stabat, and Dominique Marchio. CO2 tracer gas concentration
decay method for measuring air change rate. Building and Environment, 84:162–169, 2015.

[9] E. C. Du Fort and S. P. Frankel. Stability conditions in the numerical treatment of parabolic differential
equations. Mathematical Tables and other aids to computation, 7(43):135–152, 1953.

[10] C. P. Dullemond. Numerische Strömungsmechanik Lecture Notes – Chapter 3: Numerical Advection,
Summer 2009 Universität Heidelberg.

[11] Denys Dutykh. How to overcome the Courant-Friedrichs-Lewy condition of explicit discretizations?
arXiv preprint arXiv:1611.09646, 2016.

[12] Suelen Gasparin, Julien Berger, Denys Dutykh, and Nathan Mendes. Stable explicit schemes for sim-
ulation of nonlinear moisture transfer in porous materials. Journal of Building Performance Simulation,
11(2):129–144, 2018.

[13] Mats Gustafsson, Göran Blomqvist, Erik Swietlicki, Andreas Dahl, and Anders Gudmundsson. Inhal-
able railroad particles at ground level and subterranean stations–Physical and chemical properties and
relation to train traffic. Transportation Research Part D: Transport and Environment, 17(3):277–285, 2012.

[14] C. E. Hagentoft and T. Blomberg. 1D-HAM coupled heat, air and moisture transport in multi-layered
wall structures. Manual with brief theory and an example, Version, 2, 2000.

99 Building Physics – Applications in Python

[15] Jost Heintzenberg. Properties of the log-normal particle size distribution. Aerosol Science and Technol-
ogy, 21(1):46–48, 1994.

[16] Cheng-Hsiung Huang, Chin-I Lee, and Chuen-Jinn Tsai. Reduction of particle reentrainment using
porous fence in front of dust samples. Journal of Environmental Engineering, 131(12):1644–1648, 2005.

[17] Wladyslaw J Kowalski and William Parry Bahnfleth. MERV filter models for aerobiological applica-
tions. Air Media, Summer, 1, 2002.

[18] Frédéric Kuznik, Joseph Virgone, and Jean Noel. Optimization of a phase change material wallboard
for building use. Applied Thermal Engineering, 28(11-12):1291–1298, 2008.

[19] Alvin C. K. Lai and William W. Nazaroff. Modeling indoor particle deposition from turbulent flow
onto smooth surfaces. Journal of aerosol science, 31(4):463–476, 2000.

[20] Hyeun Jun Moon. Assessing mold risks in buildings under uncertainty. PhD thesis, Georgia Institute of
Technology, 2005.

[21] K. W. Nicholson. A review of particle resuspension. Atmospheric Environment (1967), 22(12):2639–2651,
1988.

[22] S. V. Patankar. Numerical heat transfer and fluid flow, Series in Computational Methods in Mechanics
and Thermal Sciences. Mechanics, 1980.

[23] Jing Qian, Andrea R Ferro, and Kathleen R Fowler. Estimating the resuspension rate and residence
time of indoor particles. Journal of the Air & Waste Management Association, 58(4):502–516, 2008.

[24] Imre Salma, Tamás Weidinger, and Willy Maenhaut. Time-resolved mass concentration, composition
and sources of aerosol particles in a metropolitan underground railway station. Atmospheric Environ-
ment, 41(37):8391–8405, 2007.

[25] G. A. Sehmel and F. D. Lloyd. Particle resuspension rates. Technical report, Battelle Pacific Northwest
Labs., Richland, Wash.(USA), 1974.

[26] Peter Torstensson, Tore Vernersson, Sara Janhäll, Anders Andersson, Fredrik Blennow, and Kristoffer
Mossheden. Use of numerical simulation to map and mitigate railway particle emissions. 2019.

[27] Minghui Tu, Yingying Cha, Jens Wahlström, and Ulf Olofsson. Towards a two-part train traffic emis-
sions factor model for airborne wear particles. Transportation Research Part D: Transport and Environment,
67:67–76, 2019.

[28] E. Walther and M. Bogdan. A novel approach for the modelling of air quality dynamics in under-
ground railway stations. Transportation Research Part D: Transport and Environment, 56:33–42, 2017.

[29] E. Walther, M. Bogdan, and R. Cohen. Modelling of airborne particulate matter concentration in
underground stations using a two size-class conservation model. Science of The Total Environment,
607:1313–1319, 2017.

[30] Walther, E. L’hypercube’s webpage on Air Quality. https://lhypercube.arep.fr/en/
qualite-dair/qualite-dair-en-gares-souterraines/. Accessed: 2020-04-19.

Building Physics – Applications in Python 100

https://lhypercube.arep.fr/en/qualite-dair/qualite-dair-en-gares-souterraines/
https://lhypercube.arep.fr/en/qualite-dair/qualite-dair-en-gares-souterraines/

You flipped to the very last page, congratulations! Unfortunately, no correction is –yet– proposed for the
questions at the end of each chapter.

How to cite

This book is freely available online. You are most welcome to share it!
If you found it of any use, you may cite it with this reference:

@book{walther2021,
title = {{Building Physics Applications in Python}},
author = {Walther, E.},
year = {2021},
publisher = {DIY Spring},
address = {Paris}

}

Errors may well remain in this manuscript: I would be grateful to the reader to send me notice per inmail.

https://www.researchgate.net/profile/Edouard_Walther

	A quick reminder about numerical integration
	Integration over time and space
	Time integration
	Space integration
	Formulation: finite what?

	Numerical formulation of equations
	Inside homogeneous media
	Two-dimensional formulation
	Boundary conditions and interfaces

	Overcoming stability issues
	Stability for Euler's explicit scheme – A cookbook condition
	Crank-Nicolson's scheme

	A word about computer programming
	Debugging
	Before starting

	Transient problems
	Phase Change Materials
	Modelling phase change in a wall
	Numerical model
	Application – Comparison of temperature profiles

	Indoor Air Quality
	Modelling filter clogging
	Numerical model
	Simulation results for a given critical mass
	Cost or air quality?

	PID Controllers in HVAC
	Mathematical model of a PID controller
	Application - Gravity drainage of a tank
	Application - Three-way-valve controller for space heating

	Geothermal heat pump
	Mathematical model of ground heat pump
	Numerical model in 2D
	Application - Geothermal heat pump

	Coupled problems & minimisation
	Indoor Air Quality: two-compartments models
	What is an aerosol?
	Physical model
	Numerical implementation for one size-class
	Extension to an n size-class aerosol

	Heat and mass transfer in walls
	Phenomenon & Governing equations
	Modelling heat & mass transfer through walls
	Observations on the methods

	Parameter fitting on differential equations
	Minimisation in practice
	Automatic tuning of a PID
	Air Quality in Underground Stations

	Appendix
	Demonstrations & complements
	Matrix formulation in 2D
	The Kv value
	Demonstration of the relation between Qv, Kv and a

	Code
	Solving (systems of) Equations
	Data resampling
	Data interpolation
	Data fitting
	Pareto front computation

	Bibliography

	anm8:
	8.40:
	8.39:
	8.38:
	8.37:
	8.36:
	8.35:
	8.34:
	8.33:
	8.32:
	8.31:
	8.30:
	8.29:
	8.28:
	8.27:
	8.26:
	8.25:
	8.24:
	8.23:
	8.22:
	8.21:
	8.20:
	8.19:
	8.18:
	8.17:
	8.16:
	8.15:
	8.14:
	8.13:
	8.12:
	8.11:
	8.10:
	8.9:
	8.8:
	8.7:
	8.6:
	8.5:
	8.4:
	8.3:
	8.2:
	8.1:
	8.0:
	anm7:
	7.40:
	7.39:
	7.38:
	7.37:
	7.36:
	7.35:
	7.34:
	7.33:
	7.32:
	7.31:
	7.30:
	7.29:
	7.28:
	7.27:
	7.26:
	7.25:
	7.24:
	7.23:
	7.22:
	7.21:
	7.20:
	7.19:
	7.18:
	7.17:
	7.16:
	7.15:
	7.14:
	7.13:
	7.12:
	7.11:
	7.10:
	7.9:
	7.8:
	7.7:
	7.6:
	7.5:
	7.4:
	7.3:
	7.2:
	7.1:
	7.0:
	anm6:
	6.36:
	6.35:
	6.34:
	6.33:
	6.32:
	6.31:
	6.30:
	6.29:
	6.28:
	6.27:
	6.26:
	6.25:
	6.24:
	6.23:
	6.22:
	6.21:
	6.20:
	6.19:
	6.18:
	6.17:
	6.16:
	6.15:
	6.14:
	6.13:
	6.12:
	6.11:
	6.10:
	6.9:
	6.8:
	6.7:
	6.6:
	6.5:
	6.4:
	6.3:
	6.2:
	6.1:
	6.0:
	anm5:
	5.50:
	5.49:
	5.48:
	5.47:
	5.46:
	5.45:
	5.44:
	5.43:
	5.42:
	5.41:
	5.40:
	5.39:
	5.38:
	5.37:
	5.36:
	5.35:
	5.34:
	5.33:
	5.32:
	5.31:
	5.30:
	5.29:
	5.28:
	5.27:
	5.26:
	5.25:
	5.24:
	5.23:
	5.22:
	5.21:
	5.20:
	5.19:
	5.18:
	5.17:
	5.16:
	5.15:
	5.14:
	5.13:
	5.12:
	5.11:
	5.10:
	5.9:
	5.8:
	5.7:
	5.6:
	5.5:
	5.4:
	5.3:
	5.2:
	5.1:
	5.0:
	anm4:
	4.35:
	4.34:
	4.33:
	4.32:
	4.31:
	4.30:
	4.29:
	4.28:
	4.27:
	4.26:
	4.25:
	4.24:
	4.23:
	4.22:
	4.21:
	4.20:
	4.19:
	4.18:
	4.17:
	4.16:
	4.15:
	4.14:
	4.13:
	4.12:
	4.11:
	4.10:
	4.9:
	4.8:
	4.7:
	4.6:
	4.5:
	4.4:
	4.3:
	4.2:
	4.1:
	4.0:
	anm3:
	3.20:
	3.19:
	3.18:
	3.17:
	3.16:
	3.15:
	3.14:
	3.13:
	3.12:
	3.11:
	3.10:
	3.9:
	3.8:
	3.7:
	3.6:
	3.5:
	3.4:
	3.3:
	3.2:
	3.1:
	3.0:
	anm2:
	2.7:
	2.6:
	2.5:
	2.4:
	2.3:
	2.2:
	2.1:
	2.0:
	anm1:
	1.4:
	1.3:
	1.2:
	1.1:
	1.0:
	anm0:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

